000150216 001__ 150216
000150216 005__ 20220930130025.0
000150216 0247_ $$2doi$$a10.1104/pp.113.233916
000150216 0247_ $$2ISSN$$a1532-2548
000150216 0247_ $$2ISSN$$a0032-0889
000150216 0247_ $$2WOS$$aWOS:000345071500014
000150216 0247_ $$2altmetric$$aaltmetric:2371946
000150216 0247_ $$2pmid$$apmid:24850860
000150216 037__ $$aFZJ-2014-00292
000150216 041__ $$aEnglish
000150216 082__ $$a580
000150216 1001_ $$0P:(DE-Juel1)144879$$aPostma, Johannes Auke$$b0$$ufzj
000150216 245__ $$aThe optimal lateral root branching density for maiz depends on nitrogen and phosphorus availability
000150216 260__ $$aRockville, Md.$$bSoc.$$c2014
000150216 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1414491578_26060
000150216 3367_ $$2DataCite$$aOutput Types/Journal article
000150216 3367_ $$00$$2EndNote$$aJournal Article
000150216 3367_ $$2BibTeX$$aARTICLE
000150216 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000150216 3367_ $$2DRIVER$$aarticle
000150216 520__ $$aObserved phenotypic variation in the lateral root branching density (LRBD) in maize (Zea mays) is large (1–41 cm−1 major axis [i.e. brace, crown, seminal, and primary roots]), suggesting that LRBD has varying utility and tradeoffs in specific environments. Using the functional-structural plant model SimRoot, we simulated the three-dimensional development of maize root architectures with varying LRBD and quantified nitrate and phosphorus uptake, root competition, and whole-plant carbon balances in soils varying in the availability of these nutrients. Sparsely spaced (less than 7 branches cm−1), long laterals were optimal for nitrate acquisition, while densely spaced (more than 9 branches cm−1), short laterals were optimal for phosphorus acquisition. The nitrate results are mostly explained by the strong competition between lateral roots for nitrate, which causes increasing LRBD to decrease the uptake per unit root length, while the carbon budgets of the plant do not permit greater total root length (i.e. individual roots in the high-LRBD plants stay shorter). Competition and carbon limitations for growth play less of a role for phosphorus uptake, and consequently increasing LRBD results in greater root length and uptake. We conclude that the optimal LRBD depends on the relative availability of nitrate (a mobile soil resource) and phosphorus (an immobile soil resource) and is greater in environments with greater carbon fixation. The median LRBD reported in several field screens was 6 branches cm−1, suggesting that most genotypes have an LRBD that balances the acquisition of both nutrients. LRBD merits additional investigation as a potential breeding target for greater nutrient acquisition. 
000150216 536__ $$0G:(DE-HGF)POF2-242$$a242 - Sustainable Bioproduction (POF2-242)$$cPOF2-242$$fPOF II$$x0
000150216 536__ $$0G:(DE-HGF)POF2-89582$$a89582 - Plant Science (POF2-89582)$$cPOF2-89582$$fPOF II T$$x1
000150216 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000150216 7001_ $$0P:(DE-HGF)0$$aDathe, A.$$b1
000150216 7001_ $$0P:(DE-HGF)0$$aLynch, J. P.$$b2$$eCorresponding author
000150216 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.113.233916$$gVol. 166, no. 2, p. 590 - 602$$n2$$p590-602 $$tPlant physiology$$v166$$x0032-0889$$y2014
000150216 8564_ $$uhttps://juser.fz-juelich.de/record/150216/files/FZJ-2014-00292.pdf$$yRestricted
000150216 8767_ $$92014-08-27$$d2014-08-27$$eHybrid-OA$$jZahlung erfolgt$$lKK: Heinen$$zHybrid OA kostenlos durch Mitgliedschaft eines Co-Authors
000150216 8767_ $$92014-08-27$$d2014-08-27$$ePublication charges$$jZahlung erfolgt$$lKK: Heinen$$zUSD 1.600,-
000150216 909CO $$ooai:juser.fz-juelich.de:150216$$pOpenAPC$$pVDB$$popenCost
000150216 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144879$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150216 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vKey Technologies for the Bioeconomy$$x0
000150216 9131_ $$0G:(DE-HGF)POF2-242$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vSustainable Bioproduction$$x0
000150216 9131_ $$0G:(DE-HGF)POF2-89582$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF2-89582$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vPlant Science$$x1
000150216 9141_ $$y2014
000150216 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000150216 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000150216 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000150216 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000150216 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000150216 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000150216 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000150216 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000150216 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000150216 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000150216 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000150216 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000150216 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5
000150216 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0
000150216 980__ $$ajournal
000150216 980__ $$aVDB
000150216 980__ $$aI:(DE-Juel1)IBG-2-20101118
000150216 980__ $$aUNRESTRICTED
000150216 980__ $$aAPC