001     14818
005     20240711085628.0
024 7 _ |2 DOI
|a 10.1016/j.surfcoat.2011.02.021
024 7 _ |2 WOS
|a WOS:000290187700004
037 _ _ |a PreJuSER-14818
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Materials Science, Coatings & Films
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |0 P:(DE-Juel1)VDB86736
|a Nédélec, R.
|b 0
|u FZJ
245 _ _ |a Gas phase deposition of diffusion barriers for metal substrates in solid oxide fuel cells
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2011
295 1 0 |a Institute for Fuel Cell Innovation, NRC, 4250 Wesbrook Mall, Vancouver, Canada V6T 1W5
300 _ _ |a 3999 - 4004
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 5670
|a Surface and Coatings Technology
|v 205
|x 0257-8972
|y 16
500 _ _ |a The Helmholtz-Association and the National Research Council Canada are thanked for their financial support under contract no. CHJRG-007. V. Bader, R. Kauert, F. Vondahlen, M. Dinu, and R. Gervais are thanked for their respective help. The authors thank M. Bram and M. Brandner for providing reference data.
520 _ _ |a One way to improve the mechanical properties of solid oxide fuel cells is the development of metal supported designs. This type of SOFC offers improved thermal shock resistance, reduced temperature gradients due to the greater thermal conductivity of the metal, and lower operating temperatures. Switching from ceramic supports to metal supports also allows the uses of conventional metal joining and forming techniques and could significantly reduce the material and manufacture costs. However, one persistent problem needs to be solved: inter-diffusion of chemical elements contained in the metal substrates and in the anodes of SOFC leads to degradation, which is to be prevented by protective coatings. In order to address the issues of sintering and delamination for metal supported SOFC, the deposition of gadolinia doped ceria on metal substrates made of Crofer 22 APU has been done by electron beam evaporation and reactive spray deposition technique, as two direct deposition techniques that will not require a sintering step, respectively. Additionally, the effect of ion-assistance on layers made by electron beam evaporation was studied. Because metal supported fuel cells aim at low/intermediate operating temperatures, reducing the thickness of these protective coatings is crucial, since layer thickness is directly correlated to its ohmic resistance. A layer of nickel was applied by magnetron sputtering to prove the effectiveness of the deposited diffusion barrier layers. (C) 2011 Elsevier B.V. All rights reserved.
536 _ _ |0 G:(DE-Juel1)FUEK402
|2 G:(DE-HGF)
|a Rationelle Energieumwandlung
|c P12
|x 0
536 _ _ |0 G:(DE-Juel1)SOFC-20140602
|a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|c SOFC-20140602
|f SOFC
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a SOFC
653 2 0 |2 Author
|a Metal supported solid oxide fuel cell
653 2 0 |2 Author
|a Diffusion barrier
653 2 0 |2 Author
|a GDC
653 2 0 |2 Author
|a EB-PVD
653 2 0 |2 Author
|a Reactive spray deposition
700 1 _ |0 P:(DE-HGF)0
|a Neagu, R.
|b 1
700 1 _ |0 P:(DE-Juel1)129580
|a Uhlenbruck, S.
|b 2
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Maric, R.
|b 3
700 1 _ |0 P:(DE-Juel1)129662
|a Sebold, D.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)129594
|a Buchkremer, H.P.
|b 5
|u FZJ
700 1 _ |0 P:(DE-Juel1)129666
|a Stöver, D.
|b 6
|u FZJ
773 _ _ |0 PERI:(DE-600)1502240-7
|a 10.1016/j.surfcoat.2011.02.021
|g Vol. 205, p. 3999 - 4004
|p 3999 - 4004
|q 205<3999 - 4004
|t Surface and coatings technology
|v 205
|x 0257-8972
|y 2011
856 7 _ |u http://dx.doi.org/10.1016/j.surfcoat.2011.02.021
856 4 _ |u https://juser.fz-juelich.de/record/14818/files/FZJ-14818_PV.pdf
|y Restricted
|z Published final document.
909 C O |o oai:juser.fz-juelich.de:14818
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK402
|a DE-HGF
|b Energie
|k P12
|l Rationelle Energieumwandlung
|v Rationelle Energieumwandlung
|x 0
913 2 _ |0 G:(DE-HGF)POF3-135
|1 G:(DE-HGF)POF3-130
|2 G:(DE-HGF)POF3-100
|a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|v Fuel Cells
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|g IEK
|k IEK-1
|l Werkstoffsynthese und Herstellverfahren
|x 0
970 _ _ |a VDB:(DE-Juel1)127263
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21