001     14833
005     20230426083024.0
024 7 _ |2 DOI
|a 10.1103/PhysRevB.83.155402
024 7 _ |2 WOS
|a WOS:000289053300004
024 7 _ |2 Handle
|a 2128/10939
024 7 _ |a altmetric:442681
|2 altmetric
037 _ _ |a PreJuSER-14833
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Toher, C.
|b 0
245 _ _ |a Electrical transport through a mechanically gated molecular wire
260 _ _ |a College Park, Md.
|b APS
|c 2011
300 _ _ |a 155402
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4919
|a Physical Review B
|v 83
|x 1098-0121
|y 15
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Computational facilities were provided by the Zentrum fur Informationsdienste und Hochleistungsrechnen (ZIH) at TU Dresden and by the Julich Supercomputing Centre at the Forschungszentrum Julich. We gratefully acknowledge the financial support of the Deutsche Forschungsgemeinschaft in the framework of the priority program SPP 1243, the South Korean Ministry of Education, Science, and Technology Program, Project No. WCU ITCE No. R31-2008-000-10100-0, and from ECEMP, the European Center for Emerging Materials and Processes Dresden (Project No. A2).
520 _ _ |a A surface-adsorbed molecule is contacted with the tip of a scanning tunneling microscope (STM) at a predefined atom. On tip retraction, the molecule is peeled off the surface. During this experiment, a two-dimensional differential conductance map is measured on the plane spanned by the bias voltage and the tip-surface distance. The conductance map demonstrates that tip retraction leads to mechanical gating of the molecular wire in the STM junction. The experiments are compared with a detailed ab initio simulation. We find that density functional theory (DFT) in the local density approximation (LDA) describes the tip-molecule contact formation and the geometry of the molecular junction throughout the peeling process with predictive power. However, a DFT-LDA-based transport simulation following the nonequilibrium Green's function (NEGF) formalism fails to describe the behavior of the differential conductance as found in experiment. Further analysis reveals that this failure is due to the mean-field description of electron correlation in the local density approximation. The results presented here are expected to be of general validity and show that, for a wide range of common wire configurations, simulations which go beyond the mean-field level are required to accurately describe current conduction through molecules. Finally, the results of the present study illustrate that well-controlled experiments and concurrent ab initio transport simulations that systematically sample a large configuration space of molecule-electrode couplings allow the unambiguous identification of correlation signatures in experiment.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
542 _ _ |i 2011-04-01
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-Juel1)VDB73384
|a Temirov, R.
|b 1
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Greuling, A.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Pump, F.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Kaczmarski, M.
|b 4
700 1 _ |0 P:(DE-HGF)0
|a Cuniberti, G.
|b 5
700 1 _ |0 P:(DE-HGF)0
|a Rohlfing, M.
|b 6
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, F.S.
|b 7
|u FZJ
773 1 8 |a 10.1103/physrevb.83.155402
|b American Physical Society (APS)
|d 2011-04-01
|n 15
|p 155402
|3 journal-article
|2 Crossref
|t Physical Review B
|v 83
|y 2011
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.83.155402
|g Vol. 83, p. 155402
|0 PERI:(DE-600)2844160-6
|n 15
|q 83<155402
|p 155402
|t Physical review / B
|v 83
|y 2011
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.83.155402
856 4 _ |u https://juser.fz-juelich.de/record/14833/files/PhysRevB.83.155402.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14833/files/PhysRevB.83.155402.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14833/files/PhysRevB.83.155402.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14833/files/PhysRevB.83.155402.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/14833/files/PhysRevB.83.155402.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:14833
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|a 7
|k FZJ
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |0 G:(DE-HGF)POF3-529H
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|g PGI
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 1
970 _ _ |a VDB:(DE-Juel1)127280
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)VDB881
999 C 5 |a 10.1038/nature01103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1002/smll.200600101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.98.176807
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1367-2630/10/6/065008
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.046801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl052373+
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl073074i
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1168255
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl0715802
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00339-008-4837-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.0500075102
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1081572
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0957-4484/19/6/065401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.progsurf.2007.09.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.68.195309
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.94.036106
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.209602
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.041402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature05270
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.97.156105
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.susc.2007.01.020
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.115421
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.045401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.136103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.101.266106
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.orgel.2007.10.004
|9 -- missing cx lookup --
|1 S. Duhm
|p 111 -
|2 Crossref
|t Org. Electron.
|v 9
|y 2008
999 C 5 |a 10.1088/1367-2630/11/5/053010
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/3-540-31514-4
|1 G. Cuniberti
|2 Crossref
|9 -- missing cx lookup --
|y 2005
999 C 5 |a 10.1103/PhysRevB.53.R10441
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0953-8984/14/11/302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1017/CBO9781139164313
|1 S. Datta
|2 Crossref
|9 -- missing cx lookup --
|y 2005
999 C 5 |a 10.1103/PhysRevB.73.085414
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0034-4885/67/8/R04
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1522406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1539863
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.124.41
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.178.1123
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.49.1691
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.51.1884
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevA.57.914
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.23.5048
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.95.146402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.75.045101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nmat2476
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl0804203
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.18.7165
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.140.A1133
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.205127
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1158722
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1113449
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21