000150211 001__ 150211
000150211 005__ 20210129213110.0
000150211 0247_ $$2doi$$a10.3389/fpls.2013.00531
000150211 0247_ $$2WOS$$aWOS:000331533400002
000150211 0247_ $$2Handle$$a2128/16204
000150211 0247_ $$2altmetric$$aaltmetric:2005412
000150211 0247_ $$2pmid$$apmid:24409189
000150211 037__ $$aFZJ-2014-00287
000150211 041__ $$aEnglish
000150211 082__ $$a570
000150211 1001_ $$0P:(DE-HGF)0$$aCabrita, Paulo$$b0
000150211 245__ $$aHydrodynamics of steady state phloem transport with radial leakage of solute
000150211 260__ $$aLausanne$$bFrontiers Media$$c2013
000150211 3367_ $$2DRIVER$$aarticle
000150211 3367_ $$2DataCite$$aOutput Types/Journal article
000150211 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1494507688_10083
000150211 3367_ $$2BibTeX$$aARTICLE
000150211 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000150211 3367_ $$00$$2EndNote$$aJournal Article
000150211 500__ $$3POF3_Assignment on 2016-02-29
000150211 500__ $$aerscheint nur online, Herr Cabrita war IBG-2 Mitarbeiter
000150211 520__ $$aLong-distance phloem transport occurs under a pressure gradient generated by the osmotic exchange of water associated with solute exchange in source and sink regions. But these exchanges also occur along the pathway, and yet their physiological role has almost been ignored in mathematical models of phloem transport. Here we present a steady state model for transport phloem which allows solute leakage, based on the Navier-Stokes and convection-diffusion equations which describe fluid motion rigorously. Sieve tube membrane permeability Ps for passive solute exchange (and correspondingly, membrane reflection coefficient) influenced model results strongly, and had to lie in the bottom range of the values reported for plant cells for the results to be realistic. This smaller permeability reflects the efficient specialization of sieve tube elements, minimizing any diffusive solute loss favored by the large concentration difference across the sieve tube membrane. We also found there can be a specific reflection coefficient for which pressure profiles and sap velocities can both be similar to those predicted by the Hagen-Poiseuille equation for a completely impermeable tube.
000150211 536__ $$0G:(DE-HGF)POF2-242$$a242 - Sustainable Bioproduction (POF2-242)$$cPOF2-242$$fPOF II$$x0
000150211 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000150211 7001_ $$0P:(DE-Juel1)129411$$aThorpe, Michael$$b1
000150211 7001_ $$0P:(DE-Juel1)129333$$aHuber, Gregor$$b2$$eCorresponding author
000150211 773__ $$0PERI:(DE-600)2613694-6$$a10.3389/fpls.2013.00531$$gVol. 4$$n531$$p1-16$$tFrontiers in plant science$$v4$$x1664-462X$$y2013
000150211 8564_ $$uhttps://juser.fz-juelich.de/record/150211/files/FZJ-2014-00287.pdf$$yOpenAccess$$zPublished final document.
000150211 909__ $$ooai:juser.fz-juelich.de:150211$$pVDB
000150211 909__ $$ooai:juser.fz-juelich.de:150211$$pVDB
000150211 909CO $$ooai:juser.fz-juelich.de:150211$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000150211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129411$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000150211 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129333$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000150211 9132_ $$0G:(DE-HGF)POF3-589H$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vAddenda$$x0
000150211 9131_ $$0G:(DE-HGF)POF2-242$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vSustainable Bioproduction$$x0
000150211 9141_ $$y2013
000150211 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000150211 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000150211 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000150211 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bFRONT PLANT SCI : 2015
000150211 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000150211 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000150211 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000150211 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000150211 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000150211 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000150211 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000150211 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000150211 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000150211 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000150211 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000150211 980__ $$ajournal
000150211 980__ $$aVDB
000150211 980__ $$aUNRESTRICTED
000150211 980__ $$aI:(DE-Juel1)IBG-2-20101118
000150211 9801_ $$aFullTexts