000014818 001__ 14818
000014818 005__ 20240711085628.0
000014818 0247_ $$2DOI$$a10.1016/j.surfcoat.2011.02.021
000014818 0247_ $$2WOS$$aWOS:000290187700004
000014818 037__ $$aPreJuSER-14818
000014818 041__ $$aeng
000014818 082__ $$a620
000014818 084__ $$2WoS$$aMaterials Science, Coatings & Films
000014818 084__ $$2WoS$$aPhysics, Applied
000014818 1001_ $$0P:(DE-Juel1)VDB86736$$aNédélec, R.$$b0$$uFZJ
000014818 245__ $$aGas phase deposition of diffusion barriers for metal substrates in solid oxide fuel cells
000014818 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2011
000014818 29510 $$aInstitute for Fuel Cell Innovation, NRC, 4250 Wesbrook Mall, Vancouver, Canada V6T 1W5
000014818 300__ $$a3999 - 4004
000014818 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014818 3367_ $$2DataCite$$aOutput Types/Journal article
000014818 3367_ $$00$$2EndNote$$aJournal Article
000014818 3367_ $$2BibTeX$$aARTICLE
000014818 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014818 3367_ $$2DRIVER$$aarticle
000014818 440_0 $$05670$$aSurface and Coatings Technology$$v205$$x0257-8972$$y16
000014818 500__ $$aThe Helmholtz-Association and the National Research Council Canada are thanked for their financial support under contract no. CHJRG-007. V. Bader, R. Kauert, F. Vondahlen, M. Dinu, and R. Gervais are thanked for their respective help. The authors thank M. Bram and M. Brandner for providing reference data.
000014818 520__ $$aOne way to improve the mechanical properties of solid oxide fuel cells is the development of metal supported designs. This type of SOFC offers improved thermal shock resistance, reduced temperature gradients due to the greater thermal conductivity of the metal, and lower operating temperatures. Switching from ceramic supports to metal supports also allows the uses of conventional metal joining and forming techniques and could significantly reduce the material and manufacture costs. However, one persistent problem needs to be solved: inter-diffusion of chemical elements contained in the metal substrates and in the anodes of SOFC leads to degradation, which is to be prevented by protective coatings. In order to address the issues of sintering and delamination for metal supported SOFC, the deposition of gadolinia doped ceria on metal substrates made of Crofer 22 APU has been done by electron beam evaporation and reactive spray deposition technique, as two direct deposition techniques that will not require a sintering step, respectively. Additionally, the effect of ion-assistance on layers made by electron beam evaporation was studied. Because metal supported fuel cells aim at low/intermediate operating temperatures, reducing the thickness of these protective coatings is crucial, since layer thickness is directly correlated to its ohmic resistance. A layer of nickel was applied by magnetron sputtering to prove the effectiveness of the deposited diffusion barrier layers. (C) 2011 Elsevier B.V. All rights reserved.
000014818 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000014818 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000014818 588__ $$aDataset connected to Web of Science
000014818 65320 $$2Author$$aSOFC
000014818 65320 $$2Author$$aMetal supported solid oxide fuel cell
000014818 65320 $$2Author$$aDiffusion barrier
000014818 65320 $$2Author$$aGDC
000014818 65320 $$2Author$$aEB-PVD
000014818 65320 $$2Author$$aReactive spray deposition
000014818 650_7 $$2WoSType$$aJ
000014818 7001_ $$0P:(DE-HGF)0$$aNeagu, R.$$b1
000014818 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, S.$$b2$$uFZJ
000014818 7001_ $$0P:(DE-HGF)0$$aMaric, R.$$b3
000014818 7001_ $$0P:(DE-Juel1)129662$$aSebold, D.$$b4$$uFZJ
000014818 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H.P.$$b5$$uFZJ
000014818 7001_ $$0P:(DE-Juel1)129666$$aStöver, D.$$b6$$uFZJ
000014818 773__ $$0PERI:(DE-600)1502240-7$$a10.1016/j.surfcoat.2011.02.021$$gVol. 205, p. 3999 - 4004$$p3999 - 4004$$q205<3999 - 4004$$tSurface and coatings technology$$v205$$x0257-8972$$y2011
000014818 8567_ $$uhttp://dx.doi.org/10.1016/j.surfcoat.2011.02.021
000014818 8564_ $$uhttps://juser.fz-juelich.de/record/14818/files/FZJ-14818_PV.pdf$$yRestricted$$zPublished final document.
000014818 909CO $$ooai:juser.fz-juelich.de:14818$$pVDB
000014818 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000014818 9141_ $$y2011
000014818 9131_ $$0G:(DE-Juel1)FUEK402$$aDE-HGF$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000014818 9132_ $$0G:(DE-HGF)POF3-135$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vFuel Cells$$x0
000014818 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$gIEK$$kIEK-1$$lWerkstoffsynthese und Herstellverfahren$$x0
000014818 970__ $$aVDB:(DE-Juel1)127263
000014818 980__ $$aVDB
000014818 980__ $$aConvertedRecord
000014818 980__ $$ajournal
000014818 980__ $$aI:(DE-Juel1)IEK-1-20101013
000014818 980__ $$aUNRESTRICTED
000014818 981__ $$aI:(DE-Juel1)IMD-2-20101013