000014910 001__ 14910
000014910 005__ 20240610120512.0
000014910 0247_ $$2DOI$$a10.1063/1.3520674
000014910 0247_ $$2WOS$$aWOS:000285768800118
000014910 0247_ $$2Handle$$a2128/17214
000014910 0247_ $$2altmetric$$aaltmetric:16157790
000014910 037__ $$aPreJuSER-14910
000014910 041__ $$aeng
000014910 082__ $$a530
000014910 084__ $$2WoS$$aPhysics, Applied
000014910 1001_ $$0P:(DE-Juel1)VDB64025$$aMünstermann, R.$$b0$$uFZJ
000014910 245__ $$aCorrelation between growth kinetics and nanoscale resistive switching properties of SrTiO3 thin films
000014910 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2010
000014910 300__ $$a124504
000014910 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000014910 3367_ $$2DataCite$$aOutput Types/Journal article
000014910 3367_ $$00$$2EndNote$$aJournal Article
000014910 3367_ $$2BibTeX$$aARTICLE
000014910 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000014910 3367_ $$2DRIVER$$aarticle
000014910 440_0 $$03051$$aJournal of Applied Physics$$v108$$x0021-8979$$y12
000014910 500__ $$aRecord converted from VDB: 12.11.2012
000014910 520__ $$aWe deliberately fabricated SrTiO3 thin films deviating from ideal stoichiometry and from two-dimensional layer-by-layer growth mode, in order to study the impact of well pronounced defect arrangements on the nanoscale electrical properties. By combining transmission electron microscopy with conductive-tip atomic force microscopy we succeeded to elucidate the microstructure of thin films grown by pulsed laser deposition under kinetically limited growth conditions and to correlate it with the local electrical properties. SrTiO3 thin films, grown in a layer-by-layer growth mode, exhibit a defect structure and conductivity pattern close to single crystals, containing irregularly distributed, resistive switching spots. In contrast to this, Ti-rich films exhibit short-range-ordered, well-conducting resistive switching units. For Ti-rich films grown in a kinetically more restricted island growth mode, we succeeded to identify defective island boundaries with the location of tip-induced resistive switching. The observed nanoscale switching behavior is consistent with a voltage driven oxygen vacancy movement that induces a local redox-based metal-to-insulator transition. Switching occurs preferentially in defect-rich regions, that exhibit a high concentration of oxygen vacancies and might act as easy-diffusion-channels. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520674]
000014910 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000014910 588__ $$aDataset connected to Web of Science
000014910 650_7 $$2WoSType$$aJ
000014910 7001_ $$0P:(DE-Juel1)VDB67806$$aMenke, T.$$b1$$uFZJ
000014910 7001_ $$0P:(DE-Juel1)VDB5464$$aDittmann, R.$$b2$$uFZJ
000014910 7001_ $$0P:(DE-Juel1)VDB5304$$aMi, S.$$b3$$uFZJ
000014910 7001_ $$0P:(DE-Juel1)VDB98255$$aJia, C.L.$$b4$$uFZJ
000014910 7001_ $$0P:(DE-Juel1)VDB96964$$aPark, D.$$b5$$uFZJ
000014910 7001_ $$0P:(DE-Juel1)130824$$aMayer, J.$$b6$$uFZJ
000014910 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.3520674$$gVol. 108, p. 124504$$p124504$$q108<124504$$tJournal of applied physics$$v108$$x0021-8979$$y2010
000014910 8567_ $$uhttp://dx.doi.org/10.1063/1.3520674
000014910 8564_ $$uhttps://juser.fz-juelich.de/record/14910/files/1.3520674.pdf$$yOpenAccess
000014910 8564_ $$uhttps://juser.fz-juelich.de/record/14910/files/1.3520674.gif?subformat=icon$$xicon$$yOpenAccess
000014910 8564_ $$uhttps://juser.fz-juelich.de/record/14910/files/1.3520674.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000014910 8564_ $$uhttps://juser.fz-juelich.de/record/14910/files/1.3520674.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000014910 8564_ $$uhttps://juser.fz-juelich.de/record/14910/files/1.3520674.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000014910 909CO $$ooai:juser.fz-juelich.de:14910$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000014910 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000014910 9141_ $$y2010
000014910 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000014910 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000014910 9201_ $$0I:(DE-Juel1)PGI-6-20110106$$gPGI$$kPGI-6$$lElektronische Eigenschaften$$x1
000014910 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$gPGI$$kPGI-7$$lElektronische Materialien$$x0
000014910 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000014910 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$gPGI$$kPGI-5$$lMikrostrukturforschung$$x3
000014910 970__ $$aVDB:(DE-Juel1)127409
000014910 9801_ $$aFullTexts
000014910 980__ $$aVDB
000014910 980__ $$aConvertedRecord
000014910 980__ $$ajournal
000014910 980__ $$aI:(DE-Juel1)PGI-6-20110106
000014910 980__ $$aI:(DE-Juel1)PGI-7-20110106
000014910 980__ $$aI:(DE-82)080009_20140620
000014910 980__ $$aI:(DE-Juel1)PGI-5-20110106
000014910 980__ $$aUNRESTRICTED
000014910 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000014910 981__ $$aI:(DE-Juel1)PGI-7-20110106
000014910 981__ $$aI:(DE-Juel1)PGI-5-20110106
000014910 981__ $$aI:(DE-Juel1)VDB881