000150198 001__ 150198
000150198 005__ 20240619091110.0
000150198 0247_ $$2doi$$a10.1016/j.snb.2013.03.016
000150198 0247_ $$2WOS$$aWOS:000319488800043
000150198 0247_ $$2altmetric$$aaltmetric:1361694
000150198 037__ $$aFZJ-2014-00277
000150198 082__ $$a530
000150198 1001_ $$0P:(DE-HGF)0$$aItabashi, Akinori$$b0
000150198 245__ $$aHigh-speed chemical imaging system based on front-side-illuminated LAPS
000150198 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2013
000150198 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1390483205_18381
000150198 3367_ $$2DataCite$$aOutput Types/Journal article
000150198 3367_ $$00$$2EndNote$$aJournal Article
000150198 3367_ $$2BibTeX$$aARTICLE
000150198 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000150198 3367_ $$2DRIVER$$aarticle
000150198 500__ $$3POF3_Assignment on 2016-02-29
000150198 520__ $$aThe chemical imaging sensor is a semiconductor-based chemical sensor that can visualize the spatial
distribution of specific ions on the sensing surface. The conventional chemical imaging system based on
the light-addressable potentiometric sensor (LAPS), however, required a long time to obtain a chemical
image, due to the slow mechanical scan of a single light beam. For high-speed imaging, a plurality
of light beams modulated at different frequencies can be employed to measure the ion concentrations
simultaneously at different locations on the sensor plate by frequency division multiplex (FDM). However,
the conventional measurement geometry of back-side illumination limited the bandwidth of the
modulation frequency required for FDM measurement, because of the low-pass filtering characteristics
of carrier diffusion in the Si substrate. In this study, a high-speed chemical imaging system based on
front-side-illuminated LAPS was developed, which achieved high-speed spatiotemporal recording of pH
change at a rate of 70 frames per second.
© 2013 Elsevier B.V. All rights reserved.
000150198 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0
000150198 536__ $$0G:(DE-HGF)POF2-453$$a453 - Physics of the Cell (POF2-453)$$cPOF2-453$$fPOF II$$x1
000150198 7001_ $$0P:(DE-HGF)0$$aKosakab, Naoki$$b1
000150198 7001_ $$0P:(DE-HGF)0$$aMiyamotoa, Ko-ichiro$$b2$$eCorresponding author
000150198 7001_ $$0P:(DE-HGF)0$$aWagner, Torsten$$b3
000150198 7001_ $$0P:(DE-HGF)0$$aYoshinobua, Tatsuo$$b4
000150198 7001_ $$0P:(DE-Juel1)128727$$aSchöning, Michael J.$$b5$$ufzj
000150198 773__ $$0PERI:(DE-600)1500731-5$$a10.1016/j.snb.2013.03.016$$p315-321$$tSensors and actuators <Lausanne> / B$$vB 182$$x0925-4005
000150198 8564_ $$uhttps://juser.fz-juelich.de/record/150198/files/FZJ-2014-00277.pdf$$yRestricted$$zPublished final document.
000150198 909CO $$ooai:juser.fz-juelich.de:150198$$pVDB
000150198 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b0$$kExtern
000150198 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128727$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000150198 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000150198 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x1
000150198 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0
000150198 9131_ $$0G:(DE-HGF)POF2-453$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vPhysics of the Cell$$x1
000150198 9141_ $$y2013
000150198 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000150198 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000150198 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000150198 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000150198 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000150198 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000150198 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000150198 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000150198 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000150198 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000150198 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000150198 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000150198 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000150198 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x2
000150198 980__ $$ajournal
000150198 980__ $$aVDB
000150198 980__ $$aUNRESTRICTED
000150198 980__ $$aI:(DE-Juel1)PGI-8-20110106
000150198 980__ $$aI:(DE-82)080009_20140620
000150198 980__ $$aI:(DE-Juel1)ICS-8-20110106
000150198 981__ $$aI:(DE-Juel1)IBI-3-20200312
000150198 981__ $$aI:(DE-Juel1)ICS-8-20110106