000014723 001__ 14723
000014723 005__ 20210129210614.0
000014723 0247_ $$2DOI$$a10.1016/j.physleta.2011.01.015
000014723 0247_ $$2WOS$$aWOS:000287780300001
000014723 037__ $$aPreJuSER-14723
000014723 041__ $$aeng
000014723 082__ $$a530
000014723 084__ $$2WoS$$aPhysics, Multidisciplinary
000014723 1001_ $$0P:(DE-Juel1)130810$$aLustfeld, H.$$b0$$uFZJ
000014723 245__ $$aEnhancement of precision and reduction of measuring points in tomographic reconstructions
000014723 260__ $$aAmsterdam$$bNorth-Holland Publ.$$c2011
000014723 300__ $$a1167 - 1171
000014723 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014723 3367_ $$2DataCite$$aOutput Types/Journal article
000014723 3367_ $$00$$2EndNote$$aJournal Article
000014723 3367_ $$2BibTeX$$aARTICLE
000014723 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014723 3367_ $$2DRIVER$$aarticle
000014723 440_0 $$04933$$aPhysics Letters A$$v375$$x0375-9601$$y8
000014723 500__ $$aRecord converted from VDB: 12.11.2012
000014723 520__ $$aAccurate external measurements are required in tomographic problems to obtain a reasonable knowledge of the internal structures. Crucial is the distribution of the external measuring points. We suggest a procedure how to systematically optimize this distribution viz, to increase the precision (i.e. to shrink error bars) of the reconstruction by detecting the important and by eliminating the irrelevant measuring points. In a realistic numerical example we apply our scheme to magnetotomography of fuel cells. The result is striking: Starting from a smooth distribution of measuring points on a surface of a cuboid around the fuel cell, the number of measuring points can systematically be reduced by more than 90%. At the same time the precision increases by a factor of nearly 3. (C) 2011 Elsevier B.V. All rights reserved.
000014723 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien (FUEK412)$$cFUEK412$$x0
000014723 536__ $$0G:(DE-Juel1)FUEK411$$aScientific Computing (FUEK411)$$cFUEK411$$x1
000014723 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x2
000014723 588__ $$aDataset connected to Web of Science
000014723 650_7 $$2WoSType$$aJ
000014723 65320 $$2Author$$aInverse problems
000014723 65320 $$2Author$$aImage reconstruction
000014723 65320 $$2Author$$aFuel cells
000014723 7001_ $$0P:(DE-Juel1)130713$$aHirschfeld, J. A.$$b1$$uFZJ
000014723 7001_ $$0P:(DE-HGF)0$$aReißel, M.$$b2
000014723 7001_ $$0P:(DE-Juel1)132269$$aSteffen, B.$$b3$$uFZJ
000014723 773__ $$0PERI:(DE-600)1466603-0$$a10.1016/j.physleta.2011.01.015$$gVol. 375, p. 1167 - 1171$$p1167 - 1171$$q375<1167 - 1171$$tPhysics letters / A$$v375$$x0375-9601$$y2011
000014723 8567_ $$uhttp://dx.doi.org/10.1016/j.physleta.2011.01.015
000014723 909CO $$ooai:juser.fz-juelich.de:14723$$pVDB
000014723 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vComputational Science and Mathematical Methods$$x0
000014723 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x2
000014723 9141_ $$aFE-Bereich$$y2011
000014723 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000014723 9201_ $$0I:(DE-Juel1)PGI-1-20110106$$gPGI$$kPGI-1$$lQuanten-Theorie der Materialien$$x0
000014723 9201_ $$0I:(DE-Juel1)IAS-1-20090406$$gIAS$$kIAS-1$$lQuanten-Theorie der Materialien$$x1$$zIFF-1
000014723 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x2
000014723 970__ $$aVDB:(DE-Juel1)127103
000014723 980__ $$aVDB
000014723 980__ $$aConvertedRecord
000014723 980__ $$ajournal
000014723 980__ $$aI:(DE-Juel1)PGI-1-20110106
000014723 980__ $$aI:(DE-Juel1)IAS-1-20090406
000014723 980__ $$aI:(DE-Juel1)JSC-20090406
000014723 980__ $$aUNRESTRICTED
000014723 981__ $$aI:(DE-Juel1)IAS-1-20090406
000014723 981__ $$aI:(DE-Juel1)JSC-20090406