000014833 001__ 14833
000014833 005__ 20230426083024.0
000014833 0247_ $$2DOI$$a10.1103/PhysRevB.83.155402
000014833 0247_ $$2WOS$$aWOS:000289053300004
000014833 0247_ $$2Handle$$a2128/10939
000014833 0247_ $$2altmetric$$aaltmetric:442681
000014833 037__ $$aPreJuSER-14833
000014833 041__ $$aeng
000014833 082__ $$a530
000014833 084__ $$2WoS$$aPhysics, Condensed Matter
000014833 1001_ $$0P:(DE-HGF)0$$aToher, C.$$b0
000014833 245__ $$aElectrical transport through a mechanically gated molecular wire
000014833 260__ $$aCollege Park, Md.$$bAPS$$c2011
000014833 300__ $$a155402
000014833 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014833 3367_ $$2DataCite$$aOutput Types/Journal article
000014833 3367_ $$00$$2EndNote$$aJournal Article
000014833 3367_ $$2BibTeX$$aARTICLE
000014833 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014833 3367_ $$2DRIVER$$aarticle
000014833 440_0 $$04919$$aPhysical Review B$$v83$$x1098-0121$$y15
000014833 500__ $$3POF3_Assignment on 2016-02-29
000014833 500__ $$aComputational facilities were provided by the Zentrum fur Informationsdienste und Hochleistungsrechnen (ZIH) at TU Dresden and by the Julich Supercomputing Centre at the Forschungszentrum Julich. We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft in the framework of the priority program SPP 1243, the South Korean Ministry of Education, Science, and Technology Program, Project No. WCU ITCE No. R31-2008-000-10100-0, and from ECEMP, the European Center for Emerging Materials and Processes Dresden (Project No. A2).
000014833 520__ $$aA surface-adsorbed molecule is contacted with the tip of a scanning tunneling microscope (STM) at a predefined atom. On tip retraction, the molecule is peeled off the surface. During this experiment, a two-dimensional differential conductance map is measured on the plane spanned by the bias voltage and the tip-surface distance. The conductance map demonstrates that tip retraction leads to mechanical gating of the molecular wire in the STM junction. The experiments are compared with a detailed ab initio simulation. We find that density functional theory (DFT) in the local density approximation (LDA) describes the tip-molecule contact formation and the geometry of the molecular junction throughout the peeling process with predictive power. However, a DFT-LDA-based transport simulation following the nonequilibrium Green's function (NEGF) formalism fails to describe the behavior of the differential conductance as found in experiment. Further analysis reveals that this failure is due to the mean-field description of electron correlation in the local density approximation. The results presented here are expected to be of general validity and show that, for a wide range of common wire configurations, simulations which go beyond the mean-field level are required to accurately describe current conduction through molecules. Finally, the results of the present study illustrate that well-controlled experiments and concurrent ab initio transport simulations that systematically sample a large configuration space of molecule-electrode couplings allow the unambiguous identification of correlation signatures in experiment.
000014833 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000014833 542__ $$2Crossref$$i2011-04-01$$uhttp://link.aps.org/licenses/aps-default-license
000014833 588__ $$aDataset connected to Web of Science
000014833 650_7 $$2WoSType$$aJ
000014833 7001_ $$0P:(DE-Juel1)VDB73384$$aTemirov, R.$$b1$$uFZJ
000014833 7001_ $$0P:(DE-HGF)0$$aGreuling, A.$$b2
000014833 7001_ $$0P:(DE-HGF)0$$aPump, F.$$b3
000014833 7001_ $$0P:(DE-HGF)0$$aKaczmarski, M.$$b4
000014833 7001_ $$0P:(DE-HGF)0$$aCuniberti, G.$$b5
000014833 7001_ $$0P:(DE-HGF)0$$aRohlfing, M.$$b6
000014833 7001_ $$0P:(DE-Juel1)128791$$aTautz, F.S.$$b7$$uFZJ
000014833 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.83.155402$$bAmerican Physical Society (APS)$$d2011-04-01$$n15$$p155402$$tPhysical Review B$$v83$$x1098-0121$$y2011
000014833 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.83.155402$$gVol. 83, p. 155402$$n15$$p155402$$q83<155402$$tPhysical review / B$$v83$$x1098-0121$$y2011
000014833 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.83.155402
000014833 8564_ $$uhttps://juser.fz-juelich.de/record/14833/files/PhysRevB.83.155402.pdf$$yOpenAccess
000014833 8564_ $$uhttps://juser.fz-juelich.de/record/14833/files/PhysRevB.83.155402.gif?subformat=icon$$xicon$$yOpenAccess
000014833 8564_ $$uhttps://juser.fz-juelich.de/record/14833/files/PhysRevB.83.155402.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000014833 8564_ $$uhttps://juser.fz-juelich.de/record/14833/files/PhysRevB.83.155402.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000014833 8564_ $$uhttps://juser.fz-juelich.de/record/14833/files/PhysRevB.83.155402.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000014833 909CO $$ooai:juser.fz-juelich.de:14833$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000014833 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000014833 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000014833 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000014833 9141_ $$y2011
000014833 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$a7$$aForschungszentrum Jülich$$kFZJ
000014833 9131_ $$0G:(DE-Juel1)FUEK412$$aDE-HGF$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000014833 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000014833 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$gPGI$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000014833 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000014833 970__ $$aVDB:(DE-Juel1)127280
000014833 9801_ $$aFullTexts
000014833 980__ $$aVDB
000014833 980__ $$aConvertedRecord
000014833 980__ $$ajournal
000014833 980__ $$aI:(DE-Juel1)PGI-3-20110106
000014833 980__ $$aI:(DE-82)080009_20140620
000014833 980__ $$aUNRESTRICTED
000014833 981__ $$aI:(DE-Juel1)VDB881
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature01103
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/smll.200600101
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.98.176807
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/10/6/065008
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.046801
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl052373+
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl073074i
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1168255
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl0715802
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s00339-008-4837-z
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1073/pnas.0500075102
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1081572
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0957-4484/19/6/065401
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.progsurf.2007.09.001
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.68.195309
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.94.036106
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.209602
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.74.041402
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature05270
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.97.156105
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.susc.2007.01.020
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.76.115421
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.045401
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.100.136103
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.101.266106
000014833 999C5 $$1S. Duhm$$2Crossref$$9-- missing cx lookup --$$a10.1016/j.orgel.2007.10.004$$p111 -$$tOrg. Electron.$$v9$$y2008
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/11/5/053010
000014833 999C5 $$1G. Cuniberti$$2Crossref$$9-- missing cx lookup --$$a10.1007/3-540-31514-4$$y2005
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.53.R10441
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/14/11/302
000014833 999C5 $$1S. Datta$$2Crossref$$9-- missing cx lookup --$$a10.1017/CBO9781139164313$$y2005
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.085414
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0034-4885/67/8/R04
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1522406
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1539863
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.124.41
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.178.1123
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.49.1691
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.51.1884
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.57.914
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.23.5048
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.146402
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.75.045101
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat2476
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1021/nl0804203
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.18.7165
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.140.A1133
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.82.205127
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1158722
000014833 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1113449