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Kurzfassung 

Die vorliegende Arbeit beschäftigt sich mit den thermomechanischen Eigenschaften von 

La0.58Sr0.4Co0.2Fe0.8O3-� (LSCF) und Ba0.5Sr0.5Co0.8Fe0.2O3-� (BSCF) – Perovskit-Materialien, die 

als Sauerstoff-Transport-Membrane (OTM) zur Gastrennung in Betracht gezogen werden. 

Doppelring-Biege-Tests an scheibenförmigen Proben und instrumentiertes Mikro-

Indentionsverfahren wurden als makroskopische beziehungsweise mikroskopische Tests 

verwendet. Zusätzlich wurden die thermomechanischen Eigenschaften eines dritten möglichen 

OTM-Materials La2NiO��� (LNO) untersucht.

Die Ergebnisse der thermomechanischen Messungen des BSCF zeigten eine Anomalie 

zwischen 200 °C und 400 °C. Insbesondere der temperaturabhänige E-Moduls zeigt ein 

Minimum um ~ 200 °C. Bruchspannung und Härte weisen ein qualitativ gleiches Verhalten mit 

einem Minimum zwischen 200 °C und 400 °C auf, bevor sie sich zwischen 500 °C und 800°C 

erholen. Röntgenbeugunsanalysen bestätigten, dass BSCF im relevanten Temperaturbereich 

kubisch bleibt. Daher wurde angenommen, dass die Anomalien mit einem Spinübergang des 

Co3+ zusammenhängen, welcher bereits für andere Co-haltige Perovskite berichtet wurde. Diese 

Annahme konnte experimentell durch Messung der magnetische Suszeptibilitätsmessungen 

bestätigt werden. Der Bruchweg der Proben wurde durch die mechanischen Anomalien nicht 

beeinflusst, es wurde nur ein transkristalliner Bruchmodus beobachtet.

Ergänzend zur mechanischen Charakterisierung des BSCF wurde auch für LSCF auch die 

Temperaturabhänigkeit der Bruchspannung und der Steifigkeit ermittelt. Die Phasen-

zusammensetzung des LSCF wurde ‘in-situ‘ mit einem Hochtemperatur-Röntgendiffraktometer 

(XRD) bestimmt. Es wurden Veränderungen der Phasen-zusammensetzungen in Abhänigkeit 

der Temperatur festgestellt. Bei Umgebungstemperatur besteht das LSCF-Perovskit-Material 



 

 

aus zwei Phasen mit: rhomboedrische und kubische Symmetrie. Das Verhältnis der beiden 

Phasen zu hängt sowohl von der Abkühlgeschwindigkeit als auch von der Atmosphäre ab. Der 

Übergang von rhomboedrisch zu kubisch erfolgt in Luft zwischen 700 °C und 800 °C. Der 

Übergang scheint mit einer Veränderung der Wärmekapazität einherzugehen. Die 

Bruchspannung von LSCF wurde mittels Doppelring-Biege-Tests zwischen Raumtemperatur 

(RT) und 800 °C bestimmt. Unterhalb 700 °C erhält man nichtlineare Last-

Durchbiegungskurven; ein Effekt, welcher der Ferroelastizität der rhomboedrischen Phase 

zugeordnet werden kann. Sowohl REM als auch TEM untersuchungen bestätigen die Existenz 

einer Domain-Struktur in den rhomboedrischen Körnern. Der Einfluss der thermischen 

Vorgeschichte auf die Phasenzusammensetzung und das sich daraus ergebende 

thermomechanische Verhalten werden diskutiert. Die Härteeindrucks-Bruchzähigkeit ist

unempfindlich gegenüber Temperaturveränderungen zwischen RT und 350 °C zu sein.

Zusätzlich zu den zwei perovskitischen Materialien wurden auch die mechanischen 

Eigenschaften von LNO untersucht. Bruchspannung und Steifigkeit von LNO wurden mittels 4-

Punkt-Biegetest von RT bis 900 °C ermiettelt. Die beiden Parameter steigen von RT bis 700 °C 

leicht an. Die Steifigkeit nimmt jedoch bei noch höheren Temperaturen ab, wohingegen die 

Bruchspannung ansteigt. Obwohl bis 1000 °C kontinuierlich Sauerstoff aus dem Kristallgitter 

abgegeben wird, zeigt der thermische Ausdehnungskoeffizient einen nahezu konstanten Wert 

von RT bis 1000 °C.

Abschließend werden die mechanischen Ergebnisse der drei Membranmaterialien 

zusammengefasst und im Hinblick auf die praktische Anwendung in der Gastrennung 

verglichen.



 

 

Abstract 

The thesis presents thermo-mechanical properties of La0.58Sr0.4Co0.2Fe0.8O3-� (LSCF) and 

Ba0.5Sr0.5Co0.8Fe0.2O3-� (BSCF) perovskite materials, which are considered as oxygen transport 

membranes (OTM) for gas separation units. Ring-on-ring bending test with disk-shaped 

samples and depth-sensitive micro-indentation have been used as macroscopic and microscopic 

tests, respectively. In addition, the thermo-mechanical properties of a third OTM candidate 

material La2NiO��� (LNO) were investigated.

The results of the thermo-mechanical measurements with the BSCF revealed an anomaly 

between 200 °C and 400 °C. In particular, the temperature dependence of Young’s modulus 

shows a minimum at ~ 200 °C. Fracture stress and toughness exhibit a qualitatively similar 

behavior with a minimum between 200 °C and 400 °C, before recovering between 500 °C and 

800 °C. X-ray diffraction analyses verified that BSCF remains cubic in the relevant temperature 

range. Hence the anomalies were assumed to be related to the transition of Co3+ spin states

reported for other Co-containing perovskites. This assumption could be experimentally 

confirmed by magnetic susceptibility measurements. The fracture surfaces of the specimens are

not affected by the mechanical anomalies at intermediate temperatures, since only a 

transgranular fracture mode has been observed.

Complementary to the mechanical characterization of BSCF, also the temperature dependency 

of fracture stress and elastic behavior of LSCF have been determined. Phase compositions of 

LSCF have been studied by in-situ high temperature XRD. Changes in phase composition with 

temperature are observed. At ambient temperature the LSCF perovskite material comprises two 

phases: rhombohedral and cubic symmetry. The ratio of the two phases depends on both cooling 

rate and atmosphere. The transition of rhombohedral to cubic occurs between 700 °C and 

800 °C in air. The transition appears to be associated with a change of heat capacity. The 



 

 

fracture stress of LSCF was determined on the basis of ring-on-ring bending tests between room 

temperature (RT) and 800 °C. Below 700 °C non-linear load-displacement curves are obtained, 

an effect that is attributed to the ferro-elasticity of the rhombohedral phase. Both SEM and TEM 

verify the existence of a domain structure in the rhombohedral grains. The importance of 

thermal history on phase composition and the resulting thermo-mechanical behavior is 

discussed. The indentation fracture toughness appears to be insensitive to temperature variations 

from RT up to 350 °C.

In addition to the two perovskite materials also mechanical properties of LNO have been 

determined. Fracture stress and stiffness of LNO were evaluated from RT up to 900 °C based on 

4-point bending tests. Both mechanical parameters increase slightly from RT to 700 °C. 

However, at higher temperatures the stiffness decreases, whereas the fracture stress increases. 

Although oxygen is continuously released from the lattice up to 1000 °C, the thermal expansion 

coefficient shows an almost constant value from RT up to 1000 °C.

Finally the mechanical results of the three membrane materials are summarized and compared 

with respect to practical application in gas separation units.
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Introduction
Global warming is an increasing challenge for mankind with consequences such as rising sea 

levels, glacier retreat and arctic shrinkage already observed [1-3]. One of the major causes for 

global warming is attributed to the emission of greenhouse gases. In the atmosphere they 

absorb and emit radiation within the thermal infrared range. The main greenhouse gases in the 

Earth's atmosphere are water vapour, carbon dioxide, methane, nitrous oxide, and ozone [4-6].

The increasing greenhouse gas concentrations result from human activity such as fossil fuel

burning and deforestation [5-7]. Therefore, efforts are increasingly directed towards a reduction 

of the CO2 emission. One option to burn fuels and at the same time not to release CO2 into 

atmosphere is separation capture and sequestration. There are three possible technical solutions 

for CO2 capture in fossil power plants: post-combustion, oxyfuel and pre-combustion (Figure 

1.1). In the post combustion process CO2 is separated from N2. The other two solutions utilize 

air separation before combustion to obtain pure oxygen. In the oxyfuel process the oxygen is 

used for the combustion, whereas in the pre-combustion, a CO-CO2 shift reaction is performed. 

 

Figure 1.1: Schematic representation of possible separation processes in fossil power plants
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The CO2 capture is in both cases carried out after condensation. In particular, for the N2/O2

separation (Figure 1.1) inorganic membranes have been proposed as being more efficient than 

the established conventional air liquefying techniques.

For application as membranes in power plant, the materials should exhibit high oxygen 

conductivity, chemical and structural stability in long term operation, compatibility of thermal 

expansion with metallic structures, and a high resistance to mechanical failure (e.g. fracture 

stress). The present thesis focuses on three of these inorganic membrane materials 

Ba0.5Sr0.5Co0.8Fe0.2O3-�, La0.58Sr0.4Co0.2Fe0.8O3-� and La2NiO���. They all utilize the selective 

oxygen permeation at elevated temperatures. Due to their mixed ion-electron conductivity 

(MIEC), the three oxygen transport membranes (OTM) also keep charge neutrality. Besides the 

functional performances of high oxygen transport the mechanical integrity of the membranes 

plays a key role in the envisaged gas separation applications. The thesis has the aim to describe 

the thermo-mechanical behaviour of the three MIEC membranes.
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1. Literature review
Mixed ion-electron conductivity (MIEC) materials with high oxygen permeation are currently 

exploited as promising oxygen transport membranes (OTMs) for gas separation. Perovskites 

like Ba0.5Sr0.5Co0.8Fe0.2O3-� (BSCF) and La0.58Sr0.4Co0.2Fe0.8O3-� (LSCF) as well as materials 

with K2NiF4 structure like La2NiO��� (LNO) have been proposed for OTM application, since 

they exhibit strong oxygen permeation at elevated temperatures. The oxygen transport 

mechanisms of these three candidate materials are addressed, and the permeation is compared 

with data of other perovskite compositions reported in literature. With higher temperature the 

OTM materials loose oxygen which promotes the oxygen transport through the lattice. The loss 

of oxygen has in addition impact on the material expansion. Also changes in the spin-state of 

perovskites can influence the material expansion. The underlying mechanism and results 

reported to date about this effect are presented. Macro- and micro-mechanical characterizations

for perovskites with similar composition as the three materials are reviewed.

1.1 Transport mechanisms 

MIEC materials can selectively separate oxygen from air by the lattice diffusion of the oxygen 

ions [8]. Besides appropriate temperature for diffusion, the driving force for oxygen transport is 

the difference of the chemical potential of oxygen between the two surfaces of the membrane 

[9]. The steady flux of oxygen ions is charge compensated by a counter flux of electrons, and 

the surface activity of oxygen is also enhanced by surface electrons. The transport of oxygen 

through a dense MIEC membrane involves several successive processes: the surface exchange 

reaction on the feed side; dissociation of an oxygen molecule into oxygen atoms; combination 

with electrons to form O2-; lattice diffusion of oxygen ions. The reactions on the sweep side are 

reverse processes to those of the feed side. The slowest process is expected to determine the 

overall rate of oxygen permeation [10]. The transport process is schematically presented in 

Figure 1.2.
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Figure 1.2: Schematic representation of the transport process of oxygen through a membrane 
with different oxygen partial pressure PO2’>PO2’’ on both surfaces

1.2 Perovskites and K2NiF4 structured material 

Ionic conductivity was first reported in yttrium stabilized zirconia [11]. However, besides the 

lack of charge compensation, the low permeability and a high operating temperature limit its 

application in OTM membranes [10, 12]. In both aspects MIEC materials have advantages and 

are currently applied or developed as promising materials for cathodes of a solid state fuel cell 

(SOFC) and for ceramic membranes in oxygen separation units [13, 14]. The steady flux of 

oxygen ions is charge compensated by a counter flux of electrons, and the electrons also 

enhance the surface exchange process [15].

Among the MIEC materials the perovskites oxides of the type ABO3 (rare earth metal ions in A 

sites and transition metal ions in B sites) have been most extensively investigated in the last 

decades. Perovskite is a general term of a structural family of inorganic materials with the

structure of CaTiO3 [10, 16]. The ideal perovskite has cubic symmetry with the space group 

Pm3m. The B cation is 6-fold and the A cation 12-fold coordinated with the oxygen anions. 

The structure, which is schematically displayed by Figure 3, reveals that the transition metal 

ions (B) are located at the centre of the cube, forming an octahedral with 6 nearest oxygen ions. 

The angles between the six equal B-O bonds are 90 °. A-ions are located at the corners 

surrounded by twelve equidistant oxygen ions (Figure 3(a)). Alternatively, the structure can 
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also be viewed with the A cation located in the centre of the cube and B located at the corner 

(Figure 3(b)) [17].

 
(a) B-ions cube centered

(b) A-ions cube centered 

Figure 1.3: Atomic structure of perovskite

 

In the ideal cubic symmetry, when the atoms are assumed to be closely packed, it can be stated 

that: 

2(RB+RO)=a                                                                (1.1)

2(RA+RO)=��a                                                              (1.2)
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where RA, RB, RO are the radius of A, B, O atoms, respectively, and a is the lattice constant. 

Combining the equations (1.1) and (1.2), the relation between the ionic radii is given by:

(RA+RO)=���RB+RO)                                                    (1.3)

With respect to the stability of the cubic symmetry of the perovskites, a tolerance factor (t) has 

been defined by Goldschmidt [18]:

)(2 OB

OA

RR
RRt
�

�
� (1.4)

Normally, when the tolerance factor (t) is between 0.8 and 1, the perovskite structure is 

preserved [16]. The ideal cubic perovskite structure is stable only for t-values very close to 1. 

However in many cases the composition and stoichiometry of the perovskites causes a distorted 

structure. In fact, orthorhombic, rhombohedral, tetragonal, monoclinic, and triclinic symmetry 

are frequently observed besides the cubic symmetry [16].

1.2.1 Ba0.5Sr0.5Co0.8Fe0.2O3-� (BSCF) 

Variants of BaxSr1-xCo0.8Fe0.2O3-� and LaxSr1-xCo1–yFeyO3–� with perovskite structure are the 

most promising oxygen-permeable MIEC materials and currently discussed for membrane 

application [14, 19-22]. The origin of BSCF can be traced back to SrCoO3-�, which is an 

important perovskite-type parent compound [17]. More specifically, BSCF is modifications of 

SrCo1-yFeyO3-�, which was one of the first perovskites suggested as an oxygen transport 

membrane [21, 23, 24]. One of the six oxygen lattice positions in SrCoO3-� is unoccupied and 

the oxygen diffusion follows a vacancy mechanism. Also the bond strength of Co-O is 

relatively weak, so high oxygen conductivity is obtained [25, 26].  However, there is a phase 

transition from high temperature cubic structure to low temperature hexagonal structure 

between 800 °C and 900 °C. The high oxygen permeation is only achieved in the cubic 

structure, but oxygen permeation is low in the hexagonal phase [27-29]. Based on SrCoO3-�
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many groups have studied the oxygen permeation of the doped systems AxSr1-xByCo1-yO3-� [21, 

30-37]. SrCo0.8Fe0.2O3-� was found to exhibit the highest oxygen permeation flux. However, the 

SrCo0.8Fe0.2O3-� has only limited mechanical and phase stability due to the small radius of Sr 

[24, 31, 38], see equation (1.4). Since the cubic symmetry is stable when the tolerance factor is 

close to 1, Shao et al. [39] used the large Ba atom to substitute Sr. They found that a 50 % 

replacement of Sr by Ba was the best composition to stabilize the cubic symmetry. BSCF 

maintained cubic symmetry up to 1000 °C in the PO2 range of 1 to 10-5 atm, and had a higher 

concentration of oxygen vacancies in random distribution [14]. Chen et al. investigated the 

phase structure, oxygen non-stoichiometry and electrical conductivity of the system 

Ba0.5Sr0.5Co1-yFeyO3-� (y = 0.0 - 1.0) [40], and observed a higher oxygen permeation and phase 

stability in Ba0.5Sr0.5Co0.8Fe0.2O3-�. Oxygen stoichiometry, oxygen permeation properties and 

structural stability of BSCF have been extensively investigated [14, 41, 42]. The initial oxygen 

stoichiometry of BSCF was found to be ~ 2.48 if cooled in air from sintering temperature [14].

1.2.2 La0.58Sr0.4Co0.8Fe0.2O3-� (LSCF)

The La1-xSrxCo1-yFeyO3-� perovskite-type oxides, which have been extensively studied for 

application as membranes for oxygen separation [43, 44], are well known for their excellent 

electronic and oxygen ionic conductivity at elevated temperature [10, 19, 45-48] (see Table 

1.1). Fossdal et al. [49] studied the phase structure of La1-xSrxFeO3-� in the temperature regime 

between RT and 1000 °C (Figure 1.4). For 0 < x < 0.2 the La1-xSrxFeO3-� material has an 

orthorhombic structure at RT. With increasing x the perovskite gradually transforms to 

rhombohedral and cubic symmetry. The cubic symmetry is favoured by a higher content of Sr 

and high temperature. In particular La0.6Sr0.4Co0.2Fe0.8O3-� was extensively studied [47, 50-55].



 11 

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

200

400

600

800

1000

Te
m

pe
ra

tu
re

 /°
C

x in La1-xSrxFeO3-�

O
rth

or
ho

m
bi

c 
(O

) P
nm

a

Rh
om

bo
he

dr
al

 (R
) R

3c

O
+R

Cu
bi

c 
(C

) P
m

3m
Figure 1.4: Pseudobinary phase diagram for the La1-xSrxFeO3-� system (x �	
��
�	��	���	[49]

However, under application-relevant operation conditions the perovskites must in addition to a 

high oxygen flux rate also exhibit a satisfactory mechanical strength. During membrane 

operation a high oxygen partial pressure (PO2) and a low PO2 are maintained at the two surfaces 

of the membrane, respectively. As a result, a stable oxygen gradient is generated across the 

membrane. The material that is exposed to the low PO2 loses part of its oxygen, resulting in a 

reduction of B site cations Mn+ to a lower valence M(n-1)+ [56], and the lattice of the perovskite 

will expand [57, 58]. It has been verified that a phase transition may also be induced by an 

oxygen deficiency [59], and hence both effects could cause a mismatch of the lattice 

parameters on the two surfaces of the membrane. Consequently, stresses are likely to be 

generated that may lead to membrane fracture.

The La1-xSrxCo1-yFeyO3-� perovskites have a rhombohedral symmetry at low temperature, and 

transform at higher temperature to a cubic symmetry by a second order phase transition. The 

transition temperature depends on the amount of dopant [49, 60]. LaCoO3 remains 

rhombohedral up to its melting point (1740 °C), whereas the transition temperature of LSCF is 

~ 750 °C in air. Along with this transition the Young’s modulus increases by ~ 50 % [49, 59].
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It has been reported that the Young’s modulus of LaCr0.79Mg0.05Al0.16O3-� (LCMA) increases 

with decreasing partial pressure of oxygen, which was attributed to oxygen-vacancy related 

differences in the crystallographic bonding properties [61, 62].

The stress-strain behavior of rhombohedral LSCF is also influenced by its ferro-elasticity [59, 

63]. Ferro-elastic deformation results in a hysteresis of the stress-strain behavior [64]. Since 

there are two equivalent directions of the rhombohedral structure, a spontaneous reorientation 

of domains can occur under mechanical stress [65]. Ferro-elastic domain switching may 

increase the fracture toughness of materials [66], and cause stress relaxation in zones of higher 

stress. Hence, ferro-elasticity is an important non-linear deformation mechanism that needs 

attention to understand the mechanical behavior of LSCF perovskite.

1.2.3 Oxygen permeation flux data for perovskites 

The oxygen flux of reported perovskite-based membranes is compiled in Table 1.1. La1-

xSrxCoyFe1-yO3-� exhibits a lower oxygen flux than BSCF, but the chemical stability of La1-

xSrxCoyFe1-yO3-� is more pronounced [10, 50, 67]. Teraoka et al. have investigated the rate of 

oxygen permeation in the system La1-xSrxCo0.4Fe0.6O3-� (x=0.0, 0.4, 0.8 and 1), and the rate of 

oxygen permeation was found to decrease with increasing x value [37].

Table 1.1 Oxygen permeation flux data for perovskite structure membranes

Membrane
Temperature

(° C)
JO2(mol·s-1·cm-2) Shape Thickness 

(mm) Reference

Ba0.5Sr0.5Co0.8Fe0.2O3-�

850-900

800-900

850-950

8.929×10-8 to 
1.563×10-6

7.068×10-7 to 
2.307×10-6

1.406×10-6 to 
3.266×10-6

Disk 1.8

[21]

[32]

[68]

La0.6Ba0.4Co0.8Fe0.2O3-� 860 1.536×10-6 Disk 1.5 [36]

La0.4Ba0.6Co0.2Fe0.8O3-� 900 3.348×10-7 Disk 2.3-3.1 [69]

La0.2Ba0.8Co0.2Fe0.8O3-� 900 3.125×10-7 Disk 2.3-3.1 [69]
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La0.6Ca0.4Co0.8Fe0.2O3-� 860 1.364×10-6 Disk 1.5 [36]

La0.4Ca0.6Co0.2Fe0.8O3-� 900 1.414×10-7 Disk 0.55 [69]

LaCo0.8Fe0.2O3-� 860 1.786×10-8 Disk 1.5 [36]

La0.6Sr0.4CoO3-�
870

850

850

820-860

3.770×10-7

~1×10-6

1.778×10-8

5.365×10-7 to 
7.649×10-7

Disk

Disk

Disk

Disk

1

0.24-1.3

1

1.5

[37]

[70]

[24]

[36]

La0.6Sr0.4Co0.2Fe0.8O3-� 850-900 0.400×10-7 to 
1.050×10-7 Tube 0.219 [71]

La0.6Sr0.4Co0.4Fe0.6O3-� 1000-1100 2.530×10-8 to 
1.280×10-7 Disk 1 [37]

La0.6Sr0.4Co0.8Fe0.2O3-� 860 4.591×10-7 Disk 1.5 [36]

La0.4Sr0.6Co0.2Fe0.8O3-� 900

900

8.185×10-8

4.092×10-7

Disk

Disk

0.55

2.3-3.1

[72]

[69]

La0.2Sr0.8Co0.2Fe0.8O3-� 900 5.060×10-7 Disk 2.3-3.1 [69]

La0.2Sr0.8Co0.4Fe0.6O3-� 1000-1100 1.280×10-7 to 
3.720×10-7 Disk 1 [37]

La0.6Sr0.4Co0.8Mn0.2O3-� 860 3.720×10-7 Disk 1.5 [36]

La0.6Sr0.4Co0.8Ni0.2O3-� 860 1.076×10-6 Disk 1.5 [36]

SrCoO3-� 850-1000 0 to 3.35×10-7 Disk 1 [24]

SrCo0.4Fe0.6O3-� 1000-1100 7.210×10-7 Disk 1 [37]

SrCo0.8Fe0.2O3-� 850

870

780-850

1.738×10-7

2.485×10-6

8.000×10-8 to 
5.433×10-7

Disk

Disk

Disk

1

1

1-5.5

[24]

[37]

[31]

1.2.4 La2NiO��� (LNO) 

The LNO material possesses a K2NiF4 structure. The ideal crystal structure can be described as 

an alternation of perovskite layers with rock salt layers along the c-direction [73, 74], as is 

illustrated in Figure 1.5. The oxygen ion transport in LNO phases occurs via a complex 

mechanism combining interstitial migration in the rock salt layers and vacancy migration in the 

perovskite layers [75, 76]. The LNO phases are oxygen-hyperstoichiometric (� > 0) at 
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temperatures below ~ 1000 °C. The oxygen non-stoichiometry (�) is close to 0.14 when slowly 

cooled in air [77-81].

LNO has certain advantages compared to perovskite materials. They include higher chemical 

stability, stable thermal expansion, and lower chemical expansion. The isothermal chemical 

expansion caused by an oxygen pressure gradient is lower than 0.05 % [73, 82], which reduces 

thermo-mechanical integrity problems for the membrane application. 

 

Figure 1.5: Atomic structure of LNO

The oxygen flux of K2NiF4 structured membranes reported in literature is compiled in Table 

1.2. R2NiO4 (R=Pr, Nd, Ni) system exhibits a higher oxygen flux than Ln2CuO4 (Ln=Pr, Nd) 

system.

Table 1.2 Oxygen permeation flux data for K2NiF4 structured membranes

Membrane
Temperature

(° C)
JO2(mol·s-1·cm-2) Shape Thickness 

(mm) Reference

Pr2Ni0.75Cu0.25Ga0.05O4 1000 4.967×10-6 Disk 0.5 [83]

Pr2Ni0.75Cu0.25Ga0.07O4 1000 4.916×10-6 Disk 0.5 [83]

Pr2Ni0.6Cu0.2Fe0.2O4 900 5.109×10-7 Disk 0.5 [84]
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Pr2Ni0.8Cu0.2O4 900 5.408×10-7 Disk 0.5 [84]

Pr2Ni0.7Cu0.2Fe0.1O4 900 5.833×10-7 Disk 0.5 [84]

Pr2Ni0.75Cu0.2Fe0.05O4 900 6.813×10-7 Disk 0.5 [84]

La2Ni0.88Fe0.02Cu0.10O4+� 900 1.331×10-7 Disk 1 [85]

La2Cu0.7Co0.3O��� 850 8.159×10-8 Disk 1 [85]

Pr2CuO��� 900 2.507×10-9 Disk 1 [85]

La2Ni0.90Fe0.10O4+� 900 8.137×10-8 Disk 1 [85]

Nd2CuO��� 900 4.664×10-10 Disk 1 [85]

Nd2Ni0.8Cu0.2O4 900 1.250×10-7 Disk 1 [86]

Pr2Ni0.8Cu0.2O4 900 1.168×10-7 Disk 1 [86]

La2Ni0.8Cu0.2O4 900 8.965×10-8 Disk 1 [86]

La2NiO4 850 8.096×10-8 Disk 1 [73]

1.2.5 Oxygen permeation of BSCF, LSCF and LNO 

The oxygen flux as a function of temperature for BSCF, LSCF and LNO is displayed in Figure 

1.6 [87]. BSCF exhibits the highest oxygen flux throughout the temperature range. Note that 

the oxygen flux of LNO is in the application relevant temperature range (~ 800 °C – 900 °C) 

for OTMs slightly higher than that of LSCF.
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Figure 1.6: Dependence of oxygen flux of LSCF, BSCF und LNO on temperature [87]
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1.3 Thermal and chemical expansion 

Thermal expansion of materials is an increase in volume as the temperature is raised [88]. The 

technical thermal expansion coefficient �Tech is calculated by:  

      
0

0

0

1
TT
LL

LTech �
�

�� (1.5) 

where L is the specimen length measured at a given temperature T, while L0 corresponds to the 

initial length of the specimen at RT (T0). �Tech is an average value of expansion between initial 

temperature T0 and a given temperature T. However, in order to recognize transitions in 

material behaviour with temperature the scientific TEC appears to be more useful. The latter

can be expressed by:

dT
dL

LSci
1

�� (1.6)

The thermal expansion of materials is normally only correlated with the anharmonic vibration 

of the lattice. The potential energy of the lattice as a function of bond length is shown in Figure 

1.7. The potential energy is not symmetric with respect to the minimum point (r0), and the 

lattice vibration is anharmonic. The curve in the low r regime (r < r0) is steeper, so the bond 

length has a higher probability to stay in the range of bigger r (r > r0). As a result, the bond 

length increases as the temperature is raised (Figure 1.7). The anharmonic vibration contributes 

to the thermal expansion over the whole temperature range, and thus normally the related TEC 

values remain relatively stable.
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Figure 1.7: Potential energy as a function of bond length

However, the thermal expansion of perovskites might consist of three components: anharmonic 

lattice vibration, spin transition, and chemical expansion. The lattice expansion due to spin 

transition will be discussed in section 1.4. Here only the chemical expansion is addressed in 

more detail.

With the increase of temperature and the decrease of oxygen partial pressure, perovskites may 

lose part of its oxygen, and at the same time cations are reduced to a lower valence:

2Mn+ +O2-���(n-1)+ + O2(g)                                                       (1.7)

Along with this process which is conventionally called chemical expansion the lattice expands 

in addition to the anharmonic vibration expansion (Figure 1.8) [46, 49, 89]. Two possible 

explanations for this chemical expansion are given in the literature [46]: i) the repulsion forces 

between mutually exposed cations when oxygen ions are released from the lattice; ii) the 

increase in cation size due to the reduction of the cations from higher to lower valences, an 

effect which occurs simultaneously with the creation of oxygen vacancies in order to maintain 

electrical neutrality.
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Figure 1.8: Contribution of chemical expansion to the thermal expansion

Zhu et al [90] studied the thermal expansion in the BaxSr1-xCo0.8Fe0.2O3-� system in air (Figure 

1.9). All thermal expansion curves are nonlinear, and a chemical expansion is observed for all 

compositions above 500 - 600 °C. Samples with x = 0.1 and 0.2 exhibit a normal expansion 

below ~ 500 °C, but a much higher chemical expansion above ~ 500 °C. Samples with x = 0, 

0.4, 0.5 and 0.6 have similar expansion rates, but the expansion rates fluctuate with Ba content.
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Figure 1.9: Thermal expansion behaviour of BaxSr1-xCo0.8Fe0.2O3-� in air [90]
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Lein et al. [58] studied the lattice constant of La0.5Sr0.5Fe1-xCoxO3-� as a function of temperature 

in air and nitrogen (Figure 1.10). The lattice constant increases more rapidly in nitrogen than in 

air due to the chemical expansion. Even in air the chemical expansion contributes to the 

increase of the lattice constant at high temperature. Therefore, changes in the slope can be 

observed at about 600 °C.

 

Figure 1.10: The cubic lattice constant of La0.5Sr0.5Fe0.5Co0.5O3-� (LSCF55) and La0.5Sr0.5CoO3-

� (LSC) as a function of temperature in air and in nitrogen atmosphere. The solid and dashed 
lines are guides to the eye. The squares are the pseudo cubic lattice constant in air obtained 
from a rhobohedral model [58].

Thermal expansion data of La0.4Sr0.6Co0.2Fe0.8O3-� in air were reported by Swierczek [52]. The 

thermal expansion of La0.4Sr0.6Co0.2Fe0.8O3-� is lower compared with BSCF, and a chemical 

expansion is observed above ~ 600 °C (Figure 1.11)
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Figure 1.11: Thermal expansion behaviour of La0.4Sr0.6Co0.2Fe0.8O3-� in air [52]

The chemical expansion can be defined as �c=�a/a0, where �a=a-a0 is the change in the unit 

cell as a function of oxygen partial pressure at constant temperature. For example, the chemical 

expansion of La0.6Sr0.4Fe0.2Co0.8O3-� is given in Figure 1.12 in terms of the lattice constant.
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Figure 1.12: Lattice constant of La0.6Sr0.4Fe0.2Co0.8O3-� as a function of oxygen partial pressure 
(P0 = 1 atm) [46]



 21 

In order to compare different materials the chemical expansion can be normalized by the 

change in oxygen deficiency, �c/��, where �� = � – �0 is the change in the oxygen deficiency 

from the reference state �0. Therefore, this parameter is taken as an indicator of how much the 

lattice expands per oxygen vacancy. However, the chemical expansion depends not only on ��,

but also on the composition of the materials. Table 1.3 compiles the chemical and normalized 

chemical expansion �c/�� for different MIEC materials. Although the overall thermal 

expansion of BSCF is higher than that of LaxSr1-xCoyFe1-yO3-� [52, 90], the normalized 

chemical expansion of LaxSr1-xCoyFe1-yO3-� is ~ 0.03 - 0.04, and is only ~ 0.012 for BSCF. 

Therefore, the higher TEC of BSCF is mainly due to the higher expansion related with lattice 

vibration. The lower value of �c/�� for BSCF may be caused by the higher oxygen deficiency,

since 3-� is about 2.51 at RT when cooled in air [91].

Table 1.3 Chemical expansions for different compositions

Composition �c �� �c/�� 
Temperature

[°C] 

La0.5Sr0.5FeO3-� [49] 0.0058 0.097 0.059 800 

La0.5Sr0.5Fe0.5Co0.5O3-� [58] 0.0045 0.116 0.039 800 

La0.5Sr0.5Fe0.5Co0.5O3-� [58] 0.0043 0.122 0.036 1000 

La0.5Sr0.5CoO3-� [58] 0.0041 0.116 0.035 800 

La0.7Ca0.3CrO3-�
 [92] 0.0036 0.101 0.036 1000 

La0.7Ca0.3Cr0.9Al0.1O3-�
 [92] 0.0040 0.118 0.034 1000 

La0.6Sr0.4Fe0.2Co0.8O3-� [46] 0.0039 0.180 0.022 800 

La0.3Sr0.7FeO3-�
  [93] 0.0040 0.125 0.032 875 

La0.7Sr0.3Fe0.6Ga0.4O3-� [93] 0.0015 0.035 0.044 875 

Ba0.5Sr0.5Co0.8Fe0.2O3-� [91]

0.00038

0.00152

0.00244

0.00296

0.05

0.14

0.19

0.24

0.008

0.011

0.013

0.012

500

700

850

1000
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1.4 Spin transition 

In perovskites the B cation is 6-fold coordinated with the oxygen anions, and located in the 

center of the cube, forming octahedral complexes BO6 with 6 nearest oxygen ions. The spin 

transition of Co3+ in LaCoO3 has been studied extensively since the 1950s [94-97]. As shown 

in Figure 1.13, the 5 orbitals in the 3d shell of Co3+ (d6) are split by the crystal field into two 

groups: t2g (3 orbitals) and eg (2 orbitals). The energy of the t2g orbitals is lower than that of the 

eg orbitals. At very low temperature, the 6 electrons of Co3+ occupy the t2g orbitals, and the eg

orbitals are empty. Since all electrons are paired, the spin of Co3+ is zero. With increasing 

temperature electrons can be thermally activated to eg orbitals. Each electron has a half-spin, 

and depending on the number of unpaired electrons the spin of Co3+ can be 1 or 2. Some of 

non-magnetic Co3+ (LS, S=0) are thermally activated to magnetic Co3+ (IS, S=1 or HS, S=2). 

At about 200 °C the ratio of magnetic Co3+ is assumed to saturate [98].

Figure 1.13: Schematic diagram of Co3+ spin transition in perovskites

1.5 Fracture stress, fracture toughness and Young’s modulus 

For structural application of the perovskite membranes in gas separation units their mechanical 

properties are of key importance. In addition to the functional performances, one of the 

challenges especially for industrial applications is to prevent the mechanical failure of the 

membranes. The mechanical integrity is challenged not only by exposure to elevated 

temperatures and thermal cycles but also to a large chemical gradient of oxygen [99-101].

Therefore, the knowledge of mechanical properties is essential for an estimation of structural 
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reliability of the membrane during heating/cooling and operation. Fracture stress, fracture 

toughness and Young’s modulus are key mechanical properties to be known. Measured values

of Young’s modulus may include contributions of porosity, plastic deformation, roughness etc,

which is normally called apparent Young’s modulus. The apparent Young’s modulus is 

hereafter also referred to as stiffness. In the present thesis Young’s modulus and stiffness are 

both used subsequently without distinction. Data of facture stress, fracture toughness and 

Young’s modulus are found in literature preferentially for La-containing perovskites. They are 

listed in table 1.4, table 1.5 and table 1.6 respectively.

Table 1.4 Fracture stresses of perovskite materials at various temperatures

Material Fracture stress 
(MPa) Test method

LaFeO3

202 ± 18 (RT)

235 ± 38 (800 °C)
4-point bending [102]

LaCoO3

53 (RT)

~ 50 (850 °C)

86 (RT)

109 ± 19 (800 °C)

4-point bending [103]

4-point bending [104]

La0.8Ca0.2CoO3 98(RT)

91 ± 4 (800 °C)

4-point bending [104]

La0.5Sr0.5CoO3-�

138 ± 12 (RT)

181 ± 18 (800 °C)
4-point bending [99]

La0.5Sr0.5Fe0.5Co0.5O3-�

128 ± 12 (RT)

166 ± 15(800 °C)

181 ± 23(1000 °C)

4-point bending [99]

La0.5Sr0.5Fe0.25Co0.75O3-�

71 ± 7(RT)

61 ± 20(400 °C) 4-point bending [99]
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121 ± 11(600 °C)

120 ± 11(800 °C)

La0.8Sr0.2CoO3-�

76 (RT)

57 (850 °C)
4-point bending [103]

La0.8Sr0.2Fe0.8Co0.2O3-� 165 (RT) Biaxial [105]

La0.6Sr0.4Fe0.8Co0.2O3-� 155 (RT) Biaxial [105]

La0.4Sr0.6Fe0.8Co0.2O3-� 50 (RT) Biaxial [105]

La0.2Sr0.8Fe0.8Co0.2O3-� 40 (RT) Biaxial [105]

La0.8Sr0.2CrO3-� 49 (RT)

67 (800 °C)

Biaxial [101]

La0.7Sr0.3O3-� 234 (RT) 3-point bending [106]

La0.8Ca0.2CoO3-� 150 (RT)

~ 63 (850 °C)

4-point bending [103]

La0.75Ca0.25CrO3-� 122 ± 26 (RT)

~ 60 (800 °C)

4-point bending [107]

La0.7Ca0.3CrO3-� 256 (RT) 3-point bending [106]

La0.2Sr0.8Cr0.2Fe0.8O3-� 340 (RT)

113 (1000 °C)

C-ring [108]

La0.6Sr0.4Cr0.2Fe0.8O3-� 138 (RT) Biaxial [109]

La0.7Sr0.3Cr0.8Fe0.2O3-� 230 (RT) 4-point bending [110]

La0.8Sr0.2Cr0.2Fe0.8O3-� 243 (RT) Biaxial [109]

La0.5Sr0.5MnO3-� 78 (RT)

59 (200 °C)

109 (400 °C)

171 (600 °C)

188 (700 °C)

200 (800 °C)

4-point bending [111]

La0.875Sr0.125MnO3-� 164 (RT)

109 (400 °C)

3-point bending [112]
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150 (800 °C)

222 (1000 °C)

La0.5Sr0.5Mn0.96Co0.04O3-� 38 (RT)

59 (300 °C)

142 (450 °C)

115 (600 °C)

115 (750 °C)

4-point bending [111]

LaCr0.9Mg0.1O3 140 (RT)

247 (125 °C)

87 (1000 °C)

4-point bending [113]

La0.9Sr0.1Ga0.8Mg0.2O3-� 162 ± 14 (RT)

55 ± 11 (900 °C)

Biaxial [114]

La0.8Sr0.2Ga0.85Mg0.15O3-� 139 ± 17 (RT) 3-point bending [115]

La0.8Sr0.2Cr0.97V0.03O3-� 62 ± 5 (RT) 4-point bending [61]

LaCr0.79Mg0.05Al0.16O3-� 148 ± 10 (RT) 4-point bending [61]

SrCe0.95Yb0.05O3 171 ± 7 3-point bending [116]

 

The review was mainly focused on La-doped perovskites due to the lack of the data of Ba-

doped perovskites. Regarding the fracture stress, some trends can be extracted from the data, 

although caution is advised with respect to the failure causing defects from different 

preparation sources. The fracture stress of LaFeO3 is 202 ± 18 MPa at RT, but increases to 235

± 38 MPa at 800 °C [102]. The replacement of Fe by Co reduces the fracture stress 

significantly. The fracture stress of LaCoO3 is 86 MPa at RT and 109 ± 19 MPa at 800 °C,

respectively [104]. The fracture stress of La0.8Ca0.2CoO3 is 98 MPa at RT and 91 ± 4 MPa at 

800 °C, which means that the effect of Ca is similar to that of Co. However, the replacement of 

50 % La with Sr increases the fracture stress to 138 ± 12 MPa at RT and 181 ± 18 MPa at 

800 °C respectively [99]. For the La1-xSrxFe0.8Co0.2O3 system, when x increases from 0.2 to 0.4, 

the fracture stress decreases slightly from 165 MPa to 155 MPa, and by further increasing x to 
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0.6 the fracture stress decreases abruptly to 50 MPa [105]. Despite the variations with 

composition it is interesting that obviously higher fracture stresses at 800 °C compared to RT 

are not unusual.

Table 1.5 Fracture toughness of perovskite materials at various temperatures

Material KIC [MPa·m0.5] Test method

LaFeO3 2.5 (RT)

2.2 (400 °C)

3.1 (800 °C)

Single edge 
notched beam 
(SENB) [102]

LaCoO3 1.23 ± 0.06 (RT)

1.2 ± 0.11(150 °C)

1.1 ± 0.05 (200 °C)

0.95 ± 0.06 (400 °C)

1.05 ± 0.04 (700 °C)

1.05 ± 0.15 (800 °C)

Single edge V 
notch beam 
(SEVNB) [104]

La0.8Ca0.2CoO3 2.2 (RT)

1.0 (800 °C)

SEVNB [66]

La0.5Sr0.5CoO3 1.5 ± 0.3 (RT)

2.9 ± 0.4 (800 °C)
SENB [99]

La0.5Sr0.5Fe0.5Co0.5O3 1.2 ± 0.1 (RT)

1.5 ± 0.2 (800 °C)

2.3 ± 0.2 (1000 °C)

SEVNB [99]

La0.9Sr0.1Ga0.8Mg0.2O3 2.1 (RT)

0.75 (600 °C)
SENB [117]

LaCr0.9Mg0.1O3 2.8 (RT)

3.9 (125 °C)

1.9 (1000 °C)

SENB [113]

La0.8Ca0.2CoO3 1.92 (RT)

1.5 ± 0.4 (150 °C)
SEVNB [104]
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1.2 ± 0.1 (200 °C)

0.78 ± 0.3 (400 °C)

0.78 ± 0.1 (550 °C)

1.0 ± 0.2 (700 °C)

1.14 ± 0.2 (800 °C)

BaZrO3 1.5 (RT) Indentation [118]

The fracture toughness values of LaFeO3 appear stable from RT to 400 °C (Figure 1.14), and 

increase slightly at 800 °C [102]. The fracture toughness of LaCoO3 maintains a relatively 

stable value from RT up to 800 °C [104]. Similar to fracture stress, the fracture toughness of 

LaFeO3 is much higher than that of LaCoO3. The fracture toughness of La0.5Sr0.5Fe0.5Co0.5O3

increases at high temperatures maybe due to creep effects [99]. Interestingly, the fracture 

toughness of La0.8Ca0.2CoO3 decreases rapidly from RT to 400 °C, and thereafter recovers 

slightly up to 800 °C [104]. This anomaly is attributed to a spin transition of Co3+ in the lattice 

[104].
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Figure 1.14: Fracture toughness of perovskites as a function of temperature
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Table 1.6 Young’s modulus of perovskite materials at various temperatures

Material Young’s modulus
(GPa)

Test method

LaFeO3 213 ± 14 (RT)

206 ± 24 (800 °C)

4-point bending [102]

La0.5Sr0.5Fe0.5Co0.5O3 131 ± 1 (RT)

130 ± 1 (800 °C)

Resonant ultrasound spectroscopy [99]

La0.5Sr0.5CoO3 135 ± 1 (RT)

135 (800 °C)

126 (1000 °C)

Resonant ultrasound spectroscopy [99]

LaCoO3 83 ± 3 (RT) 4-point bending [103]

La0.8Sr0.2CoO3 86 ± 13 (RT) 4-point bending [103]

La0.8Ca0.2CoO3 112 ± 3 (RT) 4-point bending [103]

La0.8Sr0.2Fe0.8Co0.2O3 161 ± 2 (RT) Ultrasonic [105]

La0.6Sr0.4Fe0.8Co0.2O3 152 ± 3 (RT) Ultrasonic [105]

La0.4Sr0.6Fe0.8Co0.2O3 167 ± 9 (RT) Ultrasonic [105]

La0.2Sr0.8Fe0.8Co0.2O3 188 ± 6 (RT) Ultrasonic [105]

BaZrO3 240.5 (RT)

239.5 (280 °C)

237.7 (480 °C)

235.9 (650 °C)

228.6 (835 °C)

215.5 (1015 °C)

Ultrasonic [119]

SrHfO3 219.8 (RT) ultrasonic pulse-echo [120]

La0.8Sr0.2Fe0.7Ga0.3O3-� 120 (RT)

85 (200 °C)

86 (400 °C)

90 (600 °C)

95 (800 °C)

ultrasonic pulse-echo [121]
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92 (1000 °C)

La0.8Sr0.2FeO3-� 170 (RT)

155 (200 °C)

110 (340 °C)

120 (600 °C)

130 (800 °C)

127 (1000 °C)

ultrasonic pulse-echo [121]

The Young’s modulus of LaFeO3 is 213 ± 14 GPa at RT [102]. The replacement of Fe with Co 

decreases the Young’s modulus strongly, and the value is only 83 ± 3 GPa for LaCoO3 [103].

The replacement of La with 20 % Sr does not affect the Young’s modulus, and the value of 

Young’s modulus is 86 ± 13 GPa for La0.8Sr0.2CoO3, while the replacement of La with 20 % Ca 

enhances the Young’s modulus dramatically, and Young’s modulus of La0.8Ca0.2CoO3 becomes

112 ± 3 GPa [103]. With further replacement of Sr, Young’s modulus of La0.5Sr0.5CoO3

increases strongly to 135 ± 1 GPa [99].

The Young’s modulus of BaZrO3 is about 240 GPa at RT [119], and behaves like ‘normal’

ceramics, i.e. decreases slightly with temperature [122]. An anomaly of Young's modulus is 

observed for La0.8Sr0.2FeO3 and La0.8Sr0.2Fe0.7Ga0.3O3. The Young's modulus of La0.8Sr0.2FeO3

decreases rapidly from RT to 340 °C, and rises slowly up to 800 °C (Figure 1.15).
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Figure 1.15: Dependence of Young’s modulus of perovskite materials on temperature

In conclusion, the review of the published mechanical data reveals that chemically similar 

perovskites may exhibit totally different mechanical properties. The complexity of the fracture 

stress, fracture toughness and Young’s modulus results presented above as a function of

temperature does not allow predictions regarding mechanical behaviour in the case of the three 

membrane materials. The obvious need to characterize the mechanical properties of these three 

OTM materials individually was followed in the present thesis.

1.6 Creep

Creep is a plastic deformation process under a fixed stress at an elevated temperature. 

Normally the temperature is greater than 0.4 Tm (absolute melting temperature), and the stress 

is lower than the yield strength of the material. Consequently creep is prominent in materials 

that are subjected to high temperature for long terms. The strain rate increases as the 

temperature is raised [123-125]. In general, creep can be described by three different stages: 

primary, secondary and tertiary creep (Figure 1.16) [126].
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(a) Three stages of creep in tension. I) primary II) secondary III) tertiary

(b) Three stages of creep in compression. I) primary II) secondary III) tertiary

Figure 1.16: Schematic representation of creep behaviour

In the primary creep, the strain rate is relatively high, but slows down with increasing strain 

due to work hardening. When work hardening and thermal softening reach a balance, the strain 

rate reaches a stable value. This stage is called secondary or steady-state creep, and the strain 

rate of creep usually refers to the rate in this stage. In the tertiary stage, the strain rate 

exponentially increases with the strain, which ultimately leads to failure of the sample.

For many ceramics the creep rate in the steady-state region can be given by the equation [127]:
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where 
dt
d
 is the steady-state creep rate, A is a constant, d is the grain size, p is the inverse grain 

size exponent, PO2 is the partial pressure of oxygen, m is the oxygen partial pressure exponent, 

� is the applied stress, n is the stress exponent, Ea is the activation energy, R is the gas constant 

and T is the absolute temperature.

PO2, � and T are external testing conditions that can be controlled. The parameters p, m, n and 

Ea have to be extracted from experiments. They are commonly considered as being 

characteristic values, but may also change due to the external conditions. 

The creep mechanisms which govern equation (1.8) depend on material, temperature, applied 

stress and atmosphere. Strain can be achieved by lattice diffusion, grain boundary diffusion, 

movement of dislocations, or grain boundary sliding accommodated with diffusion, and 

normally several or all mechanisms contribute to the creep. But also one mechanism may 

dominate the creep depending on temperature, applied stress and atmosphere. If the creep is 

mainly governed by lattice diffusion (Nabarro-Herring creep), then the grain size dependence 

should be p=2 [124]. If the creep mainly occurs by grain boundary diffusion (Coble creep), p=3 

can be expected [123].

The OTM membranes are operated at high temperature under stress and in a chemical gradient. 

Moreover in industrial application, the membrane must maintain structural stability over a long 

period of operation. Therefore, creep is of crucial importance for estimating the structural 

stability of the membrane materials.

Table 1.7 displays compressive creep rates for different materials at 1200 °C in air and at 5 

MPa load. Although this temperature is significantly higher than that in membrane application, 

some trends can be deduced from the data. For the La-Sr-Fe-Co systems the increase of Sr and 

Co seems to increase the creep rate, which is consistent with the influence of the two elements 

on oxygen deficiency. 
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Table 1.7 Creep rates at 1200 °C in air and 5 MPa load for different compositions

Composition Creep rate

[s-1]

Grain size

[µm]

SrFeO3-�, 5% A excess [128] 4·10-6 <5

SrFeO3-�, 5% B excess [128] 3·10-6 <5

BaTiO3 [129] 6·10-6 19.3

La0.9Sr0.1MnO3 [130] 1·10-6 5

La0.9Sr0.1Ga0.8Mg0.2O3 [131] 1·10-8 19.6

(La0.9Sr0.1)0.98Ga0.8Mg0.2O3 [131] 4·10-9 16.2

(La0.9Sr0.1)0.95Ga0.8Mg0.2O3 [131] 3·10-9 21.2

La0.8Sr0.2Ga0.85Mg0.15O3 [132] 2·10-7 8

La0.5Sr0.5Fe0.5Co0.5O3 [133] 3·10-6 1.1

La0.5Sr0.5CoO3-� [133] 4·10-5 1.7

SrCo0.8Fe0.2O3-� [134] 9·10-3 2.4

La0.2Sr0.8Fe0.8Cr0.2O3-� [135] 6·10-6 3.2

The activation energy, Ea in equation (1.8) can be calculated from the linear regression of a plot 

of lncreep rate versus inverse temperature at constant load. The activation energy of creep was 

reported to vary from 112 to 837 kJ·mol-1 [128-130, 134-139], while the activation energy for 

oxygen diffusion in the same perovskites is 50 - 170 kJ·mol-1 [33, 37, 140-142]. Therefore, the 

creep rate appears to be determined by the diffusion of cations.
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2. Experiments
The experiments in the present work were conducted to obtain primary results on the thermo-

mechanical and structural behaviour of disc-shaped BSCF and LSCF specimens as well as 

rectangular LNO bars. The fracture stress was mechanically determined applying ring-on-ring 

and 4 point bending tests. The fracture toughness was derived from the length of the 

indentation cracks. Micro-structural properties were accessed by scanning electron microscopy 

(SEM) and transmission electron microscopy (TEM). The TEM foils were prepared by the 

focused ion beam (FIB) method. Phase analyses by X-ray diffraction (XRD) and measurements 

of thermal expansion coefficient (TEC) by optical dilatometer complemented the investigations.

The steady-state creep rate of LSCF was measured in air and vacuum (10-5 mbar) in the 

temperature range of 650 – 950 °C.

2.1 BSCF and LSCF perovskites 

The Ba0.5Sr0.5Co0.8Fe0.2O3-� (BSCF) and La0.58Sr0.4Co0.2Fe0.8O3-� (LSCF) samples were 

produced by IEF-1, Forschungszentrum Jülich GmbH. They had a similar disc-shaped 

geometry but were prepared from different powder sources. The BSCF powders, supplied by 

Treibacher Industrie AG, Austria, were uniaxially pressed with a pressure of 105 MPa and 

sintered at 1000 °C for 12 hours. The heating rate was 5 K/min and the cooling rate 0.5 K/min. 

The Archimedes density of the as-received samples was determined to be 5.37 g/cm3 with a 

porosity of 4.5 %. Assuming a spherical geometry the average grain size of the equivalent 

diameter was 10.1 ± 4.3 µm.

The LSCF powders were synthesized by a spray-drying technique using aqueous solutions of 

appropriate quantities of nitrate salts [143]. The powders were uniaxially pressed with a 

pressure of 120 MPa and sintered at 1200 °C for 3 hours. The heating rate and cooling rate 

were both 0.5 K/min. The Archimedes’ density of the as-received samples was determined to 
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be 5.81 g/cm3 with a porosity of 6 %. The average grain size of the equivalent diameter was 0.6 

± 0.2 µm.

2.1.1 Ring-on-ring tests 

The ring-on-ring test has been used extensively for fracture stress measurements on brittle 

materials, which can eliminate the edge effects compared to bending bars [144, 145]. The ring-

on-ring test is schematically displayed in Figure 2.1.

 

(a) Overview

(b) Cross section

Figure 2.1: Schematic representation of ring-on-ring test

Since the disc-shaped samples were not completely flat and also possessed large surface 

defects, they were ground (P2500 abrasive) before being loaded in biaxial ring-on-ring bending 

tests. The test conditions followed the procedures recommended in the ASTM standard C 

1499-05 [146]. The data were evaluated using the equations for linear bending theory. 

Accordingly, the equibiaxial flexure stress was derived from:
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where P is the applied force, th is the specimen thickness, v the Poisson ratio and R1, R2 and R3

are the radii of the loading ring, supporting ring and (circular) specimen, respectively. The 

values of th, R1, R2 and R3 were 1.1 mm, 9.0 mm, 18.6 mm and 21.8 mm, respectively. Since 

the number of tests was limited, only the mean value and the standard deviation are given. The 

apparent elastic modulus was calculated using [147]:
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where de is the central deflection of the specimen, and the other parameters are the same as in

equation (2.1).

At each temperature 5 specimens were tested to obtain fracture stress at selected temperatures 

between RT and 800 °C. For the tests at elevated temperatures, a heating rate of 2 K/min was 

used, and a dwell time of 1 hour was chosen before testing. The ring-on-ring tests were carried 

out with a universal mechanical testing machine (Instron 1362). The central displacement of 

the specimen was recorded with a sensor that contacted the lower surface of the sample. The 

loading rate was 100 N/min in all tests. The stiffness was determined from the linear part of the 

load-displacement curve in a stress range of 15 - 25 MPa. 

2.1.2 Micro-indentation 

The principle of instrumented indentation testing is to measure the force that has to be applied 

to a diamond tip as a function of penetration depth for both loading and unloading process. 

Depth-sensitive indentation is now widely used for measuring local mechanical properties of 

thin films and materials of small volume. Besides conventional hardness determination, 

mechanical properties, such as Young’s modulus, fracture toughness, and residual stresses, can 
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also be extracted from indentation tests. Although there are different tip geometries, only the 

Vickers indenter will be discussed, since it was exclusively used in the present work.

The Vickers indenter has pyramid-shaped tip with four sides and an angle of 136 ° between two 

opposite sides. Typical load-displacement curves of a depth sensitive indentation test are 

shown in Figure 2.2.
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Figure 2.2: Typical load-displacement curves of indentation

The hardness HIT can be derived as [148]:

p

m
IT A

FH � (2.3)

where Fm is the maximum load, Ap is the projection area of the impression. It should be noted 

that the physical meaning of hardness is not well defined. Hardness is an integral property of 

elastic deformation, plastic deformation, and resistance to crack propagation. 

The calculation of Young’s modulus is based on [148]:
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where EIT indentation elastic modulus, vs poisson’s ratio of sample, vi poisson’s ratio of 

indenter, Er reduced modulus, Ei elastic modulus of indenter, � indenter constant. S is given in 

Figure 2.1.

A permanent impression in the material will be left after indentation (Figure 2.3), and if the 

load is sufficiently high, four cracks are generated along the four edges of the impression. For 

the brittle materials the indentation fracture toughness KInd can be estimated by simply 

measuring the crack length and using the relationship [149, 150]:

2/3c
FK mrInd �� (2.5)

where c is the crack length. The parameter r� is related to the elastic/plastic behaviour and is 

given by r� �	 ��E/H)1/2. Following the Oliver and Pharr procedure [148], hardness H and 

stiffness E can be evaluated from the indentation load-penetration curve and hence the ratio of 

E/H can be determined. Note that Equation (2.5) was not derived from first principles, thus the 

��������	��
�
��	 ad to be adjusted by calibrating indentation toughness results with those of 

standard macroscopic tests [149, 150].

(a) Optical microscopy image of indentation impression
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(b) Schematic indentation impression

Figure 2.3: Impression of indentation

In addition to the global ring-on-ring test for fracture stress and stiffness measurement, depth-

sensitive micro-indentation was used to determine hardness, Young’s modulus, and the 

indentation fracture toughness [149, 150]. The indentation fracture toughness was calculated 

applying equation (2.5). The length of the indentation cracks was measured using the optical 

microscope of the indentation system (CSM: Coating and Surface Measurement, CH). The 

indentation fracture toughness was determined from RT to ~ 350 °C, which is the maximum 

temperature that could be reached using the heating stage.

In real application, the membranes are operated under an oxygen gradient. In order to imitate 

this condition, disk-shaped samples of BSCF and LSCF were annealed at 900 °C for 2 hours 

under a gradient of oxygen. In this dual atmosphere experiments one surface of the sample was 

exposed to air, and the other surface exposed to vacuum (2 mbar). After annealing the sample 

was cooled to RT with a slow rate of 0.5 K/min to exclude thermal stresses induced by sharp 

temperature gradients. At RT micro-mechanical properties were measured with indentation on 

polished cross sections of the specimens.

2.1.3 X-ray diffraction 

The lattice structure was examined by X-ray diffraction analysis (Siemens Diffractometer 

D5000) with a step scan using CuK� radiation, operated at 40 kV and 40 mA. The step size and 
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step time were 0.02 °/step and 10 s, respectively. The quantity of phase compositions was 

analyzed with Rietveld refinement from the XRD data. Complementary in-situ high-

temperature XRD measurements were carried out with a high temperature stage (HTK S1).

2.1.4 Thermal property characterization 

The linear thermal expansion coefficient (TEC) was continuously measured using an optical

dilatometer (Misura, Expert System Solutions S.r.l. Italia) in the temperature range from room 

temperature (RT) up to 900 °C. Tubular samples supplied by HITK (length 50.1 mm, diameter 

14.8 mm, thickness 1.1 mm) were used. The heating rate was 1 K/min. Differential thermal 

analysis (DTA) and thermogravimetry (TG) (STA 449C Jupiter Netzsch) were performed in air 

with a heating rate of 2 K/min. Young’s modulus was also measured with a resonance method

(Grindsonic) from RT up to 900 °C.

2.1.5 Transmission electron microscopy 

The domain structure of LSCF was observed with a scanning electron microscope (SEM, 

LEO1530, Zeiss, Germany) and a transmission electron microscope (TEM, Philips CM200). 

The slip lines around impressions of BSCF were studied with an optical microscope and TEM. 

The TEM specimens of the BSCF and LSCF perovskites were prepared by focused ion beam 

(FIB, LEO1540, Zeiss) cutting. The magnetic characteristics and the temperature dependence 

of susceptibility were measured with a Quantum Design PPMS with heating stage using a rate 

of 2 K/min.

2.1.6 Creep tests 

Compressive creep tests were performed in air and vacuum (10-5 mbar) in the temperature 

range of 700 – 950 °C. Tubular samples of LSCF were mounted between two Al2O3 push rods.

A preload of ~ 0.3 MPa was applied during heating to ensure good contact between the sample 

and the push rods, and at creep temperatures the same load was kept for ~ 20 h to reach 
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equilibrium and to remove the roughness of the contact surfaces. Applying a constant load of 

30 MPa the measurements lasted up to 24 h. 

2.2 Experiments with La2NiO��� (LNO) 

The samples were prepared from spray pyrolysis powders and sintered at 1400 °C in air with a 

cellulose based pore former to obtain a membrane material with a defined pore structure. The 

specimens were extruded in a rectangular shape with 6 hollow internal compartments (Figure 

2.4).

(a) Photo of the LNO samples

(b) Cross section of the LNO sample

Figure 2.4: Investigated LNO samples
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2.2.1 Four point bending tests 

The stiffness and fracture stress were determined based on data obtained using 4-point bending 

test with a universal mechanical testing machine (Instron 1362). The tests were carried out 

from RT up to 900 °C. For tests at elevated temperatures a heating rate of 4 K/min was chosen, 

and before testing a dwell time of 1 hour was chosen to reach thermal equilibrium. In all tests 

the load rate was 50 N/min. The stiffness was determined from the load - displacement curve. It 

was assumed that failure started from the surface of the specimens under the highest stress.

The bending moment of inertia of the sample was derived from:

12
3

12

3
11

3 hwwhI �� (2.6)

where w is the width, h is the height, h1 is height of 2 compartments, and w1 is the width of a 

compartment (Figure 2.3 (b)). The values of w, h, h1 and w1 were 8.4 mm, 5.7 mm, 4.7 mm and 

2.1 mm, respectively. The moment of inertia of the central layer was neglected, since the 

moment of inertia is proportional to the cubic distance from the central axis of the composite.

The moment in the experiments was derived:
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where P is the applied force, Ls (40 mm) is support pin distance, ls (20 mm) is load pin distance.

The fracture stress was determined using:
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The Young’s modulus was calculated:
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where de is the central deflection of the specimen.
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2.2.2 Complementary characterizations 

Similar to the perovskite materials, the LNO bars were also additionally characterized with 

respect to structural and thermal properties. The lattice structure was characterized by X-ray 

!�""�������	 ���#$���	 �%�""�����&'�'�	(�'&'��	%
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The linear thermal expansion coefficient (TEC) was measured by using a differential 

dilatometer (Misura, Expert System Solutions S.r.l. Italia) in the temperature range from RT up 

to 1000 °C. The heating rate in the measurements was 1 K/min. Differential thermal analysis 

(DTA) and thermogravimetry (TG) (STA 449C Jupiter Netzsch) were carried out in air with a 

heating rate of 1 K/min.
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3. Results and discussion
In this section, the thermo-mechanical results of BSCF, LSCF and LNO are presented and 

discussed sequentially. Macro-mechanical behavior measured with ring-on-ring test (for LSCF 

and BSCF) and 4 point bending test (for LNO) as well as micro-mechanical properties 

determined from indentation tests are presented. The various characterization results are 

discussed to explain the mechanical behavior. Particular focus is directed to the anomaly of 

Young’s modulus observed in BSCF. The effect is attributed to the spin transition of Co3+. This 

transition is confirmed by measurements of magnetic susceptibility. 

3.1 BSCF 

Operation of the membranes in real components requires mechanical integrity not only under 

steady state condition but also during thermal cycling. However, knowledge on the thermo-

mechanical properties of BSCF is limited. In the subsequent sections, the thermo-mechanical 

behaviour of disk-shaped BSCF specimens is evaluated. 

3.1.1 Young’s modulus and fracture stress 

The Young’s modulus of BSCF was determined from a ring-on-ring bending test between RT

and 800 °C in air and vacuum (10-5 mbar) (Figure 3.1.1). For measurements in vacuum, the as-

received samples were heated to 900 °C, and annealed for 2 hours to reach the equilibrium in 

oxygen deficiency under vacuum. The Young’s modulus values were measured during the

cooling process for the first heating cycle and during heating or cooling for the subsequent 

heating cycles.

In air, a value of 63.3 ± 2.6 GPa was obtained at RT. With increasing temperature a sharp 

decrease in Young’s modulus and a minimum at ~ 200 °C is observed. At higher temperature

Young’s modulus increases again significantly and reaches at 300 °C ~ 84 % of the RT value. 

Above 300 °C the temperature dependence of the Young’s modulus of BSCF behaves as 

expected for ceramic materials, i.e. it decreases slightly with increasing temperature. The 
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temperature dependence of Young’s modulus of polycrystalline ceramics, without grain 

boundary softening, is typically a decrease of about 1 % per 100 K [122]. After annealing in 

vacuum Young’s modulus is 71.9 ± 1 GPa at RT, which is about 12 % higher than the value in 

air. The results are consistent with the values measured by indentation (see section 3.1.2). 

Under vacuum an even stronger decrease of Young’s modulus is present form RT to 250 °C 

(Figure 3.1.1), and the value stays relatively stable until 500 °C, before increasing again up to 

800 °C. The described anomaly of Young’s modulus of BSCF is emphasized by comparison 

with the dotted line for ceramics with ‘normal’ behavior in Figure 3.1.1.
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Figure 3.1.1: Young’s modulus of BSCF measured in ring-on-ring bending test as a function of 
temperature and PO2 (air and 10-5 mbar). The Young’s modulus expected for ‘normal’ ceramics 
(dotted line) is displayed for comparison.

The Young’s modulus was also measured by a dynamic impulse excitation method in the 

temperature range RT ~ 900 °C in air (Figure 3.1.2). The dynamic Young’s modulus 

determined during heating and cooling show a certain shift against the values obtained in 

bending tests, but agree qualitatively well with respect to the presence of a minimum at ~ 

200 °C. 
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Figure 3.1.2: Young’s modulus measured with ring-on-ring test and dynamic resonance 
frequency method in air (data provided by IMCE, Belgium)

The fracture stress was measured with ring-on-ring tests at selected temperatures in the range 

RT to 800 °C in air (Figure 3.1.3). Similar to Young’s modulus, the fracture stress decreases 

sharply to a minimum between 200 °C and 400 °C, followed by an increase up to 800 °C.
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Figure 3.1.3: Fracture stress of BSCF measured with ring-on-ring bending test as a function of 
temperature in air
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3.1.2 Indentation results 

The micro-indentation tests using a Vickers tip are influenced by the porosity of the BSCF but 

basically show well defined impressions with cracks from the four corners. Figure 3.1.4 

displays two magnifications of the same impression.

(a) SEM micrograph of BSCF with Vickers impression (600mN) and indentation cracks 

(b) Magnified bottom corner of the impression

Figure 3.1.4: Impression of indentation

Young’s modulus and hardness of BSCF as determined from the load-displacement curves 

(equation (2.3) and (2.4)) in ambient atmosphere are shown in Figures 3.1.5 and 3.1.6. Both

Young’s modulus and hardness decrease slightly (~10 %) with increasing load. Note that 
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calibration test with BK-7 glass showed no load dependence. The decrease of hardness and 

Young’s modulus with increasing indentation load is known as the indentation size effect (ISE) 

[151]. The ISE was observed in single crystals with different types of bonding (metallic, ionic, 

and covalent) [151, 152]. Many mechanisms have been proposed to explain the ISE. The ISE 

was related to surface effects [153], the strain gradient effects [154-156], the structural non-

uniformity of the deformed volume [157], the change in the contribution of the elastic and 

plastic deformation at the indentation [151], the friction between the indenter and the sample 

[158, 159], etc. The variety of proposed mechanisms emphasizes the rather complicated nature 

of the ISE. Most of the mechanisms developed are based on a dislocation related origin of the 

ISE. Therefore, one could expect the presence of the ISE in crystalline solids, particularly in 

single crystals. However, in numerous investigations the ISE was also reported for poly-

crystalline materials irrespective of the grain size [159, 160], nanocrystalline materials [161],

amorphous solids and polymers [162]. The Young’s modulus of a composite system depends 

on the volume fraction of each phase [163]. Although the dependence of Young’s modulus and

hardness on grain size is reported for nanocrystalline ceramic [164], the volume fraction of 

grain boundary for normal material (grain size >1 µm) is very small. The grain size of BSCF is 

10.1 ± 4.3 µm, so the grain boundaries apparently do not contribute to the ISE. Here both the 

surface effect and the strain gradient effect are suggested to contribute the ISE [153-156].

In order to compare the indentation with the ring-on-ring bending results, the Young’s modulus 

of the 1 N impression seems reasonable. Micro-indentation yielded a value of 72.0 ± 1.9 GPa at 

a load of 1000 mN for BSCF, while a value of 63.3 ± 2.6 GPa was obtained from ring-on-ring 

test. Since a larger volume is stressed in the bending test, the influence of larger defects on 

Young’s modulus may explain the lower value.
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Figure 3.1.5: Young’s modulus of BSCF measured by indentation as a function of loading 
force in ambient atmosphere. For each load 36 indentations were applied, and the standard 
deviation was given.
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Figure 3.1.6: Hardness of BSCF measured by indentation as a function of loading force in 
ambient atmosphere. For each load 36 indentations were applied, and the standard deviation 
was given.

The fracture toughness was determined from the length of indentation cracks. First the 

applicability of equation (2.5) was examined at RT assuming that KInd should be independent of 

load for constant fracture toughness, i.e. linearity had to be demonstrated in a Pc 2/3 plot (see 
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Figure 3.1.7). The good linearity proves the validity of the method for determining fracture 

toughness. Efforts to establish the temperature dependence of fracture toughness were 

experimentally limited in the present work to measurements between RT and 350 °C. That was

the maximum temperature which the used CSM heating stage could reach.  
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Figure 3.1.7: Crack length as a function of indentation load in ambient atmosphere. For each 
load 36 indentations were applied, and the standard deviation was given.

In order to investigate the influence of cooling rate and atmosphere on the Young’s modulus 

and fracture toughness, samples were heated to 900 °C for 2 hours, and cooled with a cooling 

rate of 5 K/min in air and a cooling rate of 1 K/min in vacuum, respectively. Also a sample was 

directly taken out from the furnace at 900 °C, and quenched to RT in ambient atmosphere. The 

cooling rate of the quenched sample was assumed to be larger than 50 K/min. The Young’s 

modulus and fracture toughness were measured by indentation with a load of 1000 mN in 

ambient atmosphere. The average value was calculated from 36 indentations for each load, and 

the standard deviation was given. Within the range of uncertainty the Young’s modulus 

appeared to be independent from cooling rate (Figure 3.1.8). The Young’s modulus of the 

sample annealed under vacuum (10-5 mbar) was about 5 % higher than the value of as-received 
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samples. Also the fracture toughness increased slightly with increasing cooling rate (Figure

3.1.9).
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Figure 3.1.8: Young’s modulus as a function of cooling rate measured in ambient atmosphere.
For each cooling rate 36 indentations were applied, and the standard deviation was given.
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Figure 3.1.9: Fracture toughness as a function of cooling rate measured in ambient atmosphere.
For each cooling rate 36 indentations were applied, and the standard deviation was given.

In real application the membrane is operated under an oxygen gradient. Therefore also the 

mechanical properties of samples annealed under dual atmosphere are of importance. Samples

were annealed at 900 °C for 2 hours under a gradient of oxygen. One surface of the sample was 

exposed to air, and the other surface exposed to vacuum (2 mbar). At RT micro-mechanical 

properties were measured on the two surfaces and on polished cross sections of the specimens. 
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The values of hardness, Young’s modulus and fracture toughness are constant across the 

thickness within the limit of uncertainty (Figure 3.1.10).  
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Figure 3.1.10: Young’s modulus, hardness and fracture toughness through the thickness of 
BSCF specimens annealed in dual atmosphere (air/2 mbar)

Within a limited temperature range RT - 350 °C the indentation toughness was also derived 

from indentation tests with a load of 600 mN in air. Similar to the fracture stress results in the 

same temperature range, the indentation toughness decreases rapidly from RT to 150 °C, and 

then remains stable up to 350 °C. 
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Figure 3.1.11: Indentation fracture toughness of BSCF as a function of temperature in air

A typical impression obtained at ~ 300 °C is shown in Figure 3.1.12(a). Contrary to the 

indentation pattern at RT, testing above 260 °C leads to deformation traces in grains 

surrounding the impression. The deformation traces were analyzed by optical microscopy, 

SEM and TEM (Figure 3.1.12), and identified as slip (Figure 3.1.12(c)). The slip traces reveal

mainly a single orientation in a particular grain, which may indicate plastic deformation on a

defined lattice plane. The slip plane could be indexed by TEM diffraction patterns to be (111)

(Figure 3.1.12(d)). Interestingly ring-on-ring tests which were carried out at 900 °C with a 

maximum stress of ~ 45 MPa revealed no slip traces. The results indicate that a higher load

stress is required for plastic deformation. In fact, around an impression the stresses are close to 

the hardness values, i.e. about 5000 MPa. During operation the membrane most likely does not

experience such high stresses, and it can be concluded that plastic deformation by slip is not an 

important deformation process for membrane application. 
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(a) Slip traces around indentation impression (600 mN). Optical micrograph of impression 
performed at 260 °C

(b) Slip traces around indentation impression observed by SEM

 

(c) Lamella of FIB cutting
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(d) TEM micrograph of Slip traces indexed as (111) planes 

(e) Diffraction patterns by TEM

Figure 3.1.12: Slip traces of BSCF around indentation impression observed by TEM and SEM

3.1.3 Comparison of Young’s modulus, fracture stress and fracture toughness 

The thermo-mechanical characterizations of BSCF revealed for all determined parameters a 

decrease at intermediate temperature. Obviously there is qualitative agreement, but the 

normalized curves do not match quantitatively. In order to directly visualize the relative change, 

the values of Young’s modulus, fracture stress and fracture toughness at various temperatures 
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were normalized with respect to the values of the as-received samples (Figure 3.1.13) [165].

Surprisingly the Young’s modulus at 200 °C maintains 71 % of the value at RT, while the 

fracture stress is reduced to 57 %. The drop in indentation fracture toughness is even higher, 

only 32 % of the initial RT-value is measured at 200 °C. In general, fracture toughness and 

fracture stress are related by [122]

cYKInd c	� (3.1.1)

where Y is a crack shape geometry factor (Y = 1.27 for semicircular surface cracks [122]), 	c is 

the fracture stress, and c is a critical crack length. For RT the average fracture stress of ~ 99

MPa, with a fracture toughness of 0.99 MPa/� m thus yields a critical crack length of c 0	��	

µm. The size of defects may change during heating due to thermal expansion, but the relative 

change in size of such a defect with temperature is expected to be very small. Therefore, the 

normalized values of fracture stress and fracture toughness should show identical behavior. 

And they are basically consistent, which is displayed in Figure 3.1.13.
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Figure 3.1.13: Normalized values of the Young’s modulus, fracture stress and indentation 
fracture toughness
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3.1.4 Fracture surfaces 

The fracture surfaces of the specimens tested at various temperatures were investigated with 

SEM to gain information about the fracture mode. Fracture surfaces from specimens tested 

between RT and 900 °C are shown in Figure 3.1.14. Transgranular fracture is observed for all 

temperatures. Although precipitates appear along the grain boundaries obove 700 °C, this effect 

causes no interfacial weakening. Also, no deterioration of the mechanical properties by the

second phase was observed.

 

(a) at RT

 

(b) 200 °C
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(c) 400 °C

 

(d) 500 °C 

 

(e) 700 °C
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(f) 800 °C

(g) 900 °C

Figure 3.1.14: Fracture surfaces of BSCF specimens tested at various temperatures

3.1.5 Discussion of possible mechanisms governing the mechanical anomaly 

Only few explanations for a Young’s modulus anomaly of perovskites can be found in the 

literature [41, 94, 166, 167]. The effect has been attributed essentially to four possible 

mechanisms: 1. unfreezing of domain walls [166]; 2. Phase transition [41]; 3. 

association/dissociation of defects and ions [167]; 4. spin transition from  low spin (LS) to high 

spin (HS) [94].
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A rapid decrease of the Young’s modulus at intermediate temperatures (between RT and ~

300 °C) reported for LaAlO3 was attributed to the gradual unfreezing of domain walls [166].

However this mechanism is not likely to be the reason for the mechanical anomaly of BSCF. 

BSCF has a cubic symmetry in the respective temperature range, so there is no domain 

formation and switching effect [65, 168]. Furthermore, no signs of domain structure were 

observed in the present study with TEM. Also an unfreezing of domain walls would not explain 

the recovery of Young’s modulus. 

A similar sharp decrease in fracture toughness reported for LaCoO3 and La0.8Ca0.2O3, has been 

attributed in part to the continuous decrease of ferro-elasticity with increasing temperature [66, 

104]. As discussed for Young’s modulus, that cannot be the case for BSCF, since BSCF has a

cubic structure at the relevant temperatures and shows total para-elastic behavior. No hysteresis 

in the load-displacement curves was observed in ring-on-ring testing.

As an alternative mechanism it has been suggested that the association/dissociation reaction 

between point defects could cause mechanical anomalies in particular temperature ranges [100, 

167]. An intermediate temperature anomaly reported for LaCoO3 [104, 169] was attributed to a

spin transition of Co3+. The effect will be discussed in detail below. 

It is not known why the fracture stress remains low up to 400 °C and rises up from 500 °C

(Figure 3.1.3). Between 400 °C and 500 °C only the TEC increases rapidly due to chemical 

expansion, and the Young’s modulus maintains a stable value. This cannot explain, however, 

the fracture stress increase at higher temperatures. Further experimental work might help to 

shed more light on the discrepancy of the fracture stress and the Young’s modulus.

3.1.5.1 Structural characterization with XRD 

Samples were heated to 150 °C, 200 °C and 300 °C, respectively, with a heating rate of 0.5 

K/min and then annealed for 24 hours in order to get more insight into the origin of the 
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anomaly. Afterwards the samples were quenched in water. The crystal structure was 

characterized with XRD at RT. All quenched samples exhibited pure cubic structure (Figure

3.1.15). It has been reported that BSCF maintained a cubic structure from RT up to 1000 °C in 

air [14, 42]. However, it has also been reported [41] that the cubic structure of BSCF 

transforms during long-term exposure (10 days) gradually to a hexagonal polymorph in the 

temperature range 700 °C – 900 °C. The transformation is claimed to proceed via a nucleation 

and growth mechanism [41]. At low temperatures the transformation is inhibited due to the low 

diffusion rates and high nucleation energy in the lattice. Considering the temperature range and 

time range of the present experiments, BSCF should maintain a cubic structure throughout the 

tests. Therefore, a phase transition can be excluded as a possible reason for the mechanical 

anomaly.
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Figure 3.1.15: XRD results of BSCF annealed at various temperatures

3.1.5.2 Phase stability at high temperatures 

In order to get insight into the high temperature behavior, the samples were heated to 750 °C, 

800 °C and 950 °C with a heating rate of 5 K/min, respectively, and then annealed for 336 

hours. After annealing the samples were directly taken out from the furnace to quench the high 

temperature structure.
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For the sample annealed at 750 °C a second phase appears to be visible in the optical micro-

graph. This second phase can only be observed along the grain boundaries in a sample annealed 

at 800 °C. The sample annealed at 950 °C exhibits only a single phase, as is shown in Figure

3.1.16.

(a) 750 °C for 336 hours

(b) 800 °C for 336 hours

 

(c) 850 °C for 336 hours
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(d) 900 °C for 336 hours

(e) 950 °C for 336 hours

Figure 3.1.16: Optical micrographs of samples annealed at various temperature

The second phase was identified by XRD to have hexagonal structure, and the quantity of 

hexagonal phase decreased with annealing temperature from 750 °C to 800 °C. The pure cubic 

structure of the as-received samples could be in meta-stable state due to low diffusion rate, and 

thus has a potential to transform to hexagonal structure.

The precipitation effect of BSCF can be interpreted by a basic thermodynamic process. A solid 

solution is formed if two ingredients are soluble:

AO2+BO�1233                                                                    (3.1.2)

The solving process implies that the bonds in AO2 and BO are first broken, and then recombine 

to form ABO3. When the two solutes are oxides, the nearest neighbors of A and B are still 

oxygen atoms. However, the structure and coordination number of A (B) in the solution maybe 
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be different from the ingredients, and the next neighbors are also different. Therefore, the 

'�� �#*$	�"	��#4��,	�H (= H(ABO3) - H(AO2) - H(BO)) could be negative (exothermic), zero, 

or positive �'�!�� '�&����	5 '	'����*$	�"	��#4��,	�S (= S(ABO3) - S(AO2) - S(BO)) is positive, 

for the solving process always increases the disorder. 5 '	6�77�	"�''	'�'�,$	�"	��#4��,	��	�G =

�H – T�S�	5 '	��,�	�"	�G !'�'�&��'�	� '	!��'�����	�"	� '	*���'���	8 '�	�G is negative, the 

��#+����	 ��	 ���7#'�	8 '�	 �G is positive, the solution tends to separate into two ingredients. 

8 '�	�H ��	�',���4'9	 � '	�G is always negative independent from temperature. That means 

� '	 ��#+����	 ��	 ���7#'	 ��	 �##	 �'&*'���+�'��	 8 '�	 �H ��	 *�����4'9	 �G is positive for low 

temperature (T <
S
H
�
� = T0�9	 ��!	 � '	 ��#+����	 �'�!�	 ��	 �'*����':	 �G is negative for high 

temperature (T >
S
H
�
� = T0), and solution is stable. 

The driving force for separation is the inverse of the Gibbs energy of dissolution

-�G=-(�H-T�S)=-(T0�S-T�S)=(T-T0)�S (3.1.3)      

The lower the temperature is, the higher is the driving force. However, besides the driving 

force the separation is also controlled by diffusion and activation energy (nucleation process) 

or only by diffusion (spinodal decomposition). Therefore, at low temperatures, even when the 

driving force is high, the solution may be in a meta-stable state due to the low diffusion rate. 

The precipitation was mainly found along grain boundaries and on the surface, which could be 

due to the lower activation energy (surface energy of nucleation, elastic energy of volume 

change) and high diffusion rate compared with the lattice.

From the thermodynamic analysis of solution and the experimental results, it can be concluded 

that the critical temperature of dissolving is between 800 °C and 850 °C.
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3.1.5.3 Association and dissociation of defects 

The BSCF contains two types of point defects, metal ions and oxygen vacancies. They could 

interact with each other by an association/dissociation reaction [167]:

M;	�	<•• =	��;><••)•                                                                  (3.1.4)

The reaction is accompanied by a volume change. The strain associated with the shift of the 

equilibrium is called chemical strain [167]. Although some conclusions can be drawn from the 

simple dimer cluster (M;>< ••)• model, trimers (2M;>< ••) may also play a significant role in 

BSCF [167, 170]. The Clausius-Clapeyron equation describes the effect of small changes [171]:
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) '�'	 �P ��	 �	 �&�##	 *�'��+�'	 � ��,'	 ����'���9	 �T ��	 �	 �&�##	 �'&*'���+�'	 � ��,'9	 �H is the 

'�� �#*$	 � ��,'	 �"	 � '	 �'������9	�V is the associated volume change, and Te is the reaction 

temperature without external stress. The equilibrium can be changed by external stress, but the 

critical stress increases with a deviation from Te. The external stress plays a significant role 

only in a temperature range around Te. At low temperature the reaction is frozen, and at high 

temperature the clusters dissociate completely [167]. As a result of this relationship, the total 

������	?t comprises two parts, mechanical strain �m and reaction strain �r. The apparent elastic 

&�!+#+�	)��	��#�+#��'!	7$	� '	@+���'��	�"	'A�'���#	���'��	B	��!	����#	������	�t. Depending on the 

value of chemical strain �m, the apparent E-modulus may exhibit an anomaly at intermediate 

temperatures.

An enthalpy change is observed at about 240 °C – 250 °C in the DTA curve (Figure 3.1.17), 

which might be an indication of an association/dissociation process. However, the same 

anomaly was also measured by the resonance evaluation of the elastic behavior (see Figure 

3.1.2). Since the atoms only vibrate a small distance, the association/dissociation reaction may 
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not contribute to the anomaly of Young’s modulus. Furthermore, the reaction strain cannot 

explain the decreases of the fracture stress and the indentation fracture toughness, since the 

reaction strain always relaxes the stress in the highly stressed zone.
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Figure 3.1.17: Differential thermal analysis (DTA) curve of BSCF in air

3.1.5.4 Spin transition 

The spin transition of Co3+ in LaCoO3 has been studied extensively since the 1950s [94-97]. As 

shown in Figure 1.13, five orbitals in the 3d shell of Co3+ (d6) are split by the crystal field into 

two groups: t2g (3 orbitals) and eg (2 orbitals). In an atom the 5 orbitals in the 3d shell are 

degenerate, i.e. they have the same energy level, but the electrons distribution is changed by the 

interaction with oxygen ions in the lattice. The energy of the t2g orbitals is lower than that of 

the eg orbitals. At very low temperature, the 6 electrons of Co3+ occupy the t2g orbitals, and the 

eg orbitals are empty. Since all electrons are paired, the spin of Co3+ is zero. With increasing 

temperature electrons can be thermally activated to eg orbitals. Each electron has a half-spin, 

and depending on the number of unpaired electrons the spin of Co3+ can be 1 or 2. Some of 

non-magnetic Co3+ (LS, S=0) are thermally activated to magnetic Co3+ (IS, S=1 or HS, S=2). 

At about 200 °C the amount of magnetic Co3+ is saturated [98].
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This transition can be confirmed by measurements of the magnetic susceptibility. The 

susceptibility (�) of paramagnetic materials is described by the Curie-Weiss law [88]:

��
�
T
C� (3.1.4)

where T is the temperature, C and � (< T) are positive material constants. Normally � decreases 

with temperature. However, C contains the density of the magnetic moments n1:

11CnC � �
��

�
T
Cn 11� (3.1.5)

If the density of magnetic moments (n1) increases more rapidly, � may increase with 

temperature. The magnetic susceptibility of BSCF was measured with a Quantum Design 

Physical Property Measurement System (PPMS). The susceptibility of BSCF as a function of 

temperature is shown in Fig. 3.1.18 [165]. A maximum of � can be observed at ~ 250 °C. The 

result confirms the existence of a spin transition. The transition is accompanied by an abnormal 

expansion of Co ions [95, 169], which may strongly influence the mechanical behavior of 

BSCF [104].
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Figure 3.1.18: Magnetic susceptibility of BSCF as a function of temperature in air
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3.1.5.5 Thermal and chemical expansion 

With increasing temperature or decreasing oxygen partial pressure, the perovskite loses part of 

its oxygen with oxygen vacancies being left [56]. At the same time, metal ions Mn+ are reduced 

to lower valence M(n-1)+: 2Mn+ + O2- �	��(n-1)+ +O2(g). Since the radius of M(n-1)+ is larger than 

that of Mn+, along with this reaction the lattice of the perovskite will expand. This effect is 

called chemical expansion [57, 58].

Thermal expansion and the scientific and technical [165] TECs of BSCF are displayed in 

Figure 3.1.19(a) and 3.1.19(b). Obviously the scientific TEC (�Sci) shows the effect of the 

lattice expansion better resolved. Correspondingly, only �Sci is taken into account in the 

following considerations. The lattice expansion could consist of four components. These are 

lattice vibration, spin transition, dissociation of point defects and chemical expansion. As 

discussed above, the low spin - high spin transition is accompanied by abnormal expansion of 

the Co ions. The higher value at RT – 200 °C on the �Sci curve may be related to such a 

transition, which is consistent with the susceptibility values. The susceptibility increases 

rapidly from RT to 250 °C. The rapid increase of the �Sci from 450 °C to 530 °C is attributed to 

chemical expansion, since an apparent oxygen loss is observed above 450 °C by TG 

investigations (Figure 3.1.20). However, the additional peaks in the �Sci curve are not yet fully 

understood. These effects might also be related to vacancy - ion cluster configurations [104, 

168, 172].

An enthalpy change observed at ~ 240 °C - 250 °C in the DTA curve (Fig. 3.1.17) has been

attributed to the dissociation of point defects [167]. However, no volume changes that might be 

expected to take place as a result of such reactions can be observed in the thermal expansion 

curve (Fig. 3.1.19(b)).

The TG curve of BSCF is shown in Fig. 3.1.20. From ~ 490 °C lattice oxygen is gradually 

released with increasing temperature. After the cooling process the sample does not return to its 



 69 

original weight until ~ 400 °C. The hysteresis at about 400 °C – 500 °C could be due to the 

limitation of oxygen diffusion. The composition of BSCF is not stable at high temperatures, 

and from ~ 490 °C part of the lattice oxygen is released (Fig. 3.1.20). However, above 300 °C 

Young’s modulus behaves like that of a normal ceramic, which indicates that Young’s modulus

is not very sensitive to oxygen stoichiometry.
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Figure 3.1.19: Thermal expansion behavior of BSCF in air
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Figure 3.1.20: Thermal gravity (TG) curves of BSCF

 

3.2 LSCF 

3.2.1 Non-linearity of load-displacement 

Typical load-displacement curves measured at various temperatures using ring-on-ring tests are 

shown in Figure 3.2.1. Below 700 °C the curves are non-linear. At RT a decrease of the slope is 

observed above ~ 80 N (40 MPa). This deviation point gradually decreases with increasing 

temperature, and cannot be recognized anymore at 700 °C. Between 200 °C and 700 °C an 

increase of the slope is also observed when further increasing the load.

Complementary SEM investigations after room temperature bending tests revealed the 

presence of crystallographic domains in many grains of the stressed sample surface. Hence the 

non-linear deformation characteristics are likely to be related to the ferro-elasticity of the 

perovskite material [65]. A detailed analysis of the ferro-elastic effect in LSCF will be given

later.

The onset of domain activity seems to be reflected by the first deviation towards a shallower 

slope of the load-displacement curves. Interestingly, after some displacement corresponding to 
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higher loads, the deformation curves tend to become steeper again indicating a saturation of the 

domain formation process. Since the rhombohedral distortion from cubic symmetry appears to 

decrease gradually to zero from RT to the transition temperature (~ 750 °C) [10, 59, 173], it 

can be assumed that the critical stress for domain switching decreases with increasing 

temperature. No defined change in slope is observed at 700 °C, and the critical stress would 

therefore be almost equal to zero. At RT the specimens break before the saturation stress is 

reached, whereas between 200 °C and 700 °C the saturation is observed. At 800 °C the samples 

have a cubic structure and are para-elastic, hence the load-displacement curve is linear [59].
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Figure 3.2.1: Typical load-displacement curves of LSCF at various temperatures in air. The 
first deviation of the slope from linearity is indicated by circles (C�9	��!	� '	���+������	*����	��	
indicated by rectangles (D�. The samples fractured at the end of the curves.

When the first and the second deflection of the slope are assumed to be the onset and the 

saturation of the domain switching, respectively, the load of the onset and the saturation of the 

domain switching can be qualitatively obtained at various temperatures from Figure 3.2.1. The 
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onset load is ~ 100 N at RT, and decreases almost linearly to zero at 700 °C. The saturation 

load is ~ 140 N at 200 °C, and decreases linearly to ~ 80 N at 700 °C (Figure 3.2.2).
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Figure 3.2.2: Temperature dependence of onset and saturation load of domain switching in 
LSCF

3.2.2 Young’s modulus 

3.2.2.1 Young’s modulus in air 

To evaluate the interesting temperature effect of the elastic behavior of LSCF, a series of 

loading/unloading cycles has been carried out at various temperatures between RT and 800 °C

in air. Young’s moduli measured by ring-on-ring test and first preliminary results obtained with 

resonance method are shown as a function of temperature in Figure 3.2.3. The Young’s moduli 

determined using the two methods agree well. The Young’s modulus exhibits an initial 

decrease, and stays relatively stable up to ~ 600 °C, followed by a strong increase. The initial 

decrease of Young’s in LSCF is larger than in normal ceramics, i.e. a higher decrease than 1% 

per 100 K with increasing temperature [122]. Since it is very unlikely that the ferro-elastic 

domains can switch during resonance measurement, a correlation with the easier onset of 
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domain switching with increasing temperature can be excluded. Further experiments need to be 

done to elaborate and explain the phenomenon of initial decrease of Young’s modulus.
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Figure 3.2.3: Young’s modulus of LSCF as a function of temperature measured by ring-on-ring 
test and resonance method in air. For ring-on-ring tests, 5 measurements were carried out for 
each temperature, and the standard deviations were given.

Earlier reports [19, 48, 49] suggested that the lattice structure of La(Sr)Fe(Co)O3 depends on 

temperature and the amount of Sr and Co doping. As shown in Figure 1.4, a transition from 

rhombohedral to cubic symmetry occurs at about 800 °C for La0.6Sr0.4FeO3-� [49]. This 

transition is a second-order transition, i.e. no discrete volume or enthalpy change occurs as a 

result of the phase transition [49]. Cubic symmetry is favoured by increasing temperature and 

oxygen deficiency [60, 174]. The strong increase of Young’s modulus between 700 °C and 

800 °C seems to reflect this rhombohedral to cubic transition. 

3.2.2.2 Young’s modulus under vacuum (10-5 mbar) 

The samples were annealed at 900 °C for 2 hours under vacuum (10-5 mbar), and the Young’s 

modulus was measured using ring-on-ring tests during the cooling process for the first heating 

cycle and heating or cooling process for the subsequent heating cycles. During the first heating 

of the as-received samples, the values of Young’s modulus under vacuum conditions are still 
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the same like those in air due to the slow diffusion of oxygen. Upon cooling high values of 

Young’s modulus are maintained until RT, and no abrupt change is observed throughout the 

temperature range (Figure 3.2.4).
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Figure 3.2.4: Young’s modulus of LSCF under vacuum (10-5 mbar). The average value was 
calculated from 5 measurements, and the standard deviation was given.

The oxygen deficiency in the samples is higher under vacuum than in air for a particular 

temperature [175, 176], and the higher concentration of oxygen vacancies in vacuum is 

responsible for the stabilisation of the cubic structure [60, 174]. The stabilization (existence at a 

lower temperature than in air) of the cubic structure under vacuum is suggested to be a result of 

the formation of an ordered structure [174, 177].

The difference of Young’s modulus determined from separate tests in air and vacuum generates

interest in dual atmosphere exposure of a single sample. A sample was annealed at 900 °C for 2 

hours under a steady gradient of oxygen. Note that this test should represent the operation 

conditions of the membrane. During annealing one side of the sample was exposed to air, and 

the other side to vacuum (20 mbar). Keeping the difference in PO2, the sample was cooled 

thereafter with a rate of 0.5 K/min to RT. Micro-mechanical properties were characterized by 

indentation with a load of 1000 mN at RT. Young’s modulus and hardness maintain a relatively 
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stable value across the thickness, but the indentation toughness decreases from ~ 0.64 to ~ 0.42 

MPa·m0.5 with increasing PO2 (Figure 3.2.5). Since Young’s modulus increases by ~ 50 % with 

the transition from rohmbohedral to cubic symmetry (compare Figure 3.2.3 and Figure 3.2.4),

the almost stable value of Young’s modulus in Figure 3.2.5 indicates that the chosen low PO2

does not stabilize the cubic structure. The higher value of the indentation toughness Kind can be

attributed to the compressive stress at the lower PO2 side. The specimen will release oxygen 

when exposed to low PO2, and the lattice expands with the release of oxygen. Consequently, the 

specimen experiences a compressive stress at lower PO2 side, and correspondingly, a tensile 

stress at higher PO2 side.
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Figure 3.2.5: Young’s modulus, hardness and fracture toughness through the thickness (1 mm) 
of a LSCF sample exposed to a gradient in PO2

 

3.2.3 Phase compositions of LSCF 

In-situ high temperature XRD was carried out to characterize the temperature dependence of 

the crystalline structure. Since almost all diffraction peaks of rhombohedral and cubic 

symmetry overlap, the determination of the temperature at which the transition actually occurs

has uncertainties. From structural modeling of the XRD data, it is known that the (113) peak at 
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38.5 ° appears in rhombohedral, but is not present in the cubic symmetry. Characteristic curves 

obtained using high-temperature XRD are shown in Figure 3.2.6. The rhombohedral (113) peak 

disappears at 850 °C in air, which is an indication that only the cubic phase exists at (and above) 

this temperature. That is in agreement with literature [49].
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Figure 3.2.6: In-situ high-temperature XRD patterns of LSCF

Some of the LSCF samples were heat treated to study the influence of thermal history on phase 

composition. Figure 3.2.7 shows the XRD results after annealing at 900 °C for 2 hours and 

subsequent different cooling rates of 5 K/min and 8 K/min in air, and 1 K/min under vacuum 

(10-5 mbar). The phase compositions were quantified with Rietveld refinement of the XRD data. 

Apparently the phase composition of LSCF depends on the cooling rate and atmosphere. The 

crystal structure of the as-received samples was purely rhombohedral. For the samples 

annealed in air and cooled with rates of 5 K/min and 8 K/min the amount of cubic phase was 

15 % and 23 %, respectively [59]. The samples, which were cooled down to RT under vacuum 

at a rate of 1 K/min, exhibited purely cubic symmetry. Also the diffraction peaks of the XRD 

measurements shifted to a lower angle, indicating an increase of the lattice constant. Note that 

the cubic symmetry could also be stabilized to RT by fast cooling in air, but typically the 
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quenching caused specimen fracture. The structure of the quenched sample was indexed by 

XRD to be also purely cubic.
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Figure 3.2.7: Room temperature XRD diffraction patterns of LSCF samples after different heat 
treatments. After annealing at 900 °C various cooling rates in air and under vacuum (10-5 mbar)
were applied.

3.2.4 DTA/TG 

Additional measurements were carried out using DTA/TG in air with a heating rate of 2 K/min. 

Between 700 °C and 850 °C in air, a sharp decrease in the DTA signal is observed (Figure 

3.2.8), which could be attributed to a change in heat capacity rather than any thermal effect, 

since the change from rhombohedral to the cubic phase is a second-order transition [49]. The 

temperature range of the change in the DTA signal is in good agreement with that of the 

Young’s modulus measurements. The curve of the TG measurement also reveals a continuous 

decrease of specimen weight above 600 °C with increasing temperature (Figure 3.2.7), which 

suggests a continuous release of oxygen. In agreement with literature, it can be concluded that 

there is no compositional change associated with the phase transition [49, 60].
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Figure 3.2.8: TG and DTA curves of LSCF measured in air with a heating rate of 2 K/min

Literature [46, 178] suggested that the lattice structure of La(Sr)Fe(Co)O3 depends on the 

temperature and the amount of Sr and Co doping. The cubic symmetry was assumed to be 

favored by increasing temperature and oxygen deficiency [60, 178]. In La0.6Sr0.4FeO3-� the

transition is a second-order transition, i.e. no discrete volume or enthalpy change occurs [49].

Supported by in-situ XRD and DTA measurements, LSCF was reported to transform from 

rhombohedral to cubic between 700 °C and 800 °C [59]. Normally, a second order transition 

should occur at a defined temperature, i.e. two phases cannot coexist, and the high-temperature 

symmetry cannot be stabilized by fast cooling alone [179]. However, the transition temperature 

also depends on the oxygen deficiency. Hence, since the diffusion rate of oxygen is limited, the 

transition could occur in a range of temperatures. Thus part of the cubic phase can be stabilized 

to RT if the oxygen deficiency is not homogeneously distributed. The dependence of the phase 

content on cooling rate and atmosphere (Fig. 3.2.7) proved this assumption. The results 

indicate that the kinetics of oxygen diffusion is essential for the phase compositions at low 

temperatures.
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3.2.5 Thermal and chemical expansion 

Thermal expansion and the thermal expansion coefficient (TEC) are displayed in Figure 3.2.9.

The TEC increases more rapidly above ~ 600 °C, which is attributed to chemical expansion,

because continuous loss of oxygen was observed from ~ 600 °C with TG (Figure 3.2.8). With 

increasing temperature or decreasing partial pressure of oxygen, the oxygen in the lattice will 

be released, and along with that the lattice expands [46, 49, 89]. Two possible explanations for 

this chemical expansion are given in the literature [46]: i) the repulsion forces between those 

mutually exposed cations when oxygen ions are released from the lattice; ii) the increase in 

cation size due to the reduction of the cations from higher to lower valences, an effect which 

occurs simultaneously with the creation of oxygen vacancies in order to maintain electrical 

neutrality.

In fact, both explanations predict a weakening in bond strength which contradicts the measured 

increase of Young’s modulus with increasing oxygen vacancies. The stiffness of the LSCF 

samples annealed under vacuum (10-5mbar) was about 139 ± 3 GPa (measured from

indentation tests with a load of 1 N) and the lattice constant was 0.390 nm, while the values of 

as-received samples were 102 ± 4 GPa and 0.387 nm, respectively. Obviously, the hard sphere 

assumption of ions [46] is an oversimplified model. The properties of materials originate from 

the lattice electron density distribution. Up to now, no detailed analysis of the electron 

distribution is available. Yet, the effect may be explained in the following way: In the lattice 

two electrons are closely distributed around an oxygen ion due to its higher electro-negativity. 

When the oxygen is released, the remaining electrons move to the space between cation and 

anion, which results in an expansion of the lattice, and at the same time, increases the bonding 

strength.
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Figure 3.2.9: Thermal expansion and thermal expansion coefficient of LSCF in air

3.2.6 Domain structure of LSCF 

The specimens were deformed using ring-on-ring test with a load stress of ~ 50 MPa. Although 

details of the ferro-elastic deformation need further elaboration, the micro-structural evidence 

of domains in the deformed LSCF specimens is unambiguously confirmed by SEM and TEM 

observations (Figure 3.2.10 and 3.2.11). Domains can be found almost in all rhombohedral 

grains (Fig. 3.2.10(a)), and the width of the domains is ~100 nm. The domain formation 

contributes to strain without increasing necessarily the stress [180]. The non-linear effect of 

load-displacement is attributed to this deformation. Note that a limited number of domains has

also been recognized in as-received samples.
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(a) Overview

(b) Within a single grain

Figure 3.2.10: SEM micrographs of ferro-elastic domains in deformed LSCF sample

Figure 3.2.11:  TEM micrograph of ferro-elastic domains in deformed LSCF sample
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The domain structure was further characterized by in-situ observation using a heating stage in

the TEM. Under RT conditions the domains can be clearly seen, while at 400 °C the domain 

contours start to fade with some weak contrast of domains still visible (Figure 3.2.12). The 

domains completely disappeared at 700 °C.  After cooling to RT, the domains did not reappear, 

since the high temperature cubic structure was maintained.

As discussed before, the cubic symmetry exists at high temperature and in the presence of 

oxygen vacancies [60, 178], but can also be stabilized under vacuum (10-5 mbar) down to RT.

Since the pressure in the TEM chamber is also about 10-5 mbar, the cubic structure is in 

principle thermodynamically favorable. Thus starting with a rhombohedral material it can 

maintain the symmetry at 400 °C due to limited diffusion rate of oxygen. The diffusion rate 

becomes measurable above 600 °C for bulk material. In the TEM investigation the thickness of 

the sample is only about 100 nm, so obvious oxygen loss is observed at 400 °C. At 700 °C the 

diffusion rate is high enough, and due to oxygen loss the material transforms to cubic structure. 

Since the cubic symmetry is stabilized by oxygen vacancies, no changes in structure can be 

expected when cooling down to RT. Orlovskaya et al. [168] reported a reappearance of 

domains in LaCoO3 after cooling in a TEM chamber, which was not observed in the present 

experiments with LSCF.

(a) Domains at RT
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(b) 400 °C

(c) Measured at RT after heated to 400 °C

(d) Measured at RT after heated to 700 °C

Figure 3.2.12: In-situ annealing experiment in TEM
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3.2.7 Fracture stress 

The apparent fracture stress of LSCF measured by ring-on-ring tests was calculated based on 

the fracture loads using equation (2.1). 5 specimens were used for each temperature, and the 

standard deviation was given. The value decreases rapidly from RT to 200 °C, and then 

increases slowly from 200 °C to 700 °C (Figure 3.2.12). Considering the ferro-elasticity and its 

impact on the non-linear deformation behavior, stress relaxation due to domain formation and 

switching can be expected. Hence, the measured apparent value of the fracture stress is likely to 

be higher than the real one. Note that equation (2.1) is only valid for samples that exhibit 

linear-elastic behavior throughout the test [146]. An estimate of the fracture stress from the 

non-linear load-displacement curves can be obtained based on the following assumptions: i) the 

part with the highest slope in the load-displacement curve corresponds to elastic deformation; 

and ii) any decrease in slope is related with ferro-elastic domain activity. 

In general, the stress � is proportional to the load P and the strain � is proportional to the 

deflection d. Although equation (2.1) is not valid in the given non-linear situation, it can still be 

stated that:

d
P

K
a

�
�	

�

�	

� (3.2.1)

where K is the highest slope in the deformation curve, ��!	Ba is the apparent fracture stress.

�+#��*#�������	7$	�� and integration of both sides leads to a corrected fracture stress �:

�� �

�
�		
d
P

K
a (3.2.2)

The fracture stresses corrected on the basis of this reasoning are lower than the apparent ones 

and the decrease in the intermediate temperature range is less pronounced (Figure 3.2.13). The 

corrected fracture stress decreases by about 13 % from RT to 200 °C, increases slightly up to 

700 °C and strongly between 700 °C and 800 °C (67 %).
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A very similar effect was reported for La0.5Sr0.5O3-� and La0.875Sr0.125MnOE�� [111, 181]. The 

fracture stress of La0.5Sr0.5O3-� decreased from RT (80 MPa) to 200 °C (60 MPa) and then 

increased rapidly up to 800 °C (200 MPa). This effect is attributed to the elimination of the 

oxygen gradient by lattice diffusion at high temperatures [111]. However, the initial decrease 

of the fracture stress of LSCF cannot be explained with this assumption, since the elimination 

of oxygen gradient should increase the fracture stress.

The fracture stress of La0.875Sr0.125MnOE�� decreased from RT (164 MPa) to 400 °C (109 MPa), 

and then increased up to 1000 °C (222 MPa) [111, 181]. A decrease at 400 °C was attributed to 

the orthorhombic-to-rhombohedral phase transition that occurs in the temperature range of 

150 °C - 250 °C. The further increase was associated with the decrease of distortion from cubic 

symmetry and the oxygen stoichiometry that influenced the oxygen-metal bonding. The 

fracture stress of LaFeO3 was reported to be higher at 800 °C compared to RT, and the authors 

related this effect to the relaxation of surface stress at high temperature and toughening due to 

ferro-elasticity [102].
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Figure 3.2.13: Fracture stress as a function of temperature in air. The 800 °C data point of the 
corrected fracture stress is slightly displaced with respect to the temperature scale to enhance 
visibility
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3.2.8 Indentation 

3.2.8.1 Temperature dependence 

The indentation fracture toughness was determined from the length of indentation cracks. First 

the applicability of equation (2.3) was examined at RT assuming that Kind should be 

independent of load for constant fracture toughness, i.e. linearity had to be demonstrated in a 

Pc 2/3 plot (see Figure 3.2.14). Efforts to establish the temperature dependence of toughness 

were again experimentally limited by the heating stage to measurements between RT and 

350 °C.

The determined value of indentation fracture toughness (Kind = 0.6 MPa·m1/2) remains basically 

constant from RT to 350 °C (Figure 3.2.15). No effect that might be associated with the ferro-

elasticity of the material is recognized. Note that Orlovskaya et al. [182] estimated that an 

increase in fracture toughness by domain switching alone should be less than 10 %. A small 

difference in the temperature dependence between fracture toughness and fracture stress can 

also be caused by different phase constituents in the vicinity of the artificially introduced 

indentation cracks and failure causing defects (flaws).
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Figure 3.2.14: Indentation crack length in LSCF as a function of indentation load in ambient 
atmosphere. For each load 36 indentations were applied, and the standard deviation was given.
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Figure 3.2.15: Indentation fracture toughness of LSCF as a function of temperature in air. For 
each temperature 36 indentations (600mN) were applied, and the standard deviation was given.

3.2.8.2 Cooling rate dependence

In order to investigate the dependence of Young’s modulus and fracture toughness on cooling 

rate and atmosphere, samples were annealed at 900 °C for 2 hours, and cooled with a rate of 5 

K/min. Also one sample was directly taken out of the furnace. The cooling rate of this sample 

is assumed to be larger than 50 K/min. Young’s modulus and indentation toughness were

measured by indentation with a load of 1000 mN. The Young’s modulus does not really change 

in the range of cooling rate between 0.5 K/min and 5 K/min within the limits of uncertainty.

However, an increase of ~16 % is measured at the very high cooling rate. The Young’s 

modulus of samples annealed under vacuum (10-5 mbar) is 136 ± 3 GPa, compared to 75 ± 5

GPa for the same experiment in air. As discussed for the observed phase compositions, the 

higher value of Young’s modulus of samples annealed under vacuum and with high cooling 

rate is due to the stabilization of the cubic structure down to RT. The fracture toughness 

exhibits a similar dependence on cooling rate and atmosphere like Young’s modulus (Figure 

3.2.16 and Fig. 3.2.17). 
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Figure 3.2.16: Dependence of Young’s modulus on cooling rate and atmosphere measured at 
RT (indentation load 1000 mN). For each cooling rate 36 indentations were applied, and the 
standard deviation was given.
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Figure 3.2.17: Dependence of fracture toughness on cooling rate and atmosphere measured at 
RT (indentation load 1000 mN). For each cooling rate 36 indentations were applied, and the 
standard deviation was given.

In order to make the obtained thermo-mechanical results comparable, the values of Young’s 

modulus, fracture stress and fracture toughness at various temperatures were normalized with 

respect to the values of the as-received samples (Figure 3.2.18). The RT values for LSCF are E

= 74 ± 4 GPa, B	�	70 ± 4 MPa and Kind = 0.6 ± 0.1 MPa/&0.5.

A slight initial decrease in Young’s modulus is observed up to 200 °C (Figure 3.2.17), and a 

strong increase in Young’s modulus occurs above 700 °C. The fracture stress of LSCF 
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decreases by about 10 % from RT to 200 °C, and increases slightly up to 700 °C, and then 

increases rapidly from 700 °C to 800 °C. The indentation fracture toughness appears to be 

weakly affected by the temperature. Complementary SEM and TEM investigations after room 

temperature bending tests revealed the presence of ferro-elastic domains in many grains in the 

stressed sample surface. Hence the non-linear deformation characteristics obtained for LSCF 

are related to the ferro-elasticity of this perovskite material [183].

In general, fracture toughness and fracture stress are related by equation (3.1.1) [122]. For RT 

the average fracture stress of ~70 MPa, with a fracture toughness of 0.64 MPa/�	&	� +�	$�'#!�	�	

critical crack length of c 0	
�	F&�	5 '	4�#+'	�"	the crack length is much larger than the grain 

size (0.6 ± 0.2 µm). The size of defects may change during heating due to thermal expansion, 

but the relative change in size of such a defect with temperature is expected to be very small. 

Therefore, it is expected that the normalised values of fracture stress and fracture toughness 

should show identical behaviour. Indeed the normalized curves of fracture stress and fracture 

toughness are very close to each other (Figure 3.2.18).
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Figure 3.2.18: Thermo-mechanical properties of LSCF. Normalized values of Young’s 
modulus, fracture stress and indentation fracture toughness are plotted (lines are guided to eyes)
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3.2.9 Magnetic susceptibility 

The magnetic susceptibility of LSCF exhibits the behaviour expected for paramagnetic 

materials, i.e. a monotonous decrease with increasing temperature (Figure 3.2.19). In a 

qualitative argument focusing only on Co3+, the absence of spin transition in LSCF could be 

due to the considerably lower content of Co ions. However, the magnetic susceptibility of 

BSCF (~ 5·10-4 - 5.9·10-4) is mainly due to Co3+, and the spin transition can be observed from 

susceptibility measurements. But the magnetic susceptibility of LSCF (~ 1·10-3 - 1.9·10-3), 

which is much higher than that of BSCF, could be mainly due to La or Fe. Therefore, the spin 

transition of Co3+ in LSCF can be masked by the higher susceptibility of La or Fe. It is not 

clear whether a spin transition exists in LSCF or not. In fact, a relatively strong decrease of 

Young’s modulus in LSCF was observed from RT to ~ 400 °C.
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Figure 3.2.19: Magnetic susceptibility of LSCF as a function of temperature in air (lines are 
guided to eyes)

3.2.10 Residual stresses 

In principle internal stresses in perovskite ceramics can be a result of temperature gradients, 

oxygen gradients and phase transition [101]. In fact, a TEM foil of LSCF prepared normal to 

the specimen surface by FIB technique showed strong bending effects (Figure 3.2.20), which is 

a clear indication of internal stresses. Taking the low cooling rate (0.5 K/min) of the specimen 
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into account, the internal stress is attributed to cubic-rhombohedral transition. The gradual 

distortion of the rhombohedral from the cubic symmetry increases with deviation from the 

transition temperature [173]. As a result, internal stresses are generated due to different 

orientations of the ferro-elastic grains. The resulting local residual stresses are partly 

compensated by domain formation in the rhombohedral grains. As-received samples show such 

transformation domains. A significantly higher amount of ferro-elastic domains is observed 

after applying an additional external stress on the rhombohedral grains (Figure 3.2.10(a)).

The increase of the fracture stress in the range 200 °C - 700 °C might be associated with 

increasing relaxation of the internal stresses at elevated temperatures. However, above 700 °C 

the strong increase of the fracture stress has to be attributed to the rhombohedral-cubic phase 

transition.

Figure 3.2.20: Bending of LSCF FIB lamella due to residual stresses

3.2.11 Fracture surface 

In addition to the residual stress aspects also the micro-structural fracture path undergoes 

changes as a function of temperature. The fracture surfaces of the specimens tested at various 

temperatures reveal different fracture modes (Figure 3.2.21). At RT transgranular fracture is 

observed, while at 200 °C a mixture of ~ 80 % transgranular and 20 % intergranular is pesent. 

At 700 °C the ratio changes to ~ 15 % transgranular and ~ 85 % intergranular and at 800 °C the 
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fracture surface is exclusively intergranular. The transition from transgranular to intergranular 

fracture with increasing temperature indicates that the grain boundaries become weaker 

compared to the cohesion in the lattice. Traces of domains can be observed as small 

inclinations on the fracture surfaces in samples tested at 200 °C and 700 °C (Figure 3.2.21), but 

due to their limited number the hindrance of crack propagation can assumed to be small. 

The LSCF transforms from rhombohedral to cubic between 700 °C and 800 °C. In order to 

investigate the effect of phase composition on the fracture mode, the LSCF sample was 

annealed under vacuum (10-5 mbar) at 900 °C for 2 hours, and cooled at the same PO2. The 

heating rate and cooling rate were 3 K/min and 1 K/min, respectively. The sample was then 

fractured at RT (Figure 3.2.21 (e)). The fracture mode is transgranular and comparable with the 

as-received sample. The result suggests that the change of the fracture mode does not depend 

on the phase structure but is related to temperature. Grain boundary layers and their softening 

could play a role. In depth TEM studies that could prove this assumption are out of the scope of 

the present work.

(a) Specimen fractured at RT
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(b) Specimen fractured at 200 °C

(c) Specimen fractured at 700 °C

(d) Specimen fractured at 800 °C
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(e) Specimen fractured at 900 °C

(f) Specimen fractured at RT after annealing and cooling under vacuum (10-5 mbar)

Figure 3.2.21: SEM micrographs of LSCF fracture surfaces obtained from ring-on-ring tests at 
various temperatures

 

3.2.12 Creep 

Typical creep curve is displayed in Figure 3.2.22. It can be seen that the creep rate is high in 

the initial stage (~ 0 - 3 h), and then comes to a stable value in the following (~ 5 - 20). The 

steady-state creep rate was calculated by dividing the strain with loading time in the time range 

of 5 - 20 h.
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Figure 3.2.22: Typical creep curve of LSCF measured at 800 °C in air. The steady-state creep 

rate was calculated in the time range of 5 - 20 h.

The steady-state creep rate of LSCF was measured in air and vacuum (10-5 mbar) in the 

temperature range of 700 – 950 °C (Figure 3.2.23). For comparison, creep rates of BSCF 

measured by Yi et al. are also presented [184]. The Arrhenius plots show an increase of the 

LSCF creep rate with increasing temperature. The creep rate is almost up to 2 orders of 

magnitude higher in vacuum than in air for a defined temperature. Interestingly, a transition 

occurs for LSCF in the temperature range 800 - 850 °C independent of atmosphere, while a 

transition occurs for BSCF in the temperature range 850 – 900 °C. 

The apparent activation energies are compiled in table 3.1. The apparent activation energy of 

LSCF is about ~ 66 kJ·mol-1 in the temperature range of 700 - 800 °C in air, and about 242 

kJ·mol-1 in vacuum. In the temperature range of 850 - 950 °C the apparent activation energy 

increases to about 506 - 511 kJ·mol-1 for both air and vacuum condition. The value in air is 

comparable with the activation energy for oxygen transport [21]. The strong increase of the 

activation energy between 800 – 850 °C may indicate a change of the creep mechanism [185-

187].
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Figure 3.2.23: Steady-state creep rate of LSCF measured in air and vacuum (10-5 mbar). For 
comparison, creep rate of BSCF was displayed [184]

Table 3.1 Apparent activation energies (kJ·mol-1) for creep at low and high temperature in air 
and vacuum (10-5 mbar)

LSCF BSCF [184]

air vacuum air

Low temperature ~ 66 236 ± 4 ~ 258

High temperature 514 ± 3 520 ± 25 ~ 287

The apparent activation energy of creep for ceramics is compiled in table 3.2, and the values 

range from 130 – 990 kJ/mol. For comparison, the apparent activation energy was normalized 

with respect to RTm (R is gas constant and Tm is melting point in K). Interestingly, independent 

of materials, stress and temperature, the creep mechanism is lattice diffusion when the 

normalized value E/RTm is larger than 25, and the creep mechanism is grain boundary diffusion 

when E/RTm is smaller than 23. This can be explained by that the activation energy of diffusion 

for atoms is higher in lattice than in grain boundary due to the dense packed structure of the 

lattice. 
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Table 3.2 Apparent activation energy for ceramics

Materials E (kJ/mol) T (°C) ��(MPa) T/Tm E/RTm Creep mechanism 
Bi2Sr1.7CaCu2Ox [188] 990 ± 190 780 - 835 2 - 3 0.59 - 0.63 67 Lattice 
YAlO3 [127] 885 ± 85 1490 - 1600 150 0.82 - 0.88 50 Lattice 
BaTiO3 [129] 720 ± 70 1200 - 1300 5 0.78 - 0.83 45.8 Lattice diffusion 
CaTiO3 [189] 837 1100 - 1200 4 - 13 0.61 - 0.66 44.8 Lattice diffusion 
La0.8Sr0.2Fe0.8Cr0.2O3-� [190] 566 ± 16 1100 - 1200 10 - 30 0.76 - 0.82 37.8 Lattice diffusion 
Sr3Ca1.18Nb1.82O9-� [191] 670 ± 94 1300 - 1350 40 0.71 - 0.73 36 Lattice 
SrCo0.8Fe0.2O3 [192] 471 ± 25 850 - 925 10 - 20 0.71 - 0.76 35.8 Lattice 
SrFeCo0.5Ox [193] 453 ± 45 940 - 1000 7 0.79 - 0.83 35.5 Lattice 
La0.5Sr0.5CoO3 [194] 619 ± 56 900 - 1050 5 - 28 0.55 - 0.62 35 - 
SrFe1.2Co0.3Ox [193] 425 ± 35 940 - 1000 23 0.80 - 0.84 33.8 Lattice 
SrTiO3 [195] 620 ± 19 1200 - 1520 15 0.64 - 0.78 32 lattice 
La0.8Sr0.2Ga0.85Mg0.15O3-� 
[196] 

521 ± 23 1200 - 1300 5 - 20 0.75 - 0.80 32 lattice 

SrZrO3 [197] 710 ± 42 1160 - 1275 11 0.49 - 0.53 29.3 Lattice 
NaCl [198] 240 ± 10 750 - 795 0.1 0.95 - 0.99 26.9 lattice 
La0.9Sr0.1MnO3 [130] 490 ± 30 1150 - 1300 5 - 20 0.65 - 0.72 26.8 Lattice 
Bi2O3 [199] 230 ± 20 750 - 800 0.5 - 2 0.94 - 0.98 25.3 Lattice 
La0.5Sr0.5Fe0.5Co0.5O3 [194] 398 ± 28 900 - 1050 5 - 28 - - - 
Al2O3 [200] 430 1200 - 1300 69 0.63 - 0.68 22.3 Grain boundary 
SrCo0.8Fe0.2O3 [192] 275 ± 19 925 - 975 10 - 20 0.76 - 0.79 20.9 Grain boundary 
Ce0.9Gd0.1O1.95 [201] 480 ± 100 1200 - 1300 5 - 40 0.53 - 0.57 20.8 Grain boundary 
BaZrO3 [202] 460 ± 30 1300 - 1400 12 0.53 - 0.56 18.6 Grain boundary 
SrFeO3 [128] 260 ± 30 800 - 900 5 - 20 0.63 - 0.75 18.3 Grain boundary 
Bi2O3 [203] 130 680 - 760 0.3 0.87 - 0.95 14.3 Grain boundary 
ZrO2 [204] 345 ± 15 950 - 1000 25 - 200 0.40 - 0.42 13.7 Grain boundary 
SrFeCo0.5Ox [193] 135 ± 27 940 - 1000 3.5 0.79 - 0.83 10.6 Grain boundary 
SrFe1.2Co0.3Ox [193] 112 ± 20 940 - 1000 1.9 0.80 - 0.84 8.9 Grain boundary 
MgO [205] 204 ± 10 1500 - 1600 5 - 20 0.57 - 0.60 7.9 Grain boundary 
SiC [206] 146 ± 25 1300 - 1400 34 - 86 0.52 - 0.56 5.8 Grain boundary 
La0.58Sr0.4Co0.2Fe0.8O3 (this 
work) 

514 ± 3 
- 

850 - 950 
600 - 800 

30 
30 

0.67 - 0.73 
- 

37.1 
- 

 

The normalized value E/RTm is plotted as a function of average creep temperature (Figure 

3.2.24). When the temperature is below 0.7 Tm, creep mainly occurs by grain boundary 

diffusion. When the temperature is above 0.7 Tm, creep mainly occurs by lattice diffusion. 

However, even at high temperature, grain boundary creep could also dominate when the stress 

is very low. In fact, a transition from low stress to high stress was observed for Bi2O3,

SrFeCo0.5Ox and SrFe1.2Co0.3Ox.
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Figure 3.2.24: Normalized activation energy as a function of average creep temperature

LSCF transforms from rhombohedral to cubic between 700 °C and 800 °C in air, while under 

vacuum (10-5 mbar) the cubic structure is stable from high temperature down to RT. Therefore, 

it seems that the transition in creep is not related with the phase transition. It has been discussed 

in section 3.1.4.2 that the critical temperature of BSCF is between 800 °C and 850 °C in air. 

The partial pressure of oxygen (PO2) contributes to the creep of LSCF with two effects: 1. a

decrease of PO2 increases the concentration of oxygen vacancies, which enhances the creep 

effect; 2. the release of oxygen makes the bonding stronger (section 3.2.5), which hinders the 

creep effect. Therefore, the overall contribution of PO2 depends on the competition of the two 

effects. Majkic et al. [137] have investigated the creep effect of La0.2Sr0.8Fe0.8Cr0.2O3-� with 

respect to PO2. The material exhibits two markedly different behaviors at high and low PO2. At 

high PO2, the behavior is characterized by the oxygen partial pressure exponent of m = 0.04, 

followed by a drastic increase in strain rates at low PO2, characterized by m = -0.5. The 

Young’s modulus of LSCF increases rapidly from 700 °C to 800 °C in air due to the phase 

transition from rhombohedral to cubic, and maintains a higher value throughout the 

temperature in vacuum. Therefore it is proposed that the lower creep rate of LSCF in vacuum 

below 700 °C is attributed to the higher Young’s modulus in vacuum. Above 800 °C LSCF 
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exhibits cubic structure both in air and vacuum, and the Young’s modulus becomes comparable 

in both atmospheres, so the higher concentration of oxygen vacancies mainly contributes to the 

creep effect. Therefore, a higher creep rate is observed in vacuum above 800 °C.

 

3.3 LNO 

3.3.1 Stiffness of LNO 

The stiffness of LNO as a function of temperature is shown in Figure 3.3.1. The average 

stiffness values increase slightly from RT to 800 °C, and decrease rapidly from 800 °C to 

900 °C. Furthermore, the stiffness is a moderately higher under vacuum (10-5 mbar) than in air 

at 800 °C. The oxygen deficiency in the material increases with increasing temperature, and is 

higher under vacuum than in air for a particular temperature [175, 176]. This might be the 

reason for the higher stiffness value under vacuum. XRD diffraction analyses verified the 

orthorhombic crystal structure of LNO (Figure 3.3.2). Vashook et al. reported that no 

significant structure change was observed with in-situ XRD from RT to 1000 °C, whereas 

Gopalan et al. reported that the orthorhombic structure transforms to tetragonal structure during 

heating at ~ 400 °C [79, 207]. However the temperature dependence of stiffness, in particular 

the increase at high temperatures, cannot be explained by a phase transition.
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Figure 3.3.1: Stiffness of LNO as a function of temperature and atmosphere. 5 specimens were 
tested for each temperature, and the standard deviation was given.

20 30 40 50 60 70 80
0

5000

10000

15000

20000

25000

30000

Co
un

ts 
/a.

u.

2 Theta /°

Figure 3.3.2: XRD patterns of LNO

The temperature dependence of stiffness indicates a relation with the oxygen deficiency. The 

increase of stiffness can be attributed to the change of the bonding property due to the release 

of oxygen from the lattice. Although up to now, a detailed analysis of the bonding property is 

not available, it can be assumed that in the lattice two electrons are closely distributed around 

an oxygen ion due to its higher electro-negativity. When the oxygen is released, the electrons 
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rearrange in the space between cation and anion, which makes their bonding stronger. The 

decrease of stiffness from 800 °C to 900 °C might be associated with creep effects.

3.3.2 Fracture stress 

The fracture stresses were measured with 4-point bending tests, referring to section 2.2.1. The 

measured fracture stresses increases slightly from RT to 700 °C, and rises strongly from 700 °C 

to 900 °C (Figure 3.3.3). Since the measurements were carried out with as-received samples, 

internal stresses in the sample may have been present related with fast cooling and limitations 

in oxygen diffusion. The fracture stress could increase with temperature due to the relaxation of 

the residual stress. To exclude such an effect, the samples were annealed at 800 °C for 2 hours 

with a heating rate of 4 K/min and a cooling rate of 0.1 K/min. The fracture stress of the 

annealed samples is ~ 25 % higher than that of as-received samples, and is equal to the fracture 

stress of samples tested at 600 °C and 700 °C. Therefore, the increase of fracture stress from 

RT to 700 °C can be attributed to the elimination of residual stresses. Similar to the stiffness 

the increase of fracture stress from 700 °C to 900 °C might be attributed to the change of 

bonding property due to oxygen release.
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Figure 3.3.3: Fracture stress of LNO as a function of temperature
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3.3.3 TG/DTA 

The stoichiometry of oxygen was measured with TG, and it is assumed that only oxygen is 

released during heating. The initial oxygen stoichiometry is supposed to be 4.14 [77-81]. The 

stoichiometry and DTA curves are shown in Figure 3.3.4. The sample starts to lose oxygen 

"��&	G	�

	H-9	��!	� '	�-value decreases continuously from this temperature up to 1000 °C. A

sharp decrease in the DTA signal was observed at ~ 780 °C, which could be attributed to a 

change in heat capacity rather than any thermal effect. It could be an indication of a second 

order phase transition, and this transition may partly be responsible for the increase in fracture 

stress.
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Figure 3.3.4 Differential thermal analysis and oxygen stoichiometry of LNO in air

The thermal expansion coefficient decreases slightly from 50 °C to 300 °C, and then stays

stable up to 1000 °C (Figure 3.3.5). The value of TEC is in good agreement with earlier reports 

[73, 208]. No significant chemical expansion was observed.



 103 

100 200 300 400 500 600 700 800 900 1000

6

8

10

12

14

16

18

TE
C 

/1
0-6

K-6

Temperature / °C
 

Figure 3.3.5: Thermal expansion coefficient of LNO in air
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4. Conclusions
In this section, main conclusions are extracted from the experimental results and the analyses

of underlying mechanisms. First the conclusions for BSCF, LSCF and LNO are presented 

separately. Based on the elaborated thermo-mechanical properties, the three OTM variants are 

compared. Finally the conclusions focus on the potential for thermo-mechanical application in 

gas separation components.

4.1 BSCF 

BSCF exhibits an anomaly in the Young’s modulus between RT and 300 °C (see Figure 3.1.1).

The Young’s modulus decreases strongly from RT to 200 °C, and rises to a stable value above 

300 °C. The fracture stress measured with ring-on-ring tests decreases sharply from RT to 

200 °C, and further decreases slightly to 400 °C, and then rises again from 500 °C (see Figure 

3.1.3). The fracture surface exhibits from RT to 700 °C an exclusively transgranular failure 

mode. For samples tested between 700 °C and 800 °C precipitation traces are found along the 

grain boundaries (see Figure 3.1.14). The anomaly of the Young’s modulus has been attributed 

to a transition of the Co3+ spin state (see Figure 3.1.18). Although a hexagonal phase was 

observed after annealing at 700 – 800 °C for longer time (10 days), BSCF maintains a cubic 

structure from RT to 300 °C (see Figure 3.1.15 and Figure 3.1.16). Therefore, a phase 

transition has to be excluded from the possible reasons. An enthalpy change is observed at 

about 240 °C – 250 °C, which is probably an indication of the association/dissociation of point 

defects (see Figure 3.1.17). However, the association/dissociation of point defects cannot 

explain the decrease of the fracture stress and indentation fracture toughness. Moreover, 

volume changes that are expected to take place as a result of such reactions cannot be observed 

in the thermal expansion curve (see Figure 3.1.19). Low spin – high spin transition is indicated 

from magnetic susceptibility measurements. The observed higher value in the �sci curve 

between RT and 200 °C may also be related to this spin transition. Furthermore, the rapid 
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����'��'	�"	�sci from 450 °C to 530 °C is attributed to chemical expansion (see Figure 3.1.19).

The indentation fracture toughness decreases from RT to 150 °C, and stays stable up to 350 °C

(see Figure 3.1.11).

4.2 LSCF 

The phase composition of La0.58Sr0.4Co0.2Fe0.8O3-� depends on cooling rate and atmosphere. As

determined by XRD, the ratio of cubic to rhombohedral phase increases with increasing 

cooling rate and decreasing partial pressure of oxygen (see Figure 3.2.7). A purely 

rhombohedral phase of LSCF was obtained at a low cooling rate of 0.5 K/min in air, and purely 

cubic phase could be achieved either by quenching in air or annealing under vacuum (10-5 mbar)

independent of cooling rate. The effect of fast cooling is equivalent to low partial pressure of 

oxygen, which causes a higher oxygen vacancy concentration in the perovskite due to the low 

diffusion rate of oxygen. Mechanical integrity could not be sustained during the fast air cooling.

The load-displacement behavior is non-linear between RT and 700 °C, and linear at 800 °C

(see Figure 3.2.1). This anomalous effect is attributed to the ferro-elasticity of the 

rhombohedral phase, which does not exist at high temperature. The micro-structural evidence 

of domains in the deformed LSCF specimens could be unambiguously confirmed by SEM and 

TEM observation (see Figure 3.2.10 and Figure 3.2.11). When the sample is heated under in-

situ observation to high temperature in the chamber of a TEM, the domains finally disappear 

due to the transition of the grains from rhombohedral to cubic symmetry (see Figure 3.2.12).

The phase composition of LSCF also influences the fracture stress. The fracture stress 

decreases about 10 % from RT to 200 °C, and increases again from 200 °C to 700 °C reaching

values slightly higher than those at RT. Above 750 °C the rhombohedral transforms to cubic 

symmetry and along with this transition the fracture stress and Young’s modulus increase 

significantly (see Figure 3.2.3 and Figure 3.2.13). The fracture mode changes gradually with 

the increase in cubic symmetry from transgranular at RT to intergranular at 800 °C (see Figure 
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3.2.21). The indentation toughness maintains a stable value from RT to 350 °C (see Figure

3.2.15).

4.3 LNO 

The mechanical properties of porous LNO samples were measured with 4-point bending tests. 

The stiffness increases slightly from RT to 800 °C, possibly due to an increase of bonding 

strength (see Figure 3.3.1). Correspondingly, the fracture stress exhibits similar temperature 

dependence in this temperature range (see Figure 3.3.3). Oxygen is continuously released from 

~ 400 °C up to 1000 °C with increasing temperature, while a sharp decrease in the DTA curve 

was observed at ~ 780 °C due to the change of heat capacity, which could indicate a second 

order phase transition (see Figure 3.3.4). The thermal expansion coefficient maintained a stable 

value from RT up to 1000 °C (see Figure 3.3.5).

4.4 Comparison of BSCF, LSCF and LNO 

For use as membranes in power plant application, the materials should exhibit high oxygen 

conductivity, chemical stability in long term operation, compatibility of thermal expansion with 

metallic structures, structural stability, and a high resistance to mechanical failure (e.g. fracture 

stress). However, an OTM material that is superior in all properties is not among the 

investigated candidates. For practical use one has to find a compromise between different 

properties, but not necessarily reject an OTM material which often not the optimum in each

property. In this thesis mainly thermo-mechanical properties of three OTM materials have been 

elaborated and compared.

The permeability of BSCF, LSCF and LNO is presented in Figure 1.6. The highest 

permeability is found in BSCF. BSCF exhibits a relatively high fracture stress and Young’s 

modulus around the proposed operation temperature for gas separation (~ 850 °C), and thus 

appears in this respect to be suitable for membrane application. However, the observed 

anomalies in the mechanical properties at intermediate temperatures may cause damage of the 
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membranes upon temperature transients (Figure 4.1). Therefore, special attention must be given 

to the heating and cooling process during operation. 
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Figure 4.1: Comparison of fracture stresses of BSCF and LSCF at various temperatures,
measured using ring-on-ring tests in air.

Also the high value of TEC above 500 °C may cause stresses due to the mismatch of thermal

expansion between the membrane and the supporting materials (Figure 4.2). The precipitation 

of a second phase was observed when operated below 850 °C (see Figure 3.1.16). Since high

oxygen permeability was found to sustain over 1000 h at 800 °C operation [87], the second 

phase does not significantly affect the oxygen permeability. However, BSCF exhibits a limited

chemical stability regarding the presence of CO2 at high temperatures [87]. Chemical stability 

and oxygen permeability are usually contradictory. The high oxygen permeability implies a 

weak bonding between oxygen and the cations in the lattice, but at the same time a weak 

bonding also implies that the material is more prone to react with other species. On the other 

hand, a chemically stable material means a strong bonding in the material, but a strong bonding 

would give a low permeability. Therefore, the material used as membrane should exhibit 

acceptable properties of chemical stability and oxygen permeability.
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Figure 4.2: Comparison of TEC of BSCF and LSCF in air

The oxygen permeability of LSCF is lower than that of BSCF (see Figure 1.6). But the 

chemical stability of LSCF is superior to that of BSCF [87]. The mechanical properties are 

relatively stable from RT to 700 °C. A second order phase transition occurred at 700 °C -

800 °C, and Young’s modulus increased about 50 % along with this transition. The impact of 

mechanical behaviour at the intermediate temperatures on practical membrane application of 

LSCF appears to be less critical compared to BSCF (Figure 4.1). However, the steep change of 

Young’s modulus from 700 °C to 800 °C may initially generate high stresses at joints between 

membranes and steel components (Figure 4.3). Although they should relax in this temperature 

range, a ratcheting effect in case of frequent temperature cycles cannot be excluded.
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Figure 4.3: Comparison of Young’s modulus of BSCF and LSCF, measured using ring-on-ring 
tests in air.

Finally, the LNO also exhibits lower oxygen permeability than BSCF, but slightly higher than 

LSCF (see Figure 1.6). The measured thermo-mechanical properties of LNO show advantages 

compared to those of BSCF and LSCF. The Young’s modulus stays relatively stable from RT 

up to 900 °C, and the fracture stress begins to increase from 600 °C up to 900 °C (see Figure 

3.3.3). The TEC maintains a stable value from RT up to 1000 °C (see Figure 3.3.5), implying 

no severe chemical expansion, which definitely facilitates the design of OTM modules.
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of temperature and PO2 (air and 10-5 mbar). The Young’s modulus expected for 
‘normal’ ceramics (dotted line) is displayed for comparison.
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Figure 3.1.2:     Young’s modulus measured with ring-on-ring test and dynamic resonance 
frequency method in air (data provided by IMCE, Belgium)

Figure 3.1.3: Fracture stress of BSCF measured with ring-on-ring bending test as a function 
of temperature in air

Figure 3.1.4: Impression of indentation, (a) SEM micrograph of BSCF with Vickers 
impression (600mN) and indentation cracks, (b) Magnified bottom corner 
of the impression

Figure 3.1.5:    Young’s modulus of BSCF measured by indentation as a function of loading 
force in ambient atmosphere. For each load 36 indentations were applied, 
and the standard deviation was given.

Figure 3.1.6: Hardness of BSCF measured by indentation as a function of loading force in 
ambient atmosphere. For each load 36 indentations were applied, and the 
standard deviation was given.

Figure 3.1.7:      Crack length as a function of indentation load in ambient atmosphere. For each 
load 36 indentations were applied, and the standard deviation was given.

Figure 3.1.8: Young’s modulus as a function of cooling rate measured in ambient atmosphere.
For each cooling rate 36 indentations were applied, and the standard deviation 
was given.

Figure 3.1.9: Fracture toughness as a function of cooling rate measured in ambient 
atmosphere. For each cooling rate 36 indentations were applied, and the 
standard deviation was given.

Figure 3.1.10: Young’s modulus, hardness and fracture toughness through the thickness
of BSCF specimens annealed in dual atmosphere (air/2 mbar)

Figure 3.1.11: Indentation fracture toughness of BSCF as a function of temperature in air

Figure 3.1.12: Slip traces of BSCF around indentation impression observed by TEM and SEM,
(a) Slip traces around indentation impression (600 mN). Optical micrograph of 
impression performed at 260 °C, (b) Slip traces around indentation impression 
observed by SEM, (c) Lamella of FIB cutting, (d) TEM micrograph of Slip 
traces indexed as (111) planes, (e) Diffraction patterns by TEM

Figure 3.1.13: Normalized values of the stiffness, fracture stress and indentation fracture 
toughness

Figure 3.1.14:    Fracture surfaces of BSCF specimens tested at various temperatures, (a) RT, (b) 
200 °C, (c) 400 °C, (d) 500 °C, (e) 700 °C, (f) 800 °C, (g) 900 °C

Figure 3.1.15: XRD results of BSCF annealed at various temperatures

Figure 3.1.16: Optical micrographs of samples annealed at various temperature, (a) 750 °C for 
336 hours, (b) 800 °C for 336 hours, (c) 850 °C for 336 hours, (d) 900 °C for 
336 hours, (e) 950 °C for 336 hours

Figure 3.1.17: Differential thermal analysis (DTA) curve of BSCF in air

Figure 3.1.18: Magnetic susceptibility of BSCF as a function of temperature in air
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Figure 3.1.19:    Thermal expansion behavior of BSCF, (a) Thermal expansion, (b) �Sci (solid 
#��'�	��!	�Tech (dotted line)

Figure 3.1.20: Thermal gravity (TG) curves of BSCF

Figure 3.2.1:    Typical load-displacement curves of LSCF at various temperatures in air. The 
first deviation of the slope from linearity is indicated by circles (C�9	��!	� '	
saturation point is indicated by rectangles (D� . The samples fractured at the 
end of the curves.

Figure 3.2.2: Temperature dependence of onset and saturation load of domain switching in 
LSCF

Figure 3.2.3:  Young’s modulus of LSCF as a function of temperature measured by ring-on-
ring test and resonance method. For ring-on-ring tests, 5 measurements were 
carried out for each temperature, and the standard deviations were given.

Figure 3.2.4:  Young’s modulus of LSCF under vacuum (10-5 mbar). The average value was 
calculated from 5 measurements, and the standard deviation was given.

Figure 3.2.5: Young’s modulus, hardness and fracture toughness through the thickness (1 
mm) of a LSCF sample exposed to a gradient in PO2

Figure 3.2.6: In-situ high-temperature XRD patterns of LSCF

Figure 3.2.7: Room temperature XRD diffraction patterns of LSCF samples after different 
heat treatments. After annealing at 900 °C various cooling rates in air and 
under vacuum (10-5 mbar) were applied.

Figure 3.2.8:  TG and DTA curves of LSCF measured in air with a heating rate of 2 K/min

Figure 3.2.9:  Thermal expansion and thermal expansion coefficient of LSCF in air

Figure 3.2.10: SEM micrographs of ferro-elastic domains in deformed LSCF sample, (a) 
Overview, (b) Within a single grain

Figure 3.2.11: TEM micrograph of ferro-elastic domains in deformed LSCF sample

Figure 3.2.12: In-situ annealing experiment in TEM, (a) Domains at RT, (b) 400 °C, (c) 
Measured at RT after heated to 400 °C, (d) Measured at RT after heated 
to 700 °C

Figure 3.2.13: Fracture stress of LSCF as a function of temperature in air. The 800 °C data 
point of the corrected fracture stress is slightly displaced with respect to the 
temperature scale to enhance visibility

Figure 3.2.14: Indentation crack length in LSCF as a function of indentation load in ambient 
atmosphere. For each load 36 indentations were applied, and the standard 
deviation was given.

Figure 3.2.15: Indentation fracture toughness of LSCF as a function of temperature in air. For 
each temperature 36 indentations (600mN) were applied, and the standard 
deviation was given.
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Figure 3.2.16: Dependence of Young’s modulus on cooling rate and atmosphere measured at 
RT (indentation load 1000 mN). For each cooling rate 36 indentations were 
applied, and the standard deviation was given.

Figure 3.2.17: Dependence of fracture toughness on cooling rate and atmosphere measured 
at RT (indentation load 1000 mN). For each cooling rate 36 indentations 
were applied, and the standard deviation was given.

Figure 3.2.18: Thermo-mechanical properties of LSCF. Normalized values of the Young’s 
modulus, fracture stress and indentation fracture toughness are plotted (lines 
are guided to eyes)

Figure 3.2.19: Magnetic susceptibility of LSCF as a function of temperature in air (lines are 
guided to eyes)

Figure 3.2.20: Bending of LSCF FIB lamella due to residual stresses

Figure 3.2.21: SEM micrographs of LSCF fracture surfaces obtained from ring-on-ring tests at 
various temperatures, (a) Specimen fractured at RT, (b) Specimen fractured at 
200 °C, (c) Specimen fractured at 700 °C, (d) Specimen fractured at 800 °C, (e)
Specimen fractured at 900 °C, (f) Specimen fractured at RT after annealing and 
cooling under vacuum (10-5mbar)

Figure 3.2.22: Typical creep curve of LSCF measured at 800 °C in air. The steady-state creep 
rate was calculated in the time range of 5 - 20 h.

Figure 3.2.23: Steady-state creep rate of LSCF measured in air and vacuum (10-5 mbar). For 
comparison, creep rate of BSCF was displayed 

Figure 3.2.24: Normalized activation energy as a function of average creep temperature

Figure 3.3.1: Stiffness of LNO as a function of temperature and atmosphere. 5 specimens 
were tested for each temperature, and the standard deviation was given.

Figure 3.3.2: XRD patterns of LNO

Figure 3.3.3:  Fracture stress of LNO as a function of temperature

Figure 3.3.4: Differential thermal analysis and oxygen stoichiometry of LNO in air

Figure 3.3.5: Thermal expansion coefficient of LNO in air

Figure 4.1:     Comparison of fracture stresses of BSCF and LSCF at various temperatures, 
measured using ring-on-ring tests in air. 

Figure 4.2: Comparison of TEC of BSCF and LSCF in air 

Figure 4.3:        Comparison of Young’s modulus of BSCF and LSCF, measured using ring-on-
ring tests in air. 
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Nomenclature

Acronyms

MIEC           mixed ionic-electronic conducting

OTM            oxygen transport membrane

SOFC           solid state fuel cell

BSCF           Ba0.5Sr0.5Co0.8Fe0.2O3-�

LSCF           La0.58Sr0.4Co0.8Fe0.2O3-�

LNO             La2NiO���

LSFC55        La0.5Sr0.5Fe0.5Co0.5O3-�

LSC              La0.5Sr0.5CoO3-�

TEC         thermal expansion coefficient

SENB single edge notched beam

SEVNB single edge V notched beam

RT           room temperature

atm         ambient atmosphere

DTA        differential thermal analysis

TG          thermogravimetry

XRD       X-ray diffraction

SEM     scanning electron microscopy

TEM     transmission electron microscopy

FIB      focused ion beam

LS        low spin 

HS       high spin

ISE     indentation size effect

PPMS Physical Property Measurement System
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Latin symbols

ABO3 the type of perovskite oxides

RA radius of rear earth metal ion in the perovskite [m]

RB radius of transition metal ion in the perovskite [m]

RO radius of oxygen ion in the perovskite [m]

a lattice constant of the perovskite [m]

t tolerance factor of the perovskite         

T temperature [°C or K]

L specimen length measured at a given temperature T [m]

r0 equilibrium bond length [m]

r bond length [m]

HIT indentation hardness [MPa]

Fm maximum load of Indentation [m]

AP projection area of indentation impression [m2]

EIT indentation elastic modulus [GPa]

Er Reduced modulus [GPa]

Ei elastic modulus of indenter [GPa]

KInd indentation fracture toughness [MPa·�&]

Tm absolute melting temperature [K]

PO2 partial pressure of oxygen [atm]

Ea activation energy [kJ·mol-1]

R gas constant [J·mol-1·K-1]

P applied force of ring-on-ring test [N]

th specimen thickness [m]

R1 radius of the loading ring [m]

R2 radius of the supporting ring [m]

R3 radius of the LSCF or BSCF specimen [m]
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I moment of inertial [m4]

w width of LNO specimen [m]

h height of LNO specimen [m]

h1 height of 2 compartments in the LNO specimen [m]

w1 width of a compartment in the LNO specimen [m]

M moment [N·m]

Ls support pin distance in 4 point bending test [m]

ls load pin distance in 4 point bending test [m]

H enthalpy [J]

G Gibbs energy [J]

S entropy [J·K-1]

Te reaction temperature without external stress [K]

de central deflection of the specimen [m]

n1 density of magnetic moments [m-3]

 

Greek symbols

� indenter constant

�													 oxygen non-stoichiometry

�Tech technical thermal expansion coefficient [K-1]

�Sci scientific thermal expansion coefficient [K-1]

B												 flexure stress of ring-on-ring test [MPa]

v poisson ratio

vs poisson’s ratio of sample

vi poisson’s ratio of indenter

� magnetic susceptibility

�t total strain

�r reaction strain

�c chemical expansion
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