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Abstract

Since resources of fossil fuels are limited, alternatives for energy production need

to be explored. Besides plants as biomass and energy crops, the interest in microal-

gae has been increasing, as they can synthesize many valuable compounds with a

large application range, including transport fuels or fish and animal feed, without

competing with agricultural food production for arable land. Moreover, microalgae

can utilize flue gas from industrial emissions and municipal wastewater as a nutri-

ent source. For economically viable production of algae, however, it is necessary

to explore the maximal potential of algae by optimized cultivation conditions and

targeted genetic modifications based on the knowledge about their physiology as

well as regulatory mechanisms of growth and metabolic processes, in addition to

technical improvement of photobioreactors (PBRs) and downstream processes.

Circadian clocks synchronize certain physiological, metabolic and developmental

processes of organisms with specific phases of recurring changes in their environ-

ment, e.g. day and night or seasons. In this study it was investigated whether the

circadian clock plays a role in regulation of growth and chlorophyll accumulation

in Nannochloropsis gaditana, an oleaginous marine microalga that is considered as

a potential feedstock for biofuels and for which a draft genome sequence has been

published. Optical density (OD) of N. gadinata culture was monitored at 680 and

735 nm under 12 h/12 h or 18 h/6 h light-dark (LD) cycles and after switching

to continuous illumination (LL) in controlled PBRs in the laboratory. In parallel,

chlorophyll fluorescence was measured to assess the quantum yield of photosystem

(PS) II. Furthermore, to test if red- or blue-light photoreceptors are involved in

clock entrainment in N. gaditana, some of the experiments were conducted by us-

ing only red or blue light. Growth and chlorophyll accumulation were confined to

light periods in the LD cycles, increasing more strongly in the first half than in

the second half of the light periods. After switching to continuous light, rhythmic

oscillations persisted (especially for OD680) at least in the first 24 h, with a 50%



decrease in the capacity to grow and accumulate chlorophyll during the first sub-

jective night. Pronounced free-running oscillations were induced by blue light, but

not by red light. In contrast, the PS II quantum yield was determined by light

conditions. Continuous blue light also enhanced accumulation of vaucheriaxanthin.

The results indicate interactions between circadian and light regulation of growth

and chlorophyll accumulation in N. gaditana.

Mutants with reduced pigment contents and lower capacities of thermal energy

dissipation, allowing better penetration of light into PBRs with a smaller loss of

absorbed light energy, are considered as a good strategy to improve the yield of

biomass or other high-value products under light-limited conditions. Therefore, two

EMS-mutants of N. gaditana, npq3 and npq21 previously selected for their pale

appearance and low capacities for thermal dissipation, were examined for their

growth and photosynthetic properties in comparison with the wild type (WT) un-

der different light regimes with fluctuating or constant light in LD cycles or LL

as well as temperature cycles of 30◦C/23◦C and 23◦C/15◦C under controlled lab-

oratory conditions. The OD680 and OD735 as well as PS II quantum yield were

monitored during cultivation and pigment composition was analyzed after several

days of acclimation to the different conditions. In addition, biomass production was

measured for LD cycle experiments. The npq21 showed higher OD680 and OD735

values compared to WT and npq3 under LD and LL with fluctuating or constant

light. No differences for PS II quantum yield were found between the genotypes or

treatments under LD, but lower PS II quantum yields were found for npq3 under

LL. In particular, higher biomass production was found for npq21 under fluctuating

LD. The presence of antheraxanthin, an intermediate xanthophyll of the violaxan-

thin cycle, was found in both mutants under all conditions tested, whereas WT did

not accumulate antheraxanthin under non-stressful conditions, such as constant LD

or LD with temperature cycle 23◦C/15◦C. Higher carotenoid to chlorophyll ratios

under fluctuating light conditions found in npq21 seem to facilitate this mutant to

better cope with photooxidative stress than WT, while npq3 always showed the

lowest performance of the three, presumably due to negative effects of the muta-

tions. Cultivation under temperature cycles of 23◦C/15◦C and 30◦C/23◦C resulted

in similar increase in OD680 and OD735 but lower carotenoid to chlorophyll ratios

under 30◦C/23◦C for npq21. In contrast, WT showed enhanced OD680 and OD735

increase under 30◦C/23◦C compared to 23◦C/15◦C without changes in carotenoid



to chlorophyll ratios but retention of antheraxanthin under 30◦C/23◦C, indicating

stress. The results show improved growth for npq21 under fluctuating light and

varying temperature regimes which resemble the conditions in large-scale cultiva-

tion in PBRs in greenhouses.

Four replicate PBR systems designed for industrial-scale production of microal-

gae were established in greenhouses to monitor growth of N. gaditana under more

natural and realistic conditions. The comparability of the four systems was con-

firmed by cultivating N. gaditana WT. Based on the results obtained under the

laboratory conditions, npq21 was selected for the scale-up trial to compare with

the WT under the greenhouse conditions. The algae were harvested whenever the

culture density exceeded a threshold during the experimental periods. The results

showed higher biomass and higher chlorophyll a production for npq21 especially

during the initial phase until the cell density reached the threshold value. The addi-

tion of water, salt and nutrient solution per produced biomass was nearly the same

for both genotypes. Thus, npq21 outcompeted WT under most of the laboratory

and greenhouse conditions tested in this study, even though the originally reported

phenotypes of low pigmentation and low capacity for thermal energy dissipation had

been lost during cultivation of the stock culture in the growth cabinet, suggesting

that mutations in other physiological or metabolic processes may have contributed

to the increased stress tolerance and higher biomass production of npq21. What-

ever the genetic explanation for better performance may be, npq21 seems to be a

promising candidate for further investigations.





Zusammenfassung

Da die Ressourcen fossiler Kraftstoffe limitiert sind, ist es notwendig alternativen

für die Energieproduktion zu finden. Abgesehen von Pflanzen als Biomasse- und En-

ergielieferanten, steigt das Interesse an Mikroalgen, da sie wertvolle Stoffe mit hoher

Applikationsbandbreite synthetisieren können, z.B. für Transportkraftstoffe, Fisch-

und Tierfutter, ohne dabei mit der agrarischen Lebensmittelproduktion um frucht-

bares Land zu konkurrieren. Darüber hinaus können Mikroalgen Abgasströme von

industriellen Emissionen und kommunales Abwasser als Nährstoffquelle verwen-

den. Um eine ökonomisch realisierbare Mikroalgenproduktion zu erzielen, ist es

notwendig das maximale Potential der Algen durch optimierte Kultivierungsbe-

dingungen und gezielte genetische Modifikationen, basierend auf dem Wissen über

ihre Physiologie und regulatorischen Mechanismen von Wachstum und metaboli-

schen Prozessen, zusätzlich zur technischen Verbesserung von Photobioreaktoren

(PBRs) und nachgeschalteter Verfahren, auszuschöpfen.

Zirkadiane Uhren synchronisieren bestimmte physiologische, metabolische und

Entwicklungsprozesse in Organismen mit spezifischen sich wiederholenden Phasen

in ihrer Umgebung, z.B. Tag und Nacht oder Jahreszeiten. In dieser Arbeit wurde

untersucht, ob die zirkadiane Uhr eine Rolle in der Regulierung des Wachstums und

der Akkumulation von Chlorophyll in Nannochloropsis gaditana spielt, einer ölhalti-

gen marinen Mikroalge, die als potentieller Ausgangsstoff für Biokraftstoffe ange-

sehen wird und für die eine vorläufige Genomsequenz veröffentlicht worden ist. Die

optische Dichte (OD) der N. gaditana Kultur wurde bei 680 nm und 735 nm unter

12 h/12 h oder 18 h/6 h Licht-Dunkel (LD) Zyklen und anschließendem Umschal-

ten zu kontinuierlichem Licht (LL) in kontrollierten PBRs unter Laborbedingungen

aufgezeichnet. Parallel dazu wurde die Chlorophyll-Fluoreszenz gemessen um die

Quantenausbeute vom Photosystem (PS) II zu bestimmen. Des Weiteren wurden

einige Experimente mit nur blauem oder rotem Licht wiederholt um festzustellen,

ob Rot- oder Blaulichtphotorezeptoren an der Einstellung der Uhr in N. gaditana



beteiligt sind. Das Wachstum und die Akkumulation von Chlorophyll waren auf

die Lichtperioden der LD Zyklen beschränkt, wobei eine höhere Zunahme in der er-

sten Hälfte im Vergleich zur zweiten Hälfte der Lichtperiode stattfand. Nach dem

Umschalten zu kontinuierlichem Licht wurden rhythmische Oszillationen (beson-

ders für OD680) mindestens in den ersten 24 h beibehalten, mit 50%-iger Abnahme

von Wachstum und Akkumulation von Chlorophyll während der ersten subjektiven

Nacht. In blauem Licht blieben ausgeprägte freilaufende Oszillationen von OD680

erhalten, jedoch nicht in rotem Licht. Im Gegensatz dazu, wurde die PS II Quan-

tenausbeute von den Lichtbedingungen bestimmt. Kontinuierliches blaues Licht

verstärkte die Akkumulation von Vaucheriaxanthin. Die Ergebnisse deuten auf In-

teraktionen zwischen zirkadianer Uhr und der Lichtregulierung von Wachstum und

Akkumulation von Chlorophyll in N. gaditana hin.

Mutanten mit reduziertem Pigmentanteil und geringerer Kapazität von ther-

mischer Energiedissipation, wodurch eine verbesserte Lichtdurchlässigkeit in die

PBRs mit geringerem Verlust von absorbierter Lichtenergie ermöglicht wird, wer-

den als gute Herangehensweise zur Verbesserung der Biomasseproduktion oder an-

derer hochwertiger Produkte unter limitierten Lichtverhältnissen angesehen. Auf-

grund dessen wurden zwei EMS-Mutanten, npq3 und npq21, die zuvor wegen ihrer

blassen Erscheinung und geringen Kapazitäten von thermischer Energiedissipation

selektiert wurden, in Hinblick auf ihr Wachstum und ihrer photosynthetischen

Eigenschaften im Vergleich zum Wildtyp (WT) unter verschiedenen Lichtbedingun-

gen mit fluktuierendem oder konstantem Licht in LD Zyklen oder LL, sowie ver-

schiedener Temperaturzyklen von 30◦C/23◦C und 23◦C/15◦C unter kontrollierten

Laborbedingungen untersucht. Die OD680 und OD735 sowie PS II Quantenausbeute

wurden während der Kultivierung aufgezeichnet und die Pigmentzusammensetz-

ung wurde nach Akklimatisierung an die verschiedenen Bedingungen analysiert.

Zusätzlich wurde die Biomasseproduktion für die Experimente mit LD Zyklen be-

stimmt. Es wurden keine Unterschiede für die PS II Quantenausbeute für die ver-

schiedenen Genotypen oder Behandlungen unter LD gefunden, aber geringere PS II

Quantenausbeuten wurden für npq3 unter LL festgestellt. Insbesondere wurde eine

höhere Biomasseproduktion für npq21 unter fluktuierendem Licht gefunden. Die

Anwesenheit von dem Xanthophyll Antheraxanthin, das als Zwischenprodukt im

Violaxanthinzyklus gebildet wird, wurde in beiden Mutanten unter allen verwendet-

en Bedingungen gefunden, wohingegen der WT kein Antheraxanthin unter stress-



freien Bedingungen wie konstantes LD oder LD mit dem Temperaturzyklus von

23◦C/15◦C aufwies. In npq21 scheinen höhere Carotinoid zu Chlorophyll Verhält-

nisse unter fluktuierendem Licht dazu zu führen, dass diese Mutante besser mit

photooxidativem Stress umgehen kann als der WT, während npq3 immer die gering-

ste Leistungsfähigkeit unter den drei Genotypen aufwies, möglicherweise aufgrund

von negativen Effekten der Mutationen. Kultivierung unter Temperaturzyklen von

23◦C/15◦C und 30◦C/23◦C führte zu ähnlichen Zunahmen von OD680 und OD735,

jedoch zu einem geringeren Carotinoid zu Chlorophyll Verhältnis für npq21 unter

30◦C/23◦C. Im Gegensatz dazu wies der WT verstärkte Zunahmen von OD680 und

OD735 unter 30◦C/23◦C im Vergleich zu 23◦C/15◦C auf, ohne eine Veränderung

der Carotinoid zu Chlorophyll Verhältnisse, jedoch mit der Akkumulation von An-

theraxanthin unter 30◦C/23◦C, was auf Stress hindeutet. Die Ergebnisse zeigen ein

verbessertes Wachs- tum von npq21 unter fluktuierendem Licht und variierenden

Temperaturbeding- ungen, welche die Bedingungen der Kultivierung in größerem

Maßstab in PBRs in Gewächshäusern wiederspiegeln.

Vier vergleichbare Kultivierungssysteme, die zur Produktion von Mikroalgen im

industriellen Maßstab entwickelt wurden, wurden in Gewächshäusern aufgestellt

um das Wachstum von N. gaditana unter natürlicheren und realistischeren Beding-

ungen zu untersuchen. Die Vergleichbarkeit der vier Systeme wurde durch die Kul-

tivierung vom N. gaditana WT bestätigt. Basierend auf den Ergebnissen, die unter

Laborbedingungen produziert wurden, wurde npq21 für den Versuch im größeren

Maßstab selektiert, um diese Mutante mit dem WT unter Gewächshausbedingung-

en zu vergleichen. Die Algen wurden geerntet sobald die Kulturdichte in den PBRs

einen Grenzwert während der Kultivierungsperiode überschritt. Die Ergebnisse

zeigten höhere Produktionen von Biomasse und Chlorophyll a für npq21, insbeson-

dere während der Initialphase, bis die Zelldichte den Grenzwert erreichte. In Bezug

auf die Biomasse war die Zugabe von Wasser, Salz und Nährlösung für beide Geno-

typen ungefähr gleich. Daher hat npq21 den WT unter den meisten verwendet-

en Labor- und Gewächshausbedingungen auskonkurriert, obwohl die ursprünglich

beschriebenen Phenotypen mit niedrigem Pigmentgehalt und niedrigerer Kapazität

von thermischer Energiedissipation während der Kultivierung der Stammkultur im

Klimaschrank verloren gegangen sind. Dies deutet auf Mutationen in anderen phy-

siologischen oder metabolischen Prozessen hin, die zu erhöhter Stresstoleranz und

höherer Biomasseproduktion von npq21 beigetragen haben. Was die genetische



Erklärung für die bessere Leistungsfähigkeit auch sein mag, so scheint npq21 ein

vielversprechender Kandidat für weitere Untersuchungen zu sein.
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1 Introduction

1.1 Biofuels

Ensuring energy supply is an issue of utmost importance as the stock of fossil en-

ergy resources is running out while the global energy demand is ever growing. Fur-

thermore, the use of fossil fuels has a negative impact on the environment through

greenhouse gas emissions contributing to the global climate change [1]. There is a

need of sustainable and more climate neutral energy sources, such as biomass from

photosynthetic organisms that can assimilate inorganic carbon from carbon dioxide

(CO2) into organic compounds by using solar energy [2].

The first generation of biofuels is based on the conversion of biomass from food

crops containing sugar and starch for ethanol production or oilseeds for biodiesel

production [3], leading to a strong competition with the food market as arable land

is needed [4, 5]. Increase in population makes agricultural land more valuable and

therefore a use of food crops and arable land for biofuel production is ethically not

accepted [3, 5]. The second generation of biofuels includes non-food crops such as

straw and wood [6] which contain lignocellulose [7] and are often difficult to sepa-

rate from valuable carbohydrates [8]. The third generation of biofuels is the use of

algal biomass [9, 10] which usually contains 20%-50% oil per dry weight, but can

also exceed these values [11]. Production of algae does not compete with agricul-

tural processes as there is no need for fertile land [9] since algae can be grown in

open ponds or photobioreactors (PBRs).

In Fig. 1.1 [12] a simplified scheme of the production processes of algal biomass

to organic compounds for energy, food additives, pharmaceutical and cosmetics is

shown. The bottleneck of algae cultivation is the high costs which arise during

cultivation and downstream processing [7, 9]. This can be overcome by the use of

waste products such as heat from power plants [13] for temperature regulation and

1



2 1 Introduction

Figure 1.1: Scheme of photosynthetic conversion of solar energy for production of different prod-
ucts obtained from algal biomass, by using CO2 and nutrients from wastewater (figure
from [12]).

waste CO2 [9, 14] from flue gas with concentrations up to 15% [15]. During pro-

duction of 100 t algal biomass about 183 t CO2 are fixed [9]. Wastewater contains

many nutrients [13] which can be eliminated by the algae and thus support the

wastewater treatment. Solar light conversion is also higher in algae compared with

plants, which makes energy-to-biomass conversion more efficient. In order to meet

50% of the U.S. transport fuel needs, as much as 24% of the total cropland would

be needed with oil palm as a high-yielding oil crop, whereas only up to 3% would

be sufficient when producing algal biomass [11].

The photosynthetic microorganisms are divided into two groups, prokaryotes and

eukaryotes. Photosynthesis performed in photosynthetic organisms can either be

anoxygenic or oxygenic. Based on the fact, that flue gas, which is of high interest as

a CO2 source, can contain up to 4-5% oxygen, anoxygenic photosynthetic bacteria

are excluded from the group of attractive organisms as they need strict anaerobe

conditions for CO2 fixation [2]. Cyanobacteria are single or multicellular prokary-

otes with sizes up to 60 µm [16]. They operate oxygenic photosynthesis and have

an additional antenna complex, the phycobilisom, which makes it possible to use

a larger light spectrum. Also eukaryotic microalgae can be composed of single or

multicells. The size varies between 1 µm to over 2 mm (see Table 1.2), so that the
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sizes of cyanobacteria and microalgae overlap. Similar to cyanobacteria, microalgae

also perform oxygenic photosynthesis.

Genetic engineering of cyanobacteria and microalgae has gained in importance as

modification of metabolic pathways can improve production of high-value products

[17]. One approach is to construct hydrogenase mutants, such as the Anabaena

sp. PCC 7120 mutant hupL− which produces H2 at a four to seven times higher

rate compared to the wild type [18]. Another approach is to increase the lipid

content in the cells by blocking starch accumulation, which is an energy-rich storage

compound, e.g. in Chlamydomonas reinhardtii [19]. The starch-deficient mutants

sta6 and sta7 with disruptions in the ADP-glucose pyrophosphorylase or isoamylase

genes [19] have been shown to increase the triacylglyceride (TAG) accumulation

under nitrogen deprivation [20]. The advantage of genetic engineering has also been

used by the company JOULE R© (USA) that developed the platform HeliocultureTM

[21] where the cells take up CO2 and convert it to alkane fuel in a SolarConverter R©,

which is directly secreted into the medium. This method circumvents the cracking

process that is usually required for extraction of lipid bodies synthesized by the

cells.

1.2 Range of products from algae

The microalgal and cyanobacterial biomass contains many compounds of which

different products can be derived (Fig. 1.1, Table 1.1), yet the availability and

amount of the compounds within the cells differ amoung the species. Energy-rich

compounds are e.g. hydrocarbons [2, 8, 22] and lipids [22] which are of value for

the production of biodiesel [5, 6, 10, 14, 21, 23, 24], methane [2, 5, 6, 11, 14, 25–

27], hydrogen [5, 6, 11, 14, 23, 26], alkanes [7], ethanol obtained by degradation

to smaller sugars and subsequent fermentation [5, 6, 21–24, 26, 27] and butanol

[7]. The transformation of the biomass into biofuel is processed by liquidification,

pyrolysis, gasification [9], extraction, transesterification or anaerobic fermentation

[6].

Further interesting products which can be obtained from the biomass are glyc-

erol [2, 5] and carbohydrates [25] such as polysaccharides [2, 5], which can be

used for the production of cosmetics. Polysaccharides can also be a source for ba-
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sic chemicals [8] and growth enhancing chemicals for agriculture or ingredients for

health food [28–30].

High value products such as proteins [2, 5, 25, 31], amino acids [25], phyco-

biliproteins in cyanobacteria and a few microalgae [12, 29], pigments [2, 5, 23, 31]

like carotenoids [5, 24, 31], vitamins [5, 24, 31] and fatty acids [2, 5, 31] such

as eicosapentaenic acid (EPA) and docosahexaenic acid (DHA) are also con-

tained in the biomass. EPA and DHA are especially important for the growth of

fish larvae, shrimp, mollusks and fish [28, 32]. These long-chain, unsaturated fatty

acids are also important for human health as they reduce the blood pressure and

blood viscosity, prevent cardiovascular diseases, cancer, Alzheimer’s disease and

schizophrenia [32]. As phospholipids are surface-active they are utilized as emul-

sifying agents in foods, cosmetics and pharmaceutical products [8]. In addition, the

biomass can also be utilized for the production of nutritional supplement [14, 22],

medicine, animal feed [5, 14, 22, 25, 31, 33] and fertilizer [5, 14, 22, 26].

1.3 Nannochloropsis

Nannochloropsis is a member of the Eustigmatophyceae which has spherically

shaped cells with a diameter of 2-4 µm [35]. It contains a variety of nutrients and

is thus of interest as a nutritional source [36] with protein contents of up to 22%

[37]. This marine alga is especially a good candidate for biodiesel production as its

lipid content is very high, with up to 68% in dry weight [11]. Nannochloropsis has

also been found to be a robust alga as it can recover quickly from high irradiance

or high pH-values [38] showing the ability to cope with varying environmental con-

ditions. But also pigment content has been found to be a further point of interest,

as Nannochloropsis contains a wide range of carotenoids, including violaxanthin

and vaucheriaxanthin as major ones and further carotenoids such as astaxanthin,

canthaxanthin [39] and β-carotene [40]. In comparison to other Nannochloropsis

sp. as well as other algae, Nannochloropsis gaditana (Fig. 1.2 [41]) shows a high

lipid yield and is therefore a suitable source for oil for biodiesel production [42].

Further, N. gaditana contains high amounts of EPA, which makes it interesting as

feed for rotifers [43]. A draft genome sequence of N. gaditana [44] as well as the

genome of N. oceanica [45] have been recently published, so that a better char-
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Table 1.1: Products which can be obtained from algal and cyanobacterial biomass.

en
er

gy

hydrocarbons [Botryococcus braunii [34]]
lipids [Dunaliella salina [5]]
biofuel [Chlorella [12]]

biodiesel [Nannochloropsis [12], Botryococcus braunii [12],
Chlorella protothecoides [4]]

methane [Chlorella vulgaris [4]]
hydrogen [Cladophora fracta, Chlorella protothecoides [6]]
alkanes [7]
ethanol [Chlorella vulgaris [4]]
butanol [7]

ra
w

m
at

er
ia

l

glycerol [Dunaliella salina [5]]
carbohydrates [Spirogyra sp. [9], Porphyridium cruentum [9]]
polysaccharides [Porphyridium sp. [30]]
cosmetics [Chlorella [12], Dunaliella salina [12]]

h
ig

h
va

lu
e

p
ro

d
u

ct
s

proteins [Dunalliela salina [5]]
amino acids [25]
phycobiliproteins (cyanobacteria)

[Arthrospira (Spirulina) platensis [12]]
pigments
carotenoids

astaxanthin and lutein [Haematococcus pluvialis [23]]
β-carotene [Dunaliella salina [23]]

vitamins (biotin) [Euglena gracilis [23]]
ascorbic acid [Prototheca moriformis [23]]
fatty acids e.g. eicosapentaenoic acid (EPA),

[Nannochloropsis [12], Chlorella minutissima [23]]
docosahexaenoic acid (DHA) [Schizochytrium spp. [23]]

foods [Chlorella [12], Dunaliella salina [12],
Arthrospira (Spirulina) platensis [12],
Haematococcus pluvialis [12]]

medicine [Arthrospira (Spirulina) platensis [12],
Haematococcus pluvialis [12]]

animal feed [Chlorella [12]]
fertilizer [5, 14, 22, 26]
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acterization of genotypes and development of genetic engineering techniques can

be expected for the genus Nannochloropsis in the near future. With the arrival

of efficient transformation protocols, N. gaditana is supposed to become a biofuel

production platform [46]. Indeed, first approaches by using endogenous promoters

to enhance biomass and/or lipid biosynthesis have already been patented [47].

Figure 1.2: Nannochloropsis gaditana (modified figure from [41])

1.4 Endogenous rhythms

Good knowledge and understanding of metabolic pathways and their regulation

within organisms are essential to design cultivation methods or explore genetic ma-

nipulation to improve the production of target products for industrial applications.

In many organisms certain physiological, developmental or behavioral events are

synchronized with specific phases of recurring changes in their environment, such

as day and night or seasons, to avoid unfavorable conditions for these events. En-

dogenous biological oscillators that maintain rhythms of approximately 24 h under

constant conditions, the so-called circadian clocks, allow anticipation of recurring

environmental changes needed for such temporal coordination [48–51]. In photo-

synthetic organisms the circadian clocks regulate, for instance, day-night changes

in gene transcription [52], starch degradation [53, 54] and cell division [55–57].

The clocks can be entrained by light and temperature [58, 59] that serve as ”Zeit-

geber” (”time-giver” [60]). The components and physiological roles of circadian
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clocks have been investigated in different photosynthetic organisms, from prokary-

otic cyanobacteria [61] to eukaryotic green microalgae as C. reinhardtii [62, 63] and

higher plants as Arabidopsis thaliana [49]. In microalgae circadian regulation has

been found for gene expressions and for the timing of cell division [50]. For ex-

ample, the expression of the chloroplast encoded gene tufA of C. rheinhardtii [64]

or the photosystem (PS) II gene psbA of the cyanobacterium Synechococcus [65]

are under circadian control. According to the genom of N. oceanica CCMP1779 no

obvious genes encoding proteins similar to plant, animal or bacterial clock proteins

were found; only two genes encoding bHLH-PAS proteins, which are important in

the circadian regulation in animals, were identified [45]. Further, three genes en-

coding CCT (CONSTANS, CO-like, and TOC1) domain-containing proteins were

found. The CCT-proteins are present in plants and green algae and function in

light regulation, circadian and photoperiodic responses. These findings led to the

assumption, that the circadian clock of Nannochloropsis is probably different from

those of plants or animals [45].

1.5 Photosynthesis

Oxygenic photosynthesis, requiring light, water and CO2 [66], is found in cyanobac-

teria, algae and vascular plants [67]. There are two main steps in photosynthesis,

the light-dependent reactions and the dark reactions. The light reactions generate

energy (stored in adenosine triphosphate, ATP) and reducing power in the form of

nicotinamide adenine dinucleotide phosphate (NADPH), whereas in the dark reac-

tions (Calvin cycle) glucose is produced by reduction of the carbon atom of CO2

[66]. The main components for absorption and conversion of light energy are two

photosystems, PS I and PS II which are multisubunit transmembrane pigment-

protein complexes catalyzing electron transport within the thylakoid membrane

[68, 69]. Electrons are transported from the donors (H2O) in the thylakoid lumen

to the acceptor (NADPH) outside the thylakoid. Each photosystem contains a core

complex with the reaction center where the primary charge separation occurs [67].

Peripheral of the reaction centers are the antennae which have the function of light

harvesting and transfer of excitation energy to the reaction center. Cyanobacteria

contain phycobilisomes as peripheral antenna systems, which are soluble proteins

attached to the surface of the photosynthetic membranes [70]. During evolution, the

phycobilisomes were replaced by the light-harvesting complexes (LHC), consisting
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of proteins localized in the thylakoid membranes with chlorophyll and carotenoid

ligands. LHC has functions in light harvesting as well as in photoprotection [67].

N. gaditana has a LHC containing a relatively high proportion of xanthophylls

and nine chlorophyll a molecules per apoprotein, whereas in higher plants, 14 chloro-

phyll molecules with four xanthophyll molecules are in the LHC II [71, 72]. The

primary structure of the apoprotein of the LHC in N. gaditana is different com-

pared to analogous proteins from non-green algae, green algae or higher plants, as

for N. gaditana no cross-reactivity with antibodies was found [73]. In N. salina less

than 10% of the chlorophyll a is closely associated with PS I, whereas in higher

plants the value lies at about 35% leading to almost four times fewer PS I reac-

tion centers per chlorophyll in this alga. Similar properties of the PS II complex

were found for N. salina and spinach, yet again, a lower proportion of PS II core

complex relative to LHC was reported for the alga. Most of the chlorophyll a

and xanthophylls in N. gaditana are associated with the LHC complex [74]. In

cyanobacteria the major antenna complex consists of phycobiliproteins [75]. The

major light-harvesting chlorophyll a/b-binding protein in plants (LHC II) is simi-

lar to the chlorophyll-protein in C. reinhardtii [76]. Each pigment-protein subunit

contains eight chlorophyll a, six chlorophyll b, two luteins, one neoxanthin and one

violaxanthin [77]. Unlike in vascular plants, green algae and diatoms, the major

LHC in Nannochloropsis is a violaxanthin-chlorophyll a complex [78].

Pigments are compounds absorbing specific wavelengths and thus exhibit typical

colors. The physico-chemical nature of the pigments in photosynthetic organisms

influences light energy absorption. In microalgae major pigment groups are chloro-

phylls (green), phycobilins (blue and red) and carotenoids (yellow and orange).

Chlorophylls have a magnesium atom in the center of a polyconjugated tetrapyr-

role ring; this magnesium atom is involved in the primary charge separation that

initiates photosynthetic electron transport and is therefore the most important

group. The main task of carotenoids is the protection of chlorophyll by dissipating

excess light [66] and scavenging reactive oxygen species (ROS) [79] generated by

excitation energy transfer to O2 molecules continuously produced in the light by

the PS II activity.
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The genus Nannochloropsis contains chlorophyll a as higher plants, green algae

and cyanobacteria do [80], whereas chlorophyll b which is found in green algae [81],

e.g. C. reinhardtii [82], c in certain brown algae, yellow algae and diatomes [83]

and d in red algae [80] are absent. Besides violaxanthin, vaucheriaxanthin and

β-carotene, further minor carotenoids such as astaxanthin and canthaxanthin are

present [39, 40]. The xanthophyll lutein, which is present in higher plants [74], the

green alga C. reinhardtii [84] and other algae such as Phaeophyta or Chrysophyta

[85], is absent in N. gaditana [74, 86]. During light phases the chlorophyll a and

carotenoid contents increase [87]. Under high light conditions the conversion of

violaxanthin to zeaxanthin has been found [40]. Ageing cultures show an increase

in accumulation of canthaxanthin and astaxanthin in N. gaditana [39, 88].

1.6 Photoprotection

1.6.1 Excited chlorophyll

Light is essential for photosynthetic processes, yet too much light can cause dam-

ages. Absorption of light energy leads to the formation of excited singlet chloro-

phylls (1Chl*), whereafter the absorbed energy can be re-emitted as fluorescence

with no further impact on the cell, dissipated as heat or transferred to reaction

centers to drive photochemical processes [89]. The second pathway, namely the

protective processes of dissipating excess energy non-photochemically in form of

heat, brings excited singlet chlorophyll back to the ground state [89]. If excess light

energy is transferred to excited singlet chlorophylls, they can be converted to ex-

cited triplet chlorophylls (3Chl*) which have a much longer lifetime (ms instead of

ns) in the light harvesting antenna and can thus react with oxygen (O2). This can

lead to the formation of singlet oxygen (1O2*), a ROS [89–91] which can damage

proteins, lipids and pigments in and around the photosystems [91].

1.6.2 Non-photochemical quenching

Non-photochemical quenching (NPQ) can be divided in three major components

showing different relaxation kinetics: energy dependent quenching (qE), state-

transition quenching (qT) and photoinhibitory quenching (qI) [89, 92]. The energy

dependent component qE can change within seconds and is therefore important
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for plants and algae that are exposed to fluctuating light. Excessive light leads

to a decrease in pH in the thylakoid lumen triggering the protective reactions of

qE [89, 91]. Besides zeaxanthin and/or antheraxanthin as components of qE [93],

in land plants including mosses and green macroalgae, the LHC-like protein PsbS

contributes to photoprotective energy dissipation in qE [94–96], whereas in green

and brown algae and some mosses the LHC protein LHCSR activates qE [97]. In

N. oceanica CCMP1779 the genes for LHCSR were found, whereas genes encoding

PsbS were absent [45]. qT depends on phosphorylation of LHCs accociated with

PS II [98] and leads to dissociation of LHCs from PS II with a slower relaxation

time ranging in minutes [89]. The third component, qI which is associated with

photoinhibition of photosynthesis, has the slowest relaxation kinetics taking up to

several hours [89, 91].

1.6.3 Xanthophyll cycle

Carotenoids are isoprenoids having a polyene chain with conjugated double bonds.

They can be divided into two groups, carotenes and xanthophylls [40]. Some of the

xanthophylls are involved in a photoprotective mechanism, the xanthophyll cycle,

which is also known as the violaxanthin cycle [99], found in vascular plants and

green and brown algae [100]. Its presence has also been found in N. gaditana [40]

and a gene encoding the violaxanthin de-epoxidase (VDE) like in plants has been

found in N. oceanica CCMP1779 [45]. The violaxanthin cycle consists of two oppo-

site reactions [91] as shown in Fig. 1.3 [101]. The water soluble enzyme VDE, which

is located in the thylakoid lumen, is activated by low luminal pH (maximum activ-

ity at pH < 5.8 [102]) under excess light, leading to conversion of violaxanthin to

zeaxanthin via the intermediate antheraxanthin in two-step reactions (violaxanthin

→ antheraxanthin, antheraxanthin → zeaxanthin) with ascorbate as a cosubstrate

[40, 99]. When excess light energy disappears, the pH gradient across the thylakoid

membrane decreases, VDE is inactivated and the activity of zeaxanthin epoxidase

(ZEP) located outside the thylakoid (optimal activity at pH 7-7.5 [102]) becomes

detectable, converting zeaxanthin back into antheraxanthin and in a second step

into violaxanthin by using oxygen and NADPH [40, 102]. It is assumed, that en-

ergy is transferred from chlorophyll to antheraxanthin and zeaxanthin, or structural

changes induced by protonation of LHC or PsbS protein lead to the formation of

heat dissipating centers in antenna complexes [102]. In this respect the marine
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parasinophycean alga Mantoniella squamata is unique because its xanthophyll cy-

cle undergoes only one de-epoxidation step from violaxanthin to antheraxanthin.

This alga accumulates high amounts of antheraxanthin under high light and there-

fore, energy dissipation is independent of zeaxanthin and lutein, which are rarely

accumulated or absent [103]. The violaxanthin cycle pigments are mostly located

in the thylakoid membranes. Most of the xanthophylls from pigment-protein com-

plexes are located in light-harvesting complexes as LHC II (in case of higher plants

and green algae) and additionally, violaxanthin de-epoxidation has also been found

in the PS I supracomplex [79]. Yet, operation of violaxanthin de-epoxidation has

been shown to be independent of the presence of pigment-protein complexes [79].

Figure 1.3: The violaxanthin cycle (figure from [101])

Two NPQ mutants have been found in higher plants and C. reinhardtii to be

defective in the xanthophyll cycle, npq1 and npq2. Mutants which presumably

have a defect in VDE are referred to as npq1. Deficiency in VDE activities blocks

the conversion of violaxanthin to antheraxanthin and zeaxanthin under high light.

Vice versa, npq2 mutants are defective in ZEP, resulting in the lack of all xantho-

phylls downstream of zeaxanthin epoxidation (e.g. antheraxanthin, violaxanthin

and neoxanthin) and constitutive hyper-accumulation of zeaxanthin [93, 101]. The

npq1 mutant is characterized by an impaired induction of NPQ in high light, yet

retains a small amount of reversible NPQ which is induced quickly when exposed

to high light, possibly due to low levels of antheraxanthin and zeaxanthin produced

during biosynthesis of violaxanthin, involvement of lutein or even a xanthophyll

independent mechanism. The impairment of reversible NPQ in Arabidopsis was
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found to be stronger compared with Chlamydomonas, therefore reliance on the

xanthophyll cycle can differ in different organisms. High levels of zeaxanthin in

npq2 lead to a slower reversibility of NPQ and more energy is dissipated under

moderate light conditions. Accordingly, photosynthetic efficiency has been found

to be lower [93].

A simpler xanthophyll cycle, the diadinoxanthin cycle, is displayed in diatoms

and other chromophytes [104], in which diadinoxanthin is converted into diatox-

anthin by diadinoxanthin de-epoxidase (DDE) under high light and back to diadi-

noxanthin with diatoxanthin epoxidase (DEP) under low light. DDE can already

operate at a high pH of 7.2, whereas DEP, which is most likely positioned at the

stromal side of the thylakoid membrane, is active around pH 7.5, similar to ZEP

[100].

Some algae have been shown to possess both xanthophyll cycles, possibly for bet-

ter adaptation to changing light conditions underwater [105]. In cyanobacteria the

violaxanthin cycle and diadinoxanthin cycle are absent, yet can convert β-carotene

to zeaxanthin in the xanthophyll biosynthesis pathway at high light [102]. The

mechanism of NPQ in cyanobacteria is regulated by the orange carotenoid protein

(OCP), which operates in the phycobilisomes [106, 107].
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1.7 Potential of photosynthetic microorganisms for

industrial production of valuable products and as

waste recyclers: A literature survey

The purpose of the following chapter is to give an overview of the current state

and limitations of algal biomass production and its potential for industrial appli-

cations. Biomass data are generally given in dry weight.

Table 1.2: List of species used in literature

species size classification

Aphanothece microscopica 3-30 µm cyanobacterium

Nägeli

family: Cyanobacteriaceae

Arthrospira (Spirulina) 0.3-1 mm cyanobacterium

platensis

family: Phormidiaceae

Arthrospira (Spirulina) 0.3-1 mm cyanobacterium

maxima

family: Phormidiaceae

Botryococcus braunii ≥ 1 mm microalga

family: Trebouxiophyceae incertae

sedis

Chaetoceros calcitrans 2.5-6 µm microalga

family: Chaetocerotaceae

Chlorella protothecoides 5-7 µm microalga

family: Chlorellaceae

Chlorella sp. 2-10 µm microalga

family: Chlorellaceae

Chlorella vulgaris 4-10 µm microalga

family: Chlorellaceae

Cladophora fracta ≥ 85 µm microalga

family: Cladophoraceae

Dunaliella salina 17-23 µm microalga

family: Dunaliellaceae
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species size classification

Dunaliella tertiolecta 10-12 µm microalga

family: Dunaliellaceae

Euglena gracilis 30-70 µm microalga

family: Euglenaceae

Haematococcus pluvialis 20 µm microalga

family: Haematococcaceae

Isochrysis sp. 5 µm microalga

family: Isochrysidaceae

Nannochloropsis oculata 1-2 µm microalga

family: Monodopsidaceae

Nannochloropsis sp. 2 µm microalga

family: Monodopsidaceae

Phaeodactylum tricornutum 15-30 µm microalga

family: Phaeodactylaceae

Porphyridium cruentum 10 µm microalga

family: Porphyridiaceae

Porphyridium sp. 5-8 µm microalga

family: Porphyridiaceae

Prototheca moriformis 13-15 µm microalga

family: Chlorellaceae

Rhodomonas sp. 9.2-9.9 µm microalga

family: Pyrenomonadaceae

Scenedesmus sp. 3-78 µm microalga

family: Scenedesmaceae

Schizochytrium spp. 4-14 µm microalga

family: Thraustochytriaceae

Spirogyra sp. up to several microalga

centimeters long

family: Zygnemataceae

Synechocystis aquatilis 2 µm cyanobacterium

family: Merismopediaceae

Tetraselmis sp. 14 µm microalga

family: Chlorodendraceae
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1.7.1 Reactor design

There are two different large scale cultivation systems for microalgae and cyanobac-

teria: open ponds and closed photobioreactors [5, 9, 21, 25, 108].

1.7.1.1 Open ponds

An aerial image of an open pond is shown in Fig. 1.4. Open ponds are usually

build of concrete or are sheaves covered with plastic [4, 6] with a depth of 0.1-0.3 m

[25]. With the help of a paddle wheel [22] the culture is circulated, while nutri-

ents are added downstream of the paddle wheel to ensure a good distribution and

harvest of biomass is operated upstream of the paddle wheel [4, 6, 9]. Open ponds

have a large surface with direct contact to the air so that CO2 can be taken up from

the atmosphere. To improve the production, additional CO2 can be added at the

bottom of the pond [109]. Installation of sensors can be advantageous to control

the cultivation conditions as shown in Fig. 1.5.

Figure 1.4: Aerial image of an open pond (figure from [11])
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Figure 1.5: Vertical profile of an open pond system (figure from [109])

Advantages:

An important advantage of the open pond system is low costs [5, 23, 110] due to

the simple construction. CO2 can be utilized directly from the atmosphere [7, 12],

which makes an additional CO2 source optional. Further, the system is easy to

clean up [5] as there are no inaccessible parts.

Disadvantages:

The main disadvantage of the system is the low production performance [10],

since the conditions are difficult to regulate and the microorganisms are directly

exposed to UV light [10]. In an open system the risk of contamination [5, 22, 27] is

rather high. The culture density is limited by the availability of solar radiation and

the circulation can be rather poor, as mixing is only provided by a paddle wheel,

which can lead to an uneven distribution [4, 10] of microorganisms and nutrients.

The day-night cycles [10] as well as the seasonal climatic differences [4, 11] have a

direct impact on the organisms. As the ponds are limited in depth, a larger surface

area is needed, which also leads to a higher evaporation loss of water [22].

1.7.1.2 Photobioreactors

Closed PBRs commonly consist of transparent material such as glass or plastic

[6, 111] and the turbulent flow inside allows good mixing [11]. The reactors can

either be set up vertically or horizontally (Figs. 1.6 and 1.7). Tubular photobiore-

actors should not exceed a length of 80 m to prevent accumulation of oxygen which
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Figure 1.6: Fence photobioreactor (figure from [33])

Figure 1.7: Tubular photobioreactor (figure from [11])

damages the cells. To prevent extreme light limitation a diameter of less than 0.1 m

is recommended [11]. Due to these dimensions a maximum volume of 315 m3 can

be achieved. Larger flat panel PBRs can have a volume of 200 l; with systems e.g.

consisting of five flat panels, a total volume of 1,461,000 l corresponding to 900 m3

per hectare can be achieved. With column reactors a volume of up to 972 m3 per

hectare is possible [7].

Advantages:

The advantage of closed PBRs is the possibility to cultivate a single species [4, 22]

as a nearly pure culture, as the risk of contamination is smaller than in open ponds

[5, 108, 112]. Due to a higher achievable cell density [5], greater amounts of biomass

[22, 108, 112] can be produced per volume and per area. Photobioreactors have a

greater surface-to-volume ratio [9, 24, 108, 110] ensuring a higher amount of avail-

able light for the organisms. A further benefit of the closed system is the extremely
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low evaporation rate as well as a low loss of CO2 [7] when CO2 gas is supplied to

the culture. The cultivation conditions can be controlled rather well [5, 23, 112]

and a good mixing [5] can be achieved.

Disadvantages:

The major disadvantages to overcome are the high investment costs concerning

the construction, operation and maintenance of the system [5, 22]. In the closed

system the possibility of overheating is high as well as the decay of biomass. If the

system is not equipped with enough degassing points, the risk of oxygen accumu-

lation is high, leading to cell damage. The higher complexity of the system makes

upscaling of closed PBRs more difficult than for open pond systems [5].

1.7.1.3 Hybrid-system

It is further possible to combine the two systems, closed PBRs and open ponds,

to a hybrid-system [9]. With this system the algae are first cultivated in the closed

system. After reaching a high density, the open pond system is inoculated with

this culture. The cell density is of importance to prevent contamination with other

organisms. An additional way to prevent contamination is the regular cleaning of

the ponds, so this system is especially suitable for batch cultures [6].

1.7.1.4 Light transfer

Biomass production with algae is particularly dependent on the availability of

light. To increase the biomass production, the availibility of light can be improved

by using an additional light source. Light can be transferred from the outside to

the inside of the reactor with optical fibers. This leads to a more homogenous

distribution inside the reactor. LED have the advantage of less heat production in

comparison to other light sources, so that installation around the reactor can sup-

ply additional light. Higher costs due to the need of more current can be prevented

by installing photovoltaic or wind energy on site [10] (Fig. 1.8). In chapter 1.7.2.2

the impact of light availability is further discussed.
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Figure 1.8: Scheme of a possible setup for illumination of a PBR with simultaneous current pro-
duction by solar panel and wind power generators for operation (figure from [10]).

1.7.1.5 Comparison of the productivity of open pond systems with closed

photobioreactors

In Table 1.3 the differences of several cultivation parameters for the production

of 100 t biomass in open ponds and closed PBRs are shown. The data are a sum-

mary of biomass productivity and concentration of different species cultivated in

large-scale ponds and PBRs [11] in different countries. The volumetric productivity

is more than 10-times higher in closed PBRs than in open ponds and thus closed

PBRs can achieve an areal productivity twice as high as that of open ponds. This

is due to a much higher biomass concentration which can be produced within the

closed system. Further, the oil production is higher in the PBRs and less area is

needed for the same biomass production. In both systems an equal amount of CO2

(183,333 kg) is fixed for the same amount of biomass production.

Further parameters of different cultivation systems are shown in Table 1.4 for

the production of 1 kg of Spirulina dry biomass per day in an open pond, tubu-

lar reactor, one free-standing flat plate PBR and several flat plate PBRs with a

space of 20 cm in between based on estimated capacity [110]. The lowest volume

for the production is needed for the free-standing flat plate reactor and the largest

for the pond system. The largest surface area for light absorption is achieved on

the least land area with the lined-up flat plate PBRs. In a free-standing flat plate
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bioreactor the light exposure is particulary high, which makes it possible to reach

the highest culture density and with that the highest volumetric productivity. The

highest areal productivity is attributed to lined-up bioreactors and the best reactor

efficiency is obtained by the free-standing reactor. These data show the importance

of light availability for algal biomass production, which is strongly influenced by

the design of the cultivation system.

1.7.2 Productivity

1.7.2.1 Limiting factors

The productivity of cultivation systems is limited by different factors, especially

light, temperature and nutrient availability. Availability of light [24, 33] limits

the biomass production, as it is necessary for photosynthetic processes. Good loca-

tions for production are for example in arid states of the USA (California, Arizona

and New Mexico) where up to 90% of days are sunny and bright [25]. The amount

of solar energy available depends on the location. In Phoenix, Arizona, USA yearly

solar radiation lies at 7,300 MJ m−2 a−1, while further east in Cambridge, Mas-

sachusetts, USA there are 4,800 MJ m−2 a−1 [21], whereas the recorded values in

Zara, Jordan were 7,297.5 MJ m−2 a−1 [113] and at the most sunny location of

Germany in Friedrichshafen 4,523 MJ m−2 a−1 [114].

Light:

Figure 1.9 [115] shows the mean global solar radiation. In the northern half of

Europe as well as in Canada, Greenland, Russia and most southern land parts

of the southern hemisphere the lowest solar energy amounts of up to 175 W m−2

(1 W=1 J s−1) are available. Especially high energy amounts were recorded in most

parts of Africa, as well as in Australia, Mexico, Arabian countries and China. It is

important to point out that only 50% of the light spectrum within photosyntheti-

cally active radiation (400-700 nm) can actually be utilized for photosynthesis by

algae and cyanobacteria [21, 111, 116] and only 3% of solar energy can be converted

into biomass [117]. Due to these solar energy limitation and rather poor light-to-

biomass energy conversion rates, it is necessary to make sure that the density of



22 1 Introduction

T
ab

le
1.

4:
C

om
p

a
ri

so
n

o
f

d
iff

er
en

t
p

a
ra

m
et

er
s

fo
r

th
e

p
ro

d
u

ct
io

n
of

1
k
g

d
ry

S
p
ir
u
li
n
a

b
io

m
as

s
p

er
d

ay
in

a
op

en
p

o
n

d
sy

st
em

a
n

d
in

d
iff

er
en

t
cl

os
ed

P
B

R
s

(v
al

u
es

ta
ke

n
fr

om
[1

10
])

.

p
a
ra

m
e
te

rs
fo

r
th

e
o
p

e
n

p
o
n

d
(1

5
h

o
ri

zo
n
ta

l
v
e
rt

ic
a
l

fl
a
t

v
e
rt

ic
a
l

fl
a
t

p
ro

d
u

ct
io

n
o
f

1
k
g

o
f

d
ry

cm
d

e
e
p

)
tu

b
u

la
r

re
a
ct

o
r

p
la

te
P

B
R

,
p

la
te

P
B

R
s

S
p
ir
u
li
n
a

b
io

m
a
ss

p
e
r

d
a
y

(d
ia

m
e
te

r o
u
ts
id
e

fu
ll

y
e
x
p

o
se

d
(2

0
cm

a
p

a
rt

,
2
.9

cm
,

(2
.5

cm
li

g
h
t

2
.5

cm
li
g
h
t

d
ia

m
e
te

r i
n
n
er

p
a
th

)
p

a
th

)
2
.5

cm
)

vo
lu

m
e

(l
)

5,
55

0
(1

50
l

m
−
2
)

62
9

(1
71

l
m

−
2
)

41
6

(2
5

l
m

−
2
)

1,
13

8
(1

25
l

m
−
2
)

ar
ea

(m
2
)

37
.0

37
.0

17
.0

9.
1

il
lu

m
in

at
ed

re
ac

to
r

su
rf

ac
e

(k
m

2
)

37
.0

37
.0

34
.0

91
.0

op
ti

m
al

cu
lt

u
re

d
en

si
ty

(g
l−

1
)

0.
4

4.
8

6.
0

2.
2

vo
lu

m
et

ri
c

p
ro

d
u

ct
io

n
ra

te
0.

18
1.

60
2.

4
0.

90
(g

l−
1

d
−
1
)

ar
ea

l
p

ro
d

u
ct

io
n

ra
te

(g
m

−
2

d
−
1
)

27
.0

27
.0

60
.0

11
0.

0
re

ac
to

r
effi

ci
en

cy
(v

ol
u

m
et

ri
c

0.
5

4.
3

7.
0

1.
0

p
ro

d
u

ct
io

n
ra

te
/i

ll
u

m
in

at
ed

su
rf

ac
e)

x
10

2



1.7 Potential of photosynthetic microorganisms for industrial production . . . 23

Figure 1.9: Global average solar irradiance (figure from [115])

the algal culture is not too high so that light can penetrate deep into the culture.

Further, the depth of the ponds should not exceed 0.3 m [25] or the choice of diam-

eter of the reactors should be made to ensure a good light supply inside the reactor

[110]. In order to achieve these requirements, a high surface-to-volume ratio [14]

should be chosen, as well as means assuring good mixing of the culture [24, 110].

Yet, too strong light intensities can lead to photoinhibition, which would result

in reduced photosynthetic efficiency and growth [11]. This problem can especially

occur during noon time [25], when light intensity is usually the highest.

Temperature:

Temperature is another factor which influences the production of photosynthetic

microorganisms. Shallow ponds have the disadvantage of extreme temperature

fluctuations [25], as they can heat up quickly but also cool down very fast, which

leads to growth inhibition [33]. In Fig. 1.10 [118] the global average temperature

is shown. Countries with optimal temperatures between 20-30◦C are located from

southern Mexico till southern Brazil as well as almost the entire African continent,

the Arabian countries, India and from Thailand to central Australia, whereas in

central Europe lower average temperatures of 5.5-10◦C are reached. It is important
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Figure 1.10: Global annual average temperature (figure from [118])

to take into account that at locations with high average temperatures, tempera-

tures during the hottest season or the hottest time of the day are often too high for

optimal cultivation, so that cooling systems are of need. In contrast, heating might

be necessary in cooler regions, especially in the winter months. Use of industrial

waste heat, such as heat from the cooling water of a power plant, can be utilized.

Nutrients:

The third main limiting factor is the availability of nutrients, as nutrients are

essential for growth. Hereby especially the concentration [119] as well as the ratios

[120] of the elements are of importance. The most important nutrients needed for

cultivation are macronutrients such as nitrogen and phosphorus and micronutrients

e.g. iron, magnesium and trace elements [108]. More information on nutrients is

given in section 1.7.4.

1.7.2.2 Impact of cultivation conditions

The influence of different environmental parameters on growth and production

of compounds within the cells are discussed below based on:

• nutrient availability

• temperature

• light duration
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• light path

• light availability

Cultivation under different conditions leads to a change in physiological processes

and by that also a change in production of different organic compounds. For exam-

ple, Nannochloropsis sp. cultivated in Schott glass bottles containing 9 l medium in

a laboratory achieved the highest biomass production at medium nitrogen (600 µM

NaH2NO3) and phosphorus concentrations (25 µM NaH2PO4) [121]. Lower nu-

trient availability led to higher lipid and carbohydrate contents. The protein

content increased with increasing nitrogen concentrations. During cultivation of

Nannochloropsis sp. under nitrogen deprivation and natural light in Italy, slightly

lower biomass productivity (-17% of the biomass under normal conditions) with up

to 60% lipid content and a higher lipid productivity (74%) [27] was observed. When

the temperature was not the optimum, an increase in both lipid and protein con-

tent was detected [121]. At lower temperatures higher carbohydrate contents were

measured and at higher salt concentrations higher lipid contents. Yet it should be

kept in mind that sub-optimal temperatures were also accompanied by reduced cell

growth and thus a lower biomass production (here: -4 to -21%).

In order to determine the influence of light duration the cyanobacterium Aphan-

othece microscopica Nägeli was cultivated under different light-dark (LD) cycles in

a bubble column PBR containing 3 l. Maximal growth as well as maximal CO2-

utilization were found at 22-24 hours illumination per day (Table 1.5). Further,

cell concentration and CO2 uptake decreased in proportion to decreasing duration

of illumination. However, growth is not only dependent on light duration but also

on light intensity [122].

Light energy available for algae depends also on the light intensity as well as

the light path and the optimum differs between organisms. Nannochloropsis sp.

showed an optimum of 10 cm in a flat panel PBR under environmental conditions

in Sde Boker, Israel, in which an areal productivity of 12.1 g m−2 d−1 and a pro-

ductivity per volume of 0.3 g l−1 d−1 were found, whereas for Porphyridium sp. the

optimal light path lied at 20 cm and for Spirulina it was only 1.3 cm [123].
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Table 1.5: Maximal cell density of Aphanothece microscopica Nägeli in batch mode under different
light-cycles for 160 h (35◦C, 150 µmol photons m−2 s−1, 15% CO2 enriched air) (values
from [122]).

light-dark-cycle (h) cell densitymax (g l−1)
24:0 5.10
22:2 5.08
20:4 3.4
18:6 2.69
16:8 1.64
14:10 1.3
12:12 2.06
10:14 0.94
8:16 0.34
6:18 0.26
4:20 0.2
2:22 0.15
0:24 0.11

To study the influence of light availability on biomass production Nannochlorop-

sis sp. was cultivated in a 20 l flat panel PBR [27]. The reactor was illuminated

from one side and the intensity was increased from 115 µmol photons m−2 s−2 to

230 µmol photons m−2 s−2. During this experiment the biomass production rose

from 0.61 g l−1 d−1 to 0.85 g l−1 d−1 with an increasing lipid content from 14.7% to

19.6%. When the reactor was illuminated from both sides with the same increase

in light intensity, an increase in biomass production from 0.97 g l−1 d−1 to 1.45 g

l−1 d−1 as well as a rise in lipids from 24% to 32.5% were measured. By cultivating

110 l Nannochloropsis sp. in a Green Wall Panel PBR under natural illumination

in Livorno, Italy, a biomass productivity of 0.36±0.10 g l−1 d−1 with a lipid content

of 32.3±1.0% was recorded, corresponding to the lipid production of 117.28 mg l−1

d−1 [27]. These experiments show that the biomass production as well as the lipid

content increase at higher light availability. Further, higher biomass and lipid pro-

duction are possible under controlled laboratory conditions compared to natural

conditions.

1.7.2.3 Production in laboratory conditions

Values reported for productivity in laboratory scale strongly depend on the culti-

vation conditions. The biomass and lipid productivity of different organisms grown
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Table 1.6: Biomass and lipid productivity of different microalgae and of a cyanobacterium culti-
vated in laboratory scale.

species biomass productivity
in g l−1 d−1

lipid productivity in
mg l−1 d−1

(g m−2 d−1) (g m−2 d−1)
microalga

Nannochloropsis sp. ca. 0.4 [10] 4.6-20.0 [28]
(4.4-13.4) [28] (1.0-4.2) [28]

Isochrysis sp. 0.1-0.2 [10] 6.4-21.1 [28]
(6.1-18.8) [28] (1.4-4.4) [28]

Tetraselmis sp. 0.3 [10] 18.6-22.7 [28]
(33.1-45.0) [28] (3.9-4.8) [28]

Rhodomonas sp. (3.8-13.4) [28] 2.1-9.7 [28]
(0.4-2.0) [28]

cyanobacterium

Spirulina maxima 0.2 [10] 8.6 [10]

under varying conditions are shown in Table 1.6. The biomass productivity ranged

from 0.1-0.4 g l−1 d−1, whereas the areal productivity reached up to 45 g m−2 d−1

with Tetraselmis sp. The lipid productivity depends on the lipid content of the

organisms. Lipid production was up to ca. 23 mg l−1 d−1 or 5 g m−2 d−1 [10, 28].

As these values were achieved under laboratory conditions it is very likely that

they are higher than values achievable by a large-scale production under natural

conditions.

1.7.2.4 Production in a large scale

The production data of different microorganisms cultivated in larger outdoor in-

stallations are listed in Table 1.7. Because the productivity depends on the species

and cultivation conditions, especially the reactor design and location, it is difficult

to compare data of different studies obtained from different organisms cultivated

in different systems in different places. The productivity of the cyanobacterium

Arthrospira platensis lied at 2.7 g l−1 d−1 [124] and Synechocystis aquatilis reached

35 g m−2 d−1 [125]. The microalga Chaetoceros calcitrans reached 37.3 g m−2 d−1

and Chlorella sp. 4.3 g l−1 d−1 and 38.2 g m−2 d−1 [126]. In contrast, the produc-
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tivity of Nannochloropsis sp. was 0.7 g l−1 d−1 [127]. A 300 l N. oculata batch

culture, which was illuminated during the night, achieved a maximal biomass con-

centration of 200 mg l−1 after 48 h cultivation [32]. Production of 1.4 g l−1 d−1 of

the microalga Phaeodactylum tricornutum was reported for a helical tubular PBR

[128] whereas a batch culture achieved a maximal biomass concentration of 25 g

l−1 after 28 d cultivation [24].

Table 1.7: Cultivation of microorganisms in a large-scale.

species productivity cultivation conditions
Arthrospira platensis [124] 2.7 g l−1 d−1 0.01 m tube diameter, setup

wave-like in rows, continuous
operation, natural light, facing
north-south, summer time, near
Florence, Italy

Synechocystis aquatilis
[125]

35 g m−2 d−1 reactor consisting of two paral-
lel tubes, tube length 4 m, inner
diameter 12.5 cm, static mixer,
continuous operation, natural
light, summer time, Tsukuba,
Japan

Chaetoceros calcitrans
[129]

37.3 g m−2 d−1 dome-shaped reactor, November-
December, Iwata, Japan

Chlorella sp. [126] 4.3 g l−1 d−1/
38.2 g m−2 d−1

thin-film reactor, fed-batch, ca.
12 h light per day, July, Czech
Republic

Nannochloropsis sp. [127] 0.7 g l−1 d−1 horizontal tube reactors,
September, Florence, Italy

Nannochloropsis oculata
[32]

after ca. 48 h:
200 mg l−1

air-lift reactor in greenhouse,
constant temperature of 28◦C, il-
lumination during night

Phaeodatykum
tricornutum [128]

1.4 g l−1 d−1 helical reactor, 106 m long plastic
tubes with a diameter of 0.03 m,
continuous operation, Spain

Phaeodatykum
tricornutum [24]

after 20 d:
25 g l−1

vertical flat panel airlift reactors,
temperature control 20◦C, 24 h
artificial light with 1/3 of the
maximal sunlight intensity
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1.7.2.5 Lipid production

The amount of oil which can be produced with photosynthetic microorganisms

is about 200 times higher than the yield of the highest oil-producing plant oil palm

[9, 11]. According to [10] the highest lipid production was achieved with Chlorella

sp. at 179 mg l−1 d−1 in a cylindrical glass reactor (30 cm length, 7 cm diameter)

at 26◦C and continuous illumination with 300 µmol photons m−2 s−1. One liter of

biodiesel production requires 0.9 kg (900,000 mg) of crude oil [25]. An annual oil

production of up to 58,700 l per hectare are possible with microalgae containing

30% oil by wt. in biomass [11]. Possible oil production of up to 143-443 t per

hectare [7] based on extrapolated data of Tetraselmis suecica or 20,000-80,000 l per

acre (1 acre=0.405 hectare) per year [6] have been described for high oil species of

microalgae. Comparing the production with and without additional illumination,

an oil yield of 100-130 m3 ha−1 can be reached under natural illumination and

172 m3 ha−1 under artificial illumination [10].

Haematococcus pluvialis was cultured in a pilot facility in Hawaii for production

of biodiesel with 25,000 l PBRs coupled with 50,000 l open ponds [130] on an area

of two hectares [108]. With this facility biomass production of 1.9 kg d−1 [108, 130]

and productivity of 0.076 g l−1 d−1 was reached. The oil production was equivalent

to 420 GJ ha−1 a−1 and a maximal production rate of 1,014 GJ ha−1 a−1. It is

assumed that up to 3,200 GJ ha−1 a−1 can be achieved with Chlorella under favor-

able conditions in the existing production system [23, 108, 130].

1.7.2.6 Production of polysaccharides

In order to investigate the production of polysaccharides such as xylose, galactose

and glucose by Porphyridium sp., a study was carried out in a flat panel reactor

under natural conditions [30]. The maximal cell density was achieved faster in sum-

mer, with longer periods of optimal temperature, than in winter. A reactor with

1.3 cm path brought higher productivity per volume while a reactor with 30 cm

path allowed higher areal productivity. With 1.3 cm path a production of 0.110 g

l−1 d−1 was reached in summer and 0.073 g l−1 d−1 in winter. At a daily harvest

of 75%, 3.4 g m−2 d−1 of soluble polysaccharides could be produced [30].
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1.7.3 Wastewater treatment

Another important cost factor during cultivation of microalgae and cyanobacte-

ria are nutrients needed for growth. Even though they can produce 20 times more

biodiesel than rapeseed, they also need more nitrogen of up to 8-16 t ha−1 a−1 [6].

In order to reduce these costs for nutrients, cultivation in wastewater was studied.

In the following some examples are given.

Spirulina platensis was cultivated in 20% anaerobic sludge blanket in a contin-

uous process reaching a productivity of 20 g m−2 d−1 in a 6 l reactor outdoors in

Thailand at ambient temperatures [31]. About 12 g m−2 d−1 were produced in a

100 l reactor achieving a total nitrogen elimination of 34 mg l−1 d−1 and a total

phosphorus elimination of 4 mg l−1 d−1 [31]. Botryococcus braunii cultivated in

secondary-teated wastewater of a pigs farm was able to take up 80% of the nitrate

at a starting concentration of 788 mg l−1 [34].

Centrate is the liquid which remains after concentration of activated sludge. It

has an unfavorable N/P-ratio, contains little carbon but high amounts of toxins

and bacteria. Due to its turbidity, translucency is rather low. Despite all these,

Chlorella sp. was able to grow directly in centrate without needing any adaptation

phase [131]. Further, no negative impact of bacteria could be observed on growth

or productivity. Yet a post-treatment of the centrate was necessary as the nutrient

elimination was not sufficient after cultivation. In an experiment with 25 l a de-

crease of biomass production was observed at a certain time point in comparison

with the 100 ml scale. In order to investigate the influence of the bacteria in the

centrate, row centrate (after removal of solid matter) was compared to autoclaved

centrate [131]. As shown in Table 1.8, there was no difference between these two

media concerning nutrient elimination by Chlorella.

A further type of wastewater is domestic wastewater, which contains low nitro-

gen and phosphorus concentrations. This is limiting for cell growth; the higher the

initial concentrations of these nutrients are, the higher the maximal cell density

that can be achieved. Scenedesmus sp. was cultivated in 100 ml media with differ-

ent nitrogen and phosphorus concentrations, as this alga can also grow well under

low nutrient concentrations and is therefore suitable for treatment of secondary

wastewater [120]. Phosphorus elimination of almost 100% was achieved at differ-
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Table 1.8: Removal of different nutrients from centrate by Chlorella sp. grown under 25◦C and
illumination at light intensity of 50 µmol photons m−2 s−1 (values taken from [131]).

nutrient removal from row cen-
trate

removal from auto-
claved centrate

total-phosphate 80.9% 79.0%
NH4-N 93.9% 93.0%
total-nitrogen 89.1% 89.9%

ent N/P-ratios. Elimination of nitrogen is in contrast dependent on N/P-ratios;

decrease in nitrogen elimination was observed at N/P > 8:1 and an initial concen-

tration of total nitrogen > 10 mg l−1 or at N/P > 20:1 and an initial concentration

of total phosphorus < 0.5 mg l−1. Absolute nitrogen elimination was achieved at

N/P-ratios of 2:1-8:1 and at 5:1-8:1 both nitrogen and phosphorus were completely

removed [120].

Another example for wastewater treatment is given by cultivation of different mi-

croalgae in untreated wastewater from a carpet factory in the USA, with biomass

production of 16.1-28.1 t ha−1 a−1 and a lipid production of 3,260-3,830 l ha−1 a−1

[26]. Cultivation of Chlorella vulgaris in 0.25 dm3 sterile wastewater free of solid

matter from a steel factory in Korea, with 15% (v/v) CO2 led to a fixation of 26.0 g

CO2 m−3 h−1 (0.624 g CO2 l−1 d−1) with an uptake of 0.9 g m−3 h−1 of ammonia

[132].

1.7.4 Nutrient balance

The amount and speed of nutrient uptake depends on the microorganisms as well

as the cultivation conditions. In Table 1.9 [133] nutrient uptake rates and produc-

tivity of different organisms are given. The highest nitrogen uptake rate of 61.8 mg

g−1
biomass was achieved by S. platensis LEB-52 while the highest phosphorus uptake

rate of 314.4 mg g−1
biomass was found for C. vulgaris LEB-104.

To reduce costs for nutrients, there is the possibility of recycling water which is

separated from the solid matter during harvesting and fed back to the culture, as

it still contains nutrients. The requirement of different nutrients (nitrogen, phos-
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phorus, potassium, magnesium and sulfur) for microalgae is described in [134] for

cultivation under various conditions. If water is recycled, the need for nutrients can

be reduced by up to 55%. By using sea or wastewater instead of fresh water, an

addition of only phosphorus and nitrogen is needed and the demand for nitrogen

supply can be reduced by up to 94% .

1.7.5 Water footprint

1.7.5.1 Recycling

Water loss during cultivation of microalgae or cyanobacteria is attributable to

process operation and evaporation [25]. In open pond systems 140-200 l are needed

to bind 1 kg carbon [2]. A typical American consumes 317 GJ per year. In order to

produce this much of energy in form of biomass, about 120,000 m3 of water will be

lost at locations such as California, Iowa or Virginia in the USA [135]. To produce

1 kg of biodiesel in a pond system, 3,726 kg of water are needed, of which 84.1% will

be lost through harvesting, evaporation and drying process. If sea or wastewater is

utilized, then the requirement of fresh water can be reduced by up to 90% [134].

Recycling of water can reduce costs for nutrients, yet it can also lead to con-

centration of toxic substances such as metals or metabolic products as well as an

increase in salinity of the water. Partial recycling of water can reduce the water

use from 3,024,067 to 324,149 m3 d−1 in a 50,000,000 m3 (5,000 ha) pond. This

leads to a water utilization of 278 m3 per m3 biodiesel [25]. If water can be used

by 100%, 1 m3 water is needed for production of 0.03 m3 of biodiesel [25].

Water utilization between pond systems and a tube-shaped airlift PBR was com-

pared by using similar operational processes for biodiesel production [22]. Culti-

vation of C. vulgaris in a pond system in Great Britain had water requirement of

3.8 m3 ton−1
biodiesel while cultivation in the tube reactor used 13.7 m3 t−1

biodiesel. The

lower water usage in the pond system was explained by the partial replacement of

water loss with rain water. In comparison, pond cultivation in the Mediterranean

area would increase water usage up to 101 m3 t−1
biodiesel. If closed PBRs were used at

the same location, they would need to be cooled, e.g. by spraying water onto the

reactor surface [5, 22], which would result in water requirement of 362 m3 t−1
biodiesel.
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These reports make it clear that the water footprint depends on the reactor as well

as climatic conditions of the location.

Further, the need of fresh water is also influenced by cultivation, harvest, drying

and extraction as well as transesterification [134]. Especially during harvest, which

can cause the largest loss of water, the demand for fresh water can be reduced

by recycling water. In sum, whatever the source of water (fresh water, sea and

wastewater) is or which cultivation system is used (open or closed) with or without

water recycling, addition of fresh water is always essential for cultivation of algae

in all climatic conditions.

1.7.5.2 Comparison of water footprint for biodiesel production

Table 1.10 summarizes the water footprint for biodiesel production with different

crops in comparison to microalgae [134]. Crops such as corn, potatoes, sugarcane,

sugar beet, sorghum and switchgrass are utilized for ethanol production. The water

footprint values of these plants show how much water is used to produce ethanol

to gain the energy amount equivalent to 1 kg biodiesel. The total water footprint

of the microalgae depends on the water recycling rate as well as lipid contents of

the cells. For agricultural production, the blue water footprint refers to evaporated

surface and ground water for irrigation, green water footprint refers to evaporated

rainwater during production and the volume of water becoming pollutant during

production is referred to as the grey water footprint [136]. From the data in Table

1.10 it is clear that biodiesel produced from microalgae is competitive to other crops

in terms of blue and green water footprint, referring to the evaporated water during

process operation, and total water footprint [134]. In addition, the data shows that

microalgae are more productive than plants even when the water consumption is

taken into account.
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Table 1.10: Comparison of the water footprint of biodiesel production from microalgae with other
crops (values taken from [134]).

blue and green
water footprint
(kgwater/kgbiodiesel)

total water
footprint
(kgwater/kgbiodiesel)

corn 1,583-1,972 4,015
potatoes 1,214-1,684 3,748
sugarcane 1,978-2,131 3,931
sugar beet 1,268-1,284 2,168
sorghum 3,153-6,647 15,331
soybean 6,539-7,521 13,676
switchgrass 2,189 N/A
wheat 263-956 N/A

microalgae 399 591-3,650





2 Motivation

The decreasing availability of fossil resources for energy production has led to

a renewed focus on bio-based fuels as a sustainable energy source. Besides crops,

algae can supply biomass as a non-competing source [7]. Yet, algae production is

not yet economically viable, as costs for production are relatively high, especially

in regions with limited light availability and lower temperatures. Thus substantial

improvements are needed, from reactor design and machines consuming less energy

to selection of high biomass and lipid producing algal strains [27]. The first objec-

tive of this thesis was to make a literature survey of the current state of the art in

algal biomass production and additional benefits.

N. gaditana is a lipid rich microalga suitable for biodiesel production [11]. As

biotechnological techniques are becoming available, it is therefore of much interest

to understand the regulatory mechanism of growth and metabolism in this alga in

order to develop strategies for genetic engineering and improve productivity. The

second aim of the study was to examine possible effects of circadian rhythms on

growth and photosynthesis to better understand endogenous regulation of these

processes in N. gaditana.

Light is a major limiting factor during algal cultivation, as cell density and

biomass concentration are limited by light penetration into PBRs due to self-

shading of the culture. In the last part, two NPQ mutants, npq3 and npq21, which

had been previously selected as promising candidates based on their low NPQ ca-

pacities and low pigmentation ([137], EMS mutagenesis and isolation originally

done by [138]), were evaluated for growth and biomass production under different

variable conditions in small controlled PBRs in the laboratory, and for npq21 also

in larger PBRs in greenhouses which are closer to the conditions found in industrial

scale production. The aim of this part was to examine if higher production could

be achieved by these mutants compared to the wild type, assuming that less energy

37
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dissipation (i.e. less loss of the absorbed light energy) in form of NPQ - as long

as such a decrease in the NPQ capacity does not cause photoinhibition and dam-

age under stress conditions - should lead to an increase in solar-to-biomass energy

conversion [95].



3 Materials and Methods

3.1 Organisms

N. gaditana Lubián SAG 2.99 was purchased from the Culture Collection of Al-

gae, University of Göttingen (Germany). N. gaditana wild type (WT) CCAP849/5

and EMS-performed mutants npq3 and npq21 were kindly provided by Roberto

Bassi, Dipartimento di Biotecnologie, Università degli Studi di Verona (Italy).

3.2 Chemicals

Utilized chemicals were purchased from the companies VWR International GmbH

(Germany), Sigma-Aldrich (Germany), Merck KGaA (Germany), AppliChem GmbH

(Germany) and LGC Standards GmbH (Germany).

3.3 Cultivation of stock cultures

In a climate cabinet, N. gaditana Lubián SAG 2.99 as well as N. gaditana WT

(CCAP849/5) and its EMS-performed mutants npq3 and npq21 were cultivated

in 5-liter flasks in autoclaved f/2-medium [139] with 2% Tropic MarinR© sea salt

(Tropic Marin, Dr. Biener GmbH, Germany) buffered with 10 mM HEPES (pH

7.2) [40]. The cultures were continuously aerated with ambient air and the temper-

ature in the climate chamber was kept constant at 23◦C. LD cycles in the climate

cabinet were programmed according to the LD cycle applied at the beginning of the

experiment, so that the microalgae were acclimated to this condition for at least

one week. The intensity of photosynthetically active radiation (PAR) during the

light period was 100 µmol photons m−2 s−1 (OSRAM L 36W/77 Flura, Germany).

39
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Prior to the experiments the microalgae were centrifuged (Sorvall RC 6 Plus Cen-

trifuge, Thermo Scientific, Germany) at 23◦C and 1,580 x g for 30 min and cells

were washed with distilled water to remove salt and nutrients.

3.4 Cultivation in photobioreactors in the laboratory

The cells were transferred in fresh medium at an optical density (OD) value of

0.2 measured at 680 nm (OD680) (UVKONR©XL, Goebel Instrumentelle Anakytik,

Germany). Then the algae were filled into 1-liter PBRs (Photobioreactor FMT-150,

Photon Systems Instruments, Czech Republic). The PBRs were equipped with a

red (centered at 627 nm) and blue (centered at 455 nm) light LED panel. The

culture was continuously stirred with a magnetic stirrer and aerated with 1% CO2

in air with a flow rate of 400 ml min−1.

3.5 Measurements of OD

The OD was measured in the PBRs at OD680 and OD735.

For the samples from greenhouse PBRs, OD was measured with a spectral pho-

tometer (UVKONR©XL, Goebel Instrumentelle Anakytik, Germany) at 540 nm,

680 nm and 735 nm and ultrapure water (Milli-Q Synthesis, Q-GardR© 2 Merck

Millipore, Germany) was used as the blank value. According to [35] OD540 is a

suitable wavelength for representing cell numbers and biomass, while OD680 is the

absorbtion maximum of chlorophyll. Light scattering measured at 735 nm was used

as a proxy for cell density [140]. If the OD exceeded 1.0, the culture was diluted to

an OD value between 0.1-1.0.

3.6 Chlorophyll a fluorescence measurements

Measurements of PS II quantum yield were performed in the PBRs. The quantum

yield was estimated by measuring chlorophyll a fluorescence within the wavelength

range of 665-750 nm and by applying saturation pulses (455 nm and/or 627 nm,
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ca. 800 µmol photons m−2 s−1). The PS II quantum efficiency was defined as

(Fm-Fo)/Fm for dark adapted measurements and (Fm’-Fs)/Fm’ for light adapted

measurements, where Fm and Fo are the maximal and minimal chlorophyll fluores-

cence intensity in the dark and Fm’ and Fs are the maximal and actual intensity

in the light.

NPQ was determined by running a light induction program with a Plant Effi-

ciency Analyzer (Handy PEA, Hansatech Instruments, Germany) equipped with

red LEDs optically filtered to a peak wavelength of 650 nm. Three ml algae culture

were dark adapted for 15 min and then exposed to the light induction program

starting with 30 s light-off, then 5 min at 1000 µmol m−2 s−1 and 3 min of light-off.

Saturation light pulses of 0.8 s (3500 µmol m−2 s−1) were applied every 30 s to

measure Fm or Fm’. Values of NPQ were defined as (Fm-Fm’)/Fm’.

3.7 Biomass dry weight

From each PBR 150 ml algae culture were taken and centrifuged (Allegra 25R,

Beckman Coulter GmbH, Germany) in 50 ml tubes at 4◦C and 3,007 x g for 30

min. The cells were washed with ultrapure water to remove salt and nutrients,

then the biomass was transferred into dried and pre-weighed 1.5 ml tubes and

centrifuged (Eppendorf Centrifuge 5417 R, Eppendorf AG, Germany) at 4◦C and

20,817 x g for 20 min, after which the supernatant was discarded. The tubes con-

taining biomass were dried in an oven at 105◦C for 48 h until constant weight was

reached. Subsequently, the tubes containing the biomass were put in an exsiccator

and cooled down to room temperature. The dry weight was determined with a fine

scale (ExplorerR©R, OHAUSR©, Switzerland) to obtain the biomass.

For a larger volume of sampling, one liter algae culture from each PBR system

was centrifuged (Sorvall RC 6 Plus Centrifuge, Thermo Scientific, Germany) at 4◦C

and 2,820 x g for 30 min in pre-weighed tubes. The cells were washed with ultra-

pure water to remove salt and nutrients, centrifuged again (4◦C, 2,820 x g, 30 min)

and the supernatant was discarded. The procedures for drying and weighing of

biomass were as described above.
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3.8 Cell number

The number of cells was counted with a hemocytometer (Neubarer-improved,

Paul Marienfeld GmbH & Co. KG, Germany). Cell counting was performed with

images taken under a light microscope (Laborlux S, Leitz, Germany) at the mag-

nification of 40x.

3.9 Total-nitrogen

Three ml algae culture were centrifuged (Eppendorf Centrifuge 5417 R, Eppen-

dorf AG, Germany) at 4◦C and 20,817 x g for 20 min and the pellet was washed

with ultrapure water. Then the pellet was suspended in 1.5 ml ultrapure water and

the nitrogen content was determined with a cuvette test according to the manu-

facturer’s instructions (LATONR© total nitrogen, LCK 138, HACH LANGE GmbH,

Germany).

3.10 Nitrate

For the experiments in greenhouse PBRs (see 3.14), nitrate concentration in the

medium was determined to calculate the amount of nitrate and f/2 nutrient solu-

tion, respectively, to be added to the culture. A sample (1.5 ml) was taken from

the algal culture, centrifuged (Eppendorf Centrifuge 5417 R, Eppendorf AG, Ger-

many) at 4◦C and 20,817 x g for 20 min. The nitrate concentration was measured

in the supernatant with a kit (Nitrate-Test in Seawater 0.2-17.0 mg l−1 NO3-N;

0.9-75.3 mg l−1 NO3, Merck KGaA, Germany) following the manual of the kit.

3.11 Pigment analysis

For pigment analysis microalgal biomass was collected by centrifugation (Ep-

pendorf Centrifuge 5417 R, Eppendorf AG, Germany) of 3 ml culture at 4◦C and

20,817 x g for 20 min, frozen in liquid nitrogen and grounded in methanol until

the pellet was white. The methanol containing extracted pigments was separated
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from the cell fragments by centrifugation at 4◦C and 20,817 x g for 20 min. The

supernatant was taken and the volume was adjusted to 1.5 ml. The extracts were

filtered through a syringe filter (ChromafilR©, 0.45 µm, Macherey-Nagel, Germany)

prior to the HPLC analysis.

Separation of pigments was performed with an Allsphere ODS-1 column (5 µm

particle size, 250 mm x 4.6 mm; Alltech Associates Inc., USA). The solvents and

protocols were modified from [141], whereby solvent A (acetonitrile:methanol:Tris

HCl (0.1 M, pH 8) (80:12:8.5)) and solvent B (hexane:methanol (1:4)) were used

for the mobile phase. The HPLC program started with 100% solvent A within the

first 24 min followed by a linear gradient to 90% solvent B within 2 min, whereafter

90% solvent B was run from 26 to 30 min followed by a linear gradient to 100%

solvent B at 36 min. Subsequently, a linear gradient back to 100% solvent A was

conducted in 4 min and the system was equilibrated with 100% solvent A for 3 min

before the next sample was injected. The flow rate was constant at 1 ml min−1 and

the sample injection volume was 20 µl.

The identification of the pigments was carried out by determination of the reten-

tion times and the absorption spectra observed with a photodiode array detector

(Waters 996 PAD, Waters Corporation, USA). Integration of the peaks was done

in the chromatograms detected at 440 nm and data analysis was performed with

Waters Empower software. Pure standards of carotenoids and chlorophylls (DHI

LAB Products, Denmark) were utilized for calibration of the HPLC system.

Figure 3.1 shows a typical chromatogram of a pigment extract from N. gaditana

with peaks of vaucheriaxanthin (putative), violaxanthin, antheraxanthin, chloro-

phyll a and β-carotene. Two additional peaks were often detected, but could not

be clearly identified (probably vaucheriaxanthin ester) and therefore were not in-

cluded in the analysis. The HPLC system was not calibrated for vaucheriaxanthin,

thus as an approximation of vaucheriaxanthin was calculated by using the same

conversion factor as for violaxanthin.
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Figure 3.1: Typical chromatogram of algae pigment extract. Vau (vaucheriaxanthin), V (violax-
anthin), A (antheraxanthin), Chl a (chlorophyll a), β-car (β-carotene).

3.12 Chlorophyll a content

Algal biomass in 3 ml culture was collected by centrifugation (Eppendorf Cen-

trifuge 5417 R, Eppendorf AG, Germany) for 20 min at 20,817 x g, 4◦C. The pellet

was frozen in liquid nitrogen and ground in methanol. Then the sample was heated

for 5 min at 50◦C under gentle agitation (1,200 rpm), and centrifuged at 4◦C and

20,817 x g for 20 min. The absorbance (A) was measured in the supernatant at

750 nm, 665.2 nm and 652 nm and the chlorophyll a content was calculated with

equation 3.1 and 3.2 [142].

Chl a (g ml−1) = 16, 29 ∗ A(665.2−750) − 8.54 ∗ A(652−750) ∗ml−1
MeOH (3.1)

Chl a (nmol ml−1) = 18, 22 ∗ A(665.2−750) − 9.55 ∗ A(652−750) ∗ml−1
MeOH (3.2)
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3.13 Treatments in photobioreactors in the

laboratory

3.13.1 Experiments with N. gaditana SAG 2.99

Experiments to study the effects of circadian clock and red/blue light treatments

were performed with N. gaditana Lubián SAG 2.99. In the climate cabinet N.

gaditana was cultivated under 12 h/12 h or 18 h/6 h LD cycles. The maximal

light intensity in the PBRs was 100 µmol photons m−2 s−1 given by either equal

amounts of red and blue LED or by red or blue LED alone. For aeration 1% CO2

in synthetic air (80% nitrogen, 20% oxygen) was applied and the temperature was

kept constant at 23◦C.

The experiments started after one day of cultivation in the PBRs under conditions

described above. Then, the LD regime was either kept unchanged at 12 h/12 h or

18 h/6 h (control) or switched to continuous light (LL) at different time points dur-

ing the dark period. Figure 3.2 illustrates the light treatments in the experiments

starting with 12 h/12 h LD. Because light is a major ”Zeitgeber” that synchronizes

the endogenous clock with external LD cycles [58], Zeitgeber time (ZT), which

starts with light-on (ZT0), was used in all experiments. The different treatments

are abbreviated according to the time of the LD-LL stitching: after 12 h (ZT0),

3 h (ZT15), 6 h (ZT18) or 9 h (ZT21) of darkness.

3.13.2 Experiments with N. gaditana CCAP849/5

N. gaditana WT (CCAP849/5) and EMS-performed mutants npq3 and npq21

were cultivated under 12 h/12 h LD cycles or continuous light in the climate cabinet

at 23◦C, depending on the conditions of the following experiment. In the first ex-

periment with LD cycles (Fig. 3.3A), the maximal light intensity in the PBRs was

200 µmol photons m−2 s−1 given by equal amounts of red and blue LED (≈8 mol

m−2 d−1). For the treatment with fluctuating light (Fig. 3.3B), PAR was varied

between 10 µmol photons m−2 s−1 and 770 µmol photons m−2 s−1 in form of sinus

curves with a time span of 4 min during the light period of LD cycles (≈17 mol

m−2 d−1). In the second experiment with LL (Fig. 3.4), constant illumination in

the PBRs (200 µmol photons m−2 s−1) was given by equal amounts of red and blue



46 3 Materials and Methods

Figure 3.2: Light treatment applied to
N. gaditana cultures. All
cultures were entrained to
the control condition (con-
trol) with 24 h photoperiod
of 12 h/12 h light/dark
(LD) cycles and a constant
temperature of 23◦C. Light
intensity was gradually in-
creased (or decreased) over
an hour at the beginning
(or at the end) of the light
period. Time on the x-
axis is shown as Zeitgeber
time (ZT) which always
starts at the point of light-
on (ZT0). For experiments
with constant light (LL),
light regimes were switched
from the LD to LL con-
ditions at different phases
of the dark period: after
12 h (ZT0), 3 h (ZT15),
6 h (ZT18) or 9 h (ZT21)
of darkness.
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LED, as in the experiment with LD cycles. However, the light regime of fluctuat-

ing light was different in this experiment: the PAR was switched between 10 µmol

photons m−2 s−1 (3 min) and 770 µmol photons m−2 s−1 (1 min) to give the same

amount of daily total PAR (≈17 mol m−2 d−1) in both LL conditions. These ex-

periments were run under a constant temperature of 23◦C. The third experiment

with varying day/night temperatures was conducted under 12 h/12 h LD cycles

and daytime PAR of 200 µmol photons m−2 s−1 (as in Fig. 3.3A). The tempera-

ture regimes used were 23◦C/15◦C (light/dark) and 30◦C/23◦C. In all experiments,

algae cultures were continuously aerated with 1% CO2 in nearly CO2 free ambi-

ent air (ambient CO2 absorbtion with Soda Lime, Medisize Deutschland GmbH,

Germany), which was filtered with activated charcoal filter and molecular filter

(Chromatographie Service GmbH, Germany).
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Figure 3.3: Light treatments applied to N. gaditana cultures. 12 h/12 h LD constant light with
gradual increase (or decrease) over an hour at the beginning (or at the end) of the
light period (A). 12 h/12 h LD fluctuating light (B). For (B) only the last and the
first hour of LD period are shown.
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Figure 3.4: Light treatments applied to N. gaditana cultures. LL constant light (A). LL fluctuating
light (B). For clarity, only a time course of an hour is shown for both treatments.

3.14 Cultivation in closed photobioreactors under

greenhouse conditions

Four identical pilot-scale algae cultivation systems were set up in two small green-

houses (3 m x 4 m), two per greenhouse (Figs. 3.5 and 3.6). Each system con-

sisted of two rows of four V-shaped PBRs (≈30 l per V-reactor, NOVAgreen -

Projektmanagement GmbH, Germany) and a transparent mixing cylinder (≈25 l),

connected with tubing. Every hour the whole content of the mixing cylinder was

pumped with a peristaltic pump (Verderflex Smart L40, Pumphead S40, VERDER

Deutschland GmbH, Germany) with a volume flow rate of 3.8 l min−1 into the
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V-reactors through small tubes leading into the top of the reactors, during which

a valve prevented algae culture from flowing into the mixing cylinder. After the

cylinder was emptied, the valve was opened again and the microalgae from all

V-reactors flowed through a tube at the bottom of the reactors into the mixing

cylinder until the whole system was leveled off. During this process the pH-value of

the culture was measured. A valve for CO2 supply was automatically opened, if the

pH was above 7.5. CO2 was supplied with a volume flow rate of 4 l min−1, mixed

with air stream to have a CO2 concentration of about 3%. Each V-reactor as well

as the mixing cylinder was continuously aerated at 120 l min−1 by a compressor

(LA-120A, Nitto Kohki Deutschland GmbH, Germany) which served two systems

in the same greenhouse at the same time. Further, an air compressor (2 Zylinder

Kompressor BT-AC 400/50, Einhell Germany AG, Germany) was turned on twice

a day for 40 s in order to stir up algae settling at the bottom of V-reactors. Be-

sides the pH, also temperature (PT 100, Hamilton Messtechnik GmbH, Germany)

and conductivity (Conducell 4USF-PG-120, Hamilton Messtechnik GmbH, Ger-

many) were measured and recorded every minute. The regulation of the devices

was controlled by a programm created with Labview (National Instruments). The

temperature in the greenhouse was controlled by a ventilation system which was

turned on at 23◦C and above to cool down or by an air heater (Helios STH 9T,

Germany) which was turned on at 15◦C and below to warm up. In order to protect

the microalgae from extreme heat a spray cooling system was activated above 32◦C.

PAR was continuously measured every minute with an optometer (X12 Optome-

ter, Gigahertz-Optik GmbH, Germany). Data for sunshine duration, solar radi-

ation and sunrise and sunset were kindly provided by Axel Knaps from S-UM,

Forschungszentrum Jülich GmbH, Germany. Sunshine duration was calculated as

the sum of all periods, in which the solar radiation exceeded a value of 120 W m−2.

Solar radiation was measured for wavelengths between 0.3 and about 30 µm [143].

For innoculation of each cultivation system, 500 ml of culture were taken from

the stock cultivated in 5-l flasks in a climate cabinet with continuous aeration at

constant temperature of 23◦C and 12 h/12 h LD cycle. The light intensity during

the light period was about 100 µmol photons m−2 s−1. The optical density of the

culture was adjusted to OD540=0.5 before innoculation.



3.14 Cultivation in closed photobioreactors under greenhouse conditions 51

Figure 3.5: View from the side of the setup of photobioreactor system in the greenhouse (created
by Regina Braun with the assistance of Arthur Podosva).

Figure 3.6: View from the top of the setup of photobioreactor system in the greenhouse (created
by Regina Braun with the assistance of Arthur Podosva).
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3.15 Statistical analysis

The experiments in the laboratory were done in three or six replicates. Means

and standard deviation (SD) were calculated for each treatment. Data between the

treatments for each genotype or between WT and npq3 or npq21 were analyzed

by using t-test where P values less than 0.05 were considered to be significant.

The WT experiment in the greenhouse was done in four replicates with calculated

means and SD, whereas the WT and npq21 experiment was done in two replicates

with calculated means.
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4.1 Experiments under controlled conditions

4.1.1 Effects of circadian clock

4.1.1.1 Comparison of different LD regimes

N. gaditana was grown under the 12 h/12 h or 18 h/6 h LD cycle to compare

the two conditions (Fig. 4.1). In both LD regimes the values of OD680, reflect-

ing chlorophyll concentration and cell density of the culture (Fig. 4.2), increased

steadily during the light periods and decreased slightly during the dark periods

(Fig. 4.1A). Consequently, the values reached a higher level in the 18 h/6 h LD

cycle in which the light periods were longer. At a closer look, the slope of OD680

increase was found to be significantly steeper in the first half of the light periods

than in the second half under both LD cycles (Table 4.1). The rate of the OD680

increase was 32% (1st cycle) and 28% (2nd cycle) higher in the first 6 h than in the

second 6 h of the light periods under the 12 h/12 h LD cycle, while the difference

was further enhanced under the 18 h/6 h LD cycle to result in 47% (1st cycle) and

46% (2nd cycle) higher rates in the first 9 h than in the second 9 h of the light

periods.

A similar picture was found when OD735, a proxy of cell density (Fig. 4.3), was

plotted instead of OD680 (Fig. 4.1B). Unlike OD680, however, the slope of the day-

time increase in OD735 did not differ significantly between the first and the second

half of the light periods in both 12 h/12 h and 18 h/6 h LD cycles (Table 4.1).

The quantum yield of PS II was measured in the photobioreactors in parallel

with the OD. The values were generally higher (0.65-0.70) during the dark periods

(Fig. 4.4) in which primary quinone acceptors (QA) of the PS II complexes were

more oxidized.

53



54 4 Results

Figure 4.1: Changes in optical density monitored at 680 nm (OD680, in arbitrary units, A.U.) (A)
or at 735 nm (OD735) (B) under the control conditions with 12 h/12 h (black circles)
and 18 h/6 h (grey circles) LD cycles. Black and grey boxes above the x-axis show
dark periods in 12 h/12 h and 18 h/6 h LD cycles, respectively. Data are means of
three replicates and error bars indicate SD.
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Figure 4.2: Correlation between OD680 and chlorophyll a concentration (A) or cell number of N.
gaditana culture (B).
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Table 4.1: Slopes (x100) of OD680 and OD735 increase during the first and second half of the light
periods in the 12 h/12 h and 18 h/6 h LD cycles.

12 h/12 h 18 h/6 h
OD680 OD735 OD680 OD735

light period 1

1st half 0.83 (±0.03) 0.42 (±0.07) 0.97 (±0.05) 0.36 (±0.05)

*** ***

2nd half 0.63 (±0.02) 0.43 (±0.10) 0.66 (±0.04) 0.33 (±0.04)

light period 2

1st half 1.01 (±0.04) 0.37 (±0.03) 0.95 (±0.03) 0.42 (±0.08)

** ***

2nd half 0.79 (±0.04) 0.34 (±0.04) 0.65 (±0.02) 0.29 (±0.02)
Significant differences between the first and second half of the light
periods are indicated by ** (P≤0.01) or *** (P≤0.001) for OD680.
The differences were not significant for OD735. (n=3, ±SD)

Figure 4.3: Correlation between OD735 and cell number of N. gaditana culture.
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Figure 4.4: Changes in photosystem II (PS II) quantum yield under the control conditions with
12 h/12 h (black circles) and 18 h/6 h (grey circles) LD cycles. Data are from the
same experiments as shown in Fig. 4.1. Black and grey boxes above the x-axis show
dark periods in 12 h/12 h and 18 h/6 h LD cycle, respectively. Data are means of
three replicates and error bars indicate SD.

During cultivation growth conditions were recorded via sensors. As an example,

Figure 4.5 shows the pH-value during the experimental run with 12 h/12 h LD

cycle; the pH-values stayed relatively constant at pH 7. The O2 concentration, on

the other hand, showed clear shifts between light and dark periods, reaching about

21% O2 during the light and 20 to 20.4% O2 during the dark periods (Fig. 4.6),

reflecting oxygen evolution (photosynthesis) and oxygen consumption (respiration)

by the algae during these periods.
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Figure 4.5: Changes in pH-value in culture during the 12 h/12 h LD cycle. Data are means of
three replicates and error bars indicate SD.

Figure 4.6: Changes in O2 concentration in culture during the 12 h/12 h LD cycle. Data are
means of three replicates.

4.1.1.2 Switch from 12 h/12 h and 18 h/6 h LD to LL

Figure 4.7 shows OD680 data in the 12 h/12 h LD control (A) and in the treat-

ments in which the light regime was switched to LL at different time points during

the dark period (B-E). A steady rise in OD680 was recorded in all LL conditions,

which is in agreement with the observation of OD680 increase during the light pe-

riods under the LD conditions (Figs. 4.1 and 4.7A). Notably, the steepness of the

slope declined after 12 h of LL illumination (i.e., at the beginning of the light period
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III), irrespective of the timing of the LD-LL switch (Fig. 4.7B-E). Thereafter, the

slope continued to increase in all LL treatments during the periods IV and V.

These changes in OD680 were quantified in Fig. 4.8 which shows relative increase

in OD680 (% h−1) calculated for each 12 h light period (I-V). A significantly lower

value (≈90%) compared to the control was found during the period II when the

LL treatment was started at ZT15 (i.e., after 3 h in the darkness), while no such

decrease was observed for the other treatments in which the onset of LL was later

in the dark period (i.e., after 6, 9 and 12 h in the darkness). Then in the period III,

the increase in OD680 decelerated strongly and uniformly in all LL treatments; the

values were around 50% of the control (Fig. 4.8B). This was followed by recovery

in the periods IV and V, with the fastest recovery observed in ZT15 and the slowest

in ZT0; in other words, the shorter the last dark period before switching to LL, the

faster the recovery.

The quantum yield of PS II was always lower in the light than in the dark, re-

gardless of the treatments (Fig. 4.9). Although the values during the last light

period of the LD cycle (period I) varied between the different treatments, these

values were maintained after switching to LL in all cases. Thus, no reduction or

recovery of PS II quantum yield was found after the LD-LL switch in any of the

LL treatments, which contrasts with the response of OD680 (Figs. 4.7 and 4.8).

Data of OD680 in the 18 h/6 h LD control (A) and in the treatment in which the

light regime was switched to LL at ZT0 (B) is shown in Fig. 4.10. As for 12 h/12 h

LD cycle steady rise in OD680 was recorded in the LL condition, as observed dur-

ing the light periods under the LD conditions (Figs. 4.1 and 4.10A). Notably, the

steepness of the slope already declined after 12 h of LL illumination in light period

II. Thereafter, an increase of the slope in the LL treatment during the periods III

and IV was found.
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Figure 4.7: Changes in OD680 under
the control condition (A)
or after switching to LL at
ZT0 (B), ZT15 (C), ZT18
(D) or ZT21 (E). Dark
grey areas in the back-
ground show dark periods.
Light boxes above the x-
axis show dark periods in
the original LD cycles to
which the cultures were
entrained prior to switch-
ing the light regime. Each
12 h light period of the
LD or LL cycles is de-
noted by a roman num-
ber (I-V): the last period
before switching the light
regime (I) and the first
(II), second (III), third
(IV) and fourth (V) 12 h
period in LL. For the con-
trol that remained in the
LD condition throughout
the experiment (A), the
light periods were con-
secutively numbered from
I to V (only I-III are
shown). Data are means
of three replicates and er-
ror bars indicate SD.
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Figure 4.8: Relative increase in OD680 (% h−1) during the 12 h light periods I-V shown in Fig. 4.7
(A). Within each light period, asterisks (*) above the bars show significant differences
compared to the control (P≤0.001). In (B), all values are normalized to the corre-
sponding data of the control in the same light period (control=1). Data are means of
three replicates and error bars indicate SD.
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Figure 4.9: Changes in PS II quantum
yield under the control con-
ditions (A) or after switch-
ing to LL at ZT0 (B), ZT15
(C), ZT18 (D) or ZT21 (E).
Data are from the same ex-
periments as shown in Figs.
4.7 and 4.8. Dark grey
areas in the background
show dark periods. Light
grey boxes above the x-axis
show dark periods in the
original LD cycles to which
the cultures were entrained
prior to switching the light
regime. Data are means of
three replicates and error
bars indicate SD. Dashed
lines show a reference value
of 0.6.
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Figure 4.10: Changes in OD680 under the control condition with 18 h/6 h LD cycle (A) or after
switching to LL at ZT0 (B). Dark grey areas in the background show dark periods.
Light boxes above the x-axis show dark periods in the original LD cycles to which the
cultures were entrained prior to switching the light regime. Each 18 h light period
of the LD or LL cycles is denoted by a roman number (I-IV): the last period before
switching the light regime (I) and the first (II) and second (III) 18 h period and
third (IV) in LL. For the control that remained in the LD condition throughout the
experiment (A), the light periods were consecutively numbered from I to IV (only
I-III are shown). Data are means of three replicates and error bars indicate SD.
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4.1.1.3 Effects of red and blue light

The oscillations of OD680 continuing in LL at least in the first 24 h suggested a

role of the endogenous clock in controlling chlorophyll accumulation and growth in

N. gaditana. The uniformly lower increase observed in all LL treatments during

ZT12-24 (light period III), rather than during the dark periods according to the

initial 12 h/12 h LD cycle prior to the switch to LL (indicated by light grey boxes

in Fig. 4.7), suggests resetting of the circadian clock by light-on, making ZT12-24

”subjective” night. In order to find out whether red and blue light can both reset

the clock equally well, some of the LL treatments were repeated by using only red

or blue light for the LL illumination without changing the light intensity. The light

regime was switched from 12 h/12 h LD (red + blue light) to LL (red or blue light)

at ZT0 or ZT15 (Fig. 4.11).

Constant blue illumination induced strong oscillation of OD680, which continued

in the light periods IV and V with a cycle duration of >24 h (Figs. 4.11A and B).

A reduction in the slope from the period II to III, as was seen in Figs. 4.7 and 4.8,

could be clearly recognized after switching to blue LL at ZT0 as well as at ZT15.

Constant red illumination also resulted in a lower increase in OD680 during the pe-

riod III compared to the period II, but the changes were less obvious than in blue

LL and the slope stayed nearly constant after the period III, with little or no sign

of recovery during IV and V. The distinct patterns of OD680 changes under blue

LL and red LL are also obvious in Fig. 4.12. The rate of hourly increase in OD680

indicates continuing oscillation in blue LL and no recovery after the period III in

red LL (Figs. 4.12A and B). Changes in the slope were less evident for OD735 under

blue or red LL (Figs. 4.11C and D). Lack of clear oscillation was also confirmed by

the rate of hourly increase in OD735 (Figs. 4.12C and D).

The PS II quantum yield followed the patterns described for Figs. 4.4 and 4.9,

i.e., higher during dark and lower during light periods (Fig. 4.13). Yet, after switch-

ing to LL at ZT0 and ZT15 the values remained higher in red LL than in blue LL in

which the quantum yield gradually decreased to≈0.55 by the end of the experiment.

At the end of the blue or red LL treatments the concentrations of pigments

(vaucheriaxanthin, violaxanthin, chlorophyll a and β-carotene) were measured. Un-

known peaks which appeared in the chromatograms, presumably vaucheriaxanthin
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Figure 4.11: Changes in OD680 (A and B) and OD735 (C and D) after switching to LL with blue
(black circles) or red (grey triangles) LED at ZT0 (A and C) or ZT15 (B and D).
The cultures were entrained to the 12 h/12 h LD-cycles with both blue and red LED
(white circles or triangles). The light intensity was about 100 µmol photons m−2 s−1

in both LD (blue + red) and LL (blue or red) conditions. Dark grey areas in the
background show dark periods. Light grey boxes above the x-axis show dark periods
of the original LD cycles to which the cultures were entrained prior to switching the
light regime. Data are means of three replicates and error bars indicate SD.
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Figure 4.12: Relative increase (% h−1) in OD680 (A and B) and OD735 (C and D) during the 12 h
light periods I-V shown in Fig. 4.11. The light regime was switched from LD with
blue + red LED to LL with only blue or only red LED at ZT0 (A and C) or ZT15 (B
and D). The arrows above the black bars in A and B (OD680 in LL with blue LED)
show significant increase of the values from the light period III to IV (P≤0.001).
Data are means of three replicates and error bars indicate SD.
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Figure 4.13: Changes in PS II quantum yield after switching to LL with blue (black circles) or red
(grey triangles) LED at ZT0 (A) or ZT15 (B). Data are from the same experiments
as shown in Figs. 4.11 and 4.12. The cultures were entrained to the 12 h/12 h LD-
cycles with both blue and red LED (white circles or triangles). The light intensity
was about 100 µmol photons m−2 s−1 in both LD (blue + red) and LL (blue or red)
conditions. Dark grey areas in the background show dark periods. Light grey boxes
above the x-axis show dark periods in the original LD-cycles to which the cultures
were entrained prior to switching the light regime. Data are means of three replicates
and error bars indicate SD. Dashed lines show a reference value of 0.6.
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Figure 4.14: Ratio of vaucheriaxanthin (Vau), violaxanthin (V) or β-carotene (β-car) to chloro-
phyll (Chl) in culture at end of blue or red LL. Data are means of three replicates
and error bars indicate SD. Asterisks indicate significant differences between the blue
and red LL with the same ZT P≤0.05 (*) and P≤0.001 (***). Letters indicate sig-
nificant differences between different ZT at which light was switched to blue or red
LL P≤0.05 (a) and P≤0.001 (c).

esters, were not included in the analysis since they could not be identified. Figure

4.14 shows the levels of individual carotenoids on a chlorophyll basis. Violaxan-

thin was the major carotenoid pigment in N. gaditana, being ca. 78% of the total

carotenoids. No significant differences were found for violaxanthin or β-carotene

per chlorophyll a after switching to blue or red LL while vaucheriaxanthin per

chlorophyll a differed significantly between the treatments.

The carotenoid to chlorophyll a ratios (Fig. 4.15) showed similar values after

switching to red LL at ZT0 and ZT15 and to blue LL at ZT15. In contrast, a

significantly higher ratio was found after switching to blue LL at ZT0 compared to

all other treatments.
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Figure 4.15: Ratio of carotenoids (Car) to chlorophyll (Chl) in culture at end of blue or red LL.
Data are means of three replicates and error bars indicate SD. Asterisk indicates sig-
nificant difference between the blue and red LL with the same ZT P≤0.05 (*). Letter
indicates significant difference between different ZT at which light was switched to
blue or red LL P≤0.05 (a).

4.1.2 Evaluation of NPQ mutants under fluctuating conditions

4.1.2.1 LD cycles with constant and fluctuating light

After receiving N. gaditana WT, npq3 and npq21 mutants, NPQ was measured

during light induction and dark relaxation to check the low NPQ phenotypes origi-

nally identified for npq3 and npq21 during the mutant isolation and selection (Fig.

4.16) [137]. The NPQ phenotypes of the mutants were confirmed.

N. gaditana WT, npq3 and npq21 were grown under 12 h/12 h LD cycles, either

with a constant light intensity (200 µmol photons m−2 s−1) or with fluctuating light

(from 10 to 770 and back to 10 µmol photons m−2 s−1 within 4 min) during the

12 h light period. The OD measured at 680 nm and 735 nm increased in all three

genotypes during light periods for both treatments, yet higher mean values were

measured under LD cycles with constant light for OD680, whereas values of OD735

were similar after 84 h (Fig. 4.17). When comparing WT and mutants under LD

cycle with constant light, mean OD680 values of npq21 were slightly higher than

WT, closely followed by npq3 (Fig. 4.18A). OD735 showed similar behavior, except

after 72 h WT showed slightly higher mean values than npq3 (Fig. 4.18C). Under

LD cycles with fluctuating light, WT and npq21 had nearly the same OD680 values
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Figure 4.16: Non-photochemical quenching (NPQ) measured during light induction and dark re-
laxation after receiving the cultures of WT (black circles), npq3 (grey circles) and
npq21 (white circles).

while the values for npq3 were lower (Fig. 4.18B). OD735 showed similar behavior

as under LD cycles with constant light (Fig. 4.18D).

In the constant light, the relative increase in OD680 (% d−1) calculated for each

24 h period was lower in the first and the last 24 h. The mutant npq21 had the

highest and the lowest value of the three genotypes in the first and the last LD

cycle, respectively (Fig. 4.19). In the second and the third 24 h the values of

all treatments were more similar while minor differences were found between the

genotypes. The relative increase in OD680 was significantly reduced in the first LD

cycle with fluctuating light. However, the values recovered in the second LD cycle

to exceed those in the constant light in the third cycle (WT and npq21) or the

fourth cycle (npq3).

PS II quantum yield was measured 2 h before light-on and 2 h after light-off

(Figs. 4.20 and 4.21). No striking difference was detected between the treatments

for WT and mutuants. In all cases PS II quantum yields were slightly lower at the

beginning of the experiments but reached steady state at ≈0.6 during the experi-

ment. The three genotypes were also comparable under both conditions (Fig. 4.21).
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Figure 4.17: Changes in OD680 and OD735 under 12 h/12 h LD cycles of WT with constant light
(black circles) and fluctuating light (black triangles) (A and D), npq3 with constant
light (grey circles) and fluctuating light (grey triangles) (B and E) and npq21 with
constant light (white circles) and fluctuating light (white triangles) (C and F). Dark
grey areas in the background show dark periods. Data are means of three replicates
and error bars indicate SD.
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Figure 4.18: Changes in OD680 and OD735 under 12 h/12 h LD cycles with constant light (A and
C) or with fluctuating light (B and D) for WT (black symbols), npq3 (grey symbols)
and npq21 (white symbols). Dark grey areas in the background show dark periods.
Data are means of three replicates and error bars indicate SD.

Figure 4.19: Relative increase in OD680 for 12 h/12 h LD cycle for WT, npq3 and npq21 with con-
stant light (C) and fluctuating light (F). Data are means of three replicates and error
bars indicate SD. Asterisks indicate significant differences between the treatments
P≤0.05 (*), P≤0.01 (**) and P≤0.001 (***). Letters indicate significant differences
compared to WT P≤0.05 (a), P≤0.01 (b) and P≤0.001 (c).
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Figure 4.20: Changes in PS II quantum yield under 12 h/12 h LD cycles of WT (A), npq3 (B) and
npq21 (C) under control conditions with constant light (circles) or with fluctuating
light (triangles). Dark grey areas in the background show dark periods. Data are
means of three replicates and error bars indicate SD. Dashed lines show a reference
value of 0.6.
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Figure 4.21: Changes in PS II quantum yield under 12 h/12 h LD cycles with constant light (A)
or fluctuating light (B) for WT (black symbols), npq3 (grey symbols) and npq21
(white symbols). Dark grey areas in the background show dark periods. Data are
means of three replicates and error bars indicate SD. Dashed lines show a reference
value of 0.6.
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Figure 4.22: Molar pigment concentration of vaucheriaxanthin (Vau), violaxanthin (V), antherax-
anthin (A), chlorophyll a (Chl a) and β-carotene (β-car) after 96 h in culture of WT,
npq3 and npq21 under 12 h/12 h LD cycles with constant light (C) and fluctuating
light (F). Data are means of three replicates and error bars indicate SD. Asterisks
indicate significant differences between the treatments P≤0.05 (*) and P≤0.01 (**).
Letters indicate significant differences compared to WT P≤0.05 (a) and P≤0.01 (b).

The concentrations of vaucheriaxanthin, violaxanthin, antheraxanthin, chloro-

phyll a and β-carotene were measured after 96 h (Fig. 4.22). For chlorophyll a

the mean values tended to be higher under LD cycle with constant light than with

fluctuating light, with a significant difference found for npq3. The highest among

the carotenoids, albeit by a factor of three to four lower than chlorophyll a, was

violaxanthin which also exhibited a similar pattern as chlorophyll a, with both mu-

tants showing significantly lower concentrations under fluctuating light compared

to WT. Molar concentrations of vaucheriaxanthin, antheraxanthin, and β-carotene

were always below 0.3 µmol l−1.

For chlorophyll-based contents of individual carotenoids (Fig. 4.23), the values

of npq3 under LD cycle with constant light were significantly lower than under

fluctuating light whereas this was true only for β-carotene in WT and npq21. Sig-

nificant differences compared to WT were found for antheraxanthin under constant

light conditions; both mutants accumulated antheraxanthin in both constant and

fluctuating light regimes while WT had antheraxanthin only under fluctuating light.
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Figure 4.23: Ratio of vaucheriaxanthin (Vau), violaxanthin (V), antheraxanthin (A) or β-carotene
(β-car) to chlorophyll (Chl) after 96 h in culture of WT, npq3 and npq21 under
12 h/12 h LD cycles with constant light (C) and fluctuating light (F). Data are
means of three replicates and error bars indicate SD. Asterisks indicate significant
differences between the treatments P≤0.05 (*) and P≤0.01 (**). Letters indicate
significant differences compared to WT P≤0.05 (a) and P≤0.01 (b).

Figure 4.24 shows that mean ratios of total carotenoid to chlorophyll a were

higher under LD cycles with fluctuating light for WT and npq3 while ratios were

the same for npq21 which always showed significantly higher values than WT.

Mean values of biomass production were significantly higher under LD cycles

with fluctuating light for WT (+16%) and npq21 (+38%) (Fig. 4.25). Under fluc-

tuating light npq3 showed significantly lower biomass production than WT.

The chlorophyll a content per biomass after 96 h (Fig. 4.26) showed lower val-

ues under LD cycles with fluctuating light, and this was significant for npq3 and

npq21. The latter mutant also showed a significantly lower chlorophyll a content

under fluctuation light compared to WT.

A similar pattern was also found for the total nitrogen content per biomass dry

weight with significantly lower values for LD cycles with fluctuating light (-0.23%

for WT, -0.16% for npq3, -0.29% for npq21). Again npq21 showed significant dif-

ferences to WT, having lower values than WT under both treatments (Fig. 4.27).
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Figure 4.24: Ratio of carotenoids (Car) to chlorophyll (Chl) after 96 h in culture of WT, npq3
and npq21 under 12 h/12 h LD cycles with constant light (C) and fluctuating light
(F). Data are means of three replicates and error bars indicate SD. Letters indicate
significant differences compared to WT P≤0.05 (a).

Figure 4.25: Biomass dry weight per liter after 96 h of WT, npq3 and npq21 under 12 h/12 h LD
cycles with constant light (C) and fluctuating light (F). Data are means of three repli-
cates and error bars indicate SD. Asterisks indicate significant differences between
the treatments P≤0.05 (*) and P≤0.01 (**). Letters indicate significant differences
compared to WT P≤0.05 (a) and P≤0.01 (b).
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Figure 4.26: Chlorophyll a (Chl a) content per dry biomass after 96 h of WT, npq3 and npq21
under 12 h/12 h LD cycles with constant light (C) and fluctuating light (F). Data
are means of three replicates and error bars indicate SD. Asterisks indicate signifi-
cant differences between the treatments P≤0.01 (**) and letter indicates significant
difference compared to WT P≤0.05 (a).

Figure 4.27: Total-nitrogen content per dry biomass after 96 h of WT, npq3 and npq21 under
12 h/12 h LD cycles with constant light (C) and fluctuating light (F). Data are
means of three replicates and error bars indicate SD. Asterisks indicate significant
differences between the treatments P≤0.05 (*), P≤0.01 (**) and P≤0.001 (***).
Letters indicate significant differences compared to WT P≤0.05 (a) and P≤0.01 (b).
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Figure 4.28: Cell number after 96 h of WT, npq3 and npq21 under 12 h/12 h LD cycles with
constant light (C) and fluctuating light (F). Data are means of three replicates and
error bars indicate SD. Asterisks indicate significant difference between the treat-
ments P≤0.01 (**). Letters indicate significant differences compared to WT P≤0.05
(a) and P≤0.001 (c).

The cell numbers shown in Fig. 4.28 were significantly lower for WT under LD

cycles with fluctuating light than constant light. While npq3 had significantly less

cells than WT under constant light, its cell number did not change under fluctuat-

ing light. The cell numbers of npq21 were the highest among the three genotypes

under both conditions.

Chlorophyll a per cell were not significantly different between the treatments for

WT and npq21 while npq3 had significantly lower chlorophyll a per cell under fluc-

tuating light (Fig. 4.29). npq3 and npq21 showed significantly lower chlorophyll

a per cell under fluctuating light compared with WT as well as lower values were

found for npq21 under constant light.

Before and after the experiment with 12 h/12 h LD cycles with constant light

and fluctuating light NPQ induction and relaxation was measured (Fig. 4.30). In

all cases higher NPQ values were found at the end of the experiment compared

with the values measured at the beginning. Under the illumination of 1000 µmol

photons m−2 s−1 NPQ values were ≈1.0 higher after the experiment than before

and values during relaxation stayed higher, except for npq3 under 12 h/12 h LD

cycles with fluctuating light where NPQ sustained in the dark was nearly the same
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Figure 4.29: Chlorophyll a (Chl a) per cell after 96 h of WT, npq3 and npq21 under 12 h/12 h
LD cycles with constant light (C) and fluctuating light (F). Data are means of three
replicates and error bars indicate SD. Asterisks indicate significant differences be-
tween the treatments P≤0.01 (**). Letters indicate significant differences compared
to WT P≤0.05 (a) and P≤0.01 (b).

for both treatments. Unlike in Fig. 4.16, NPQ values did not show clear differences

between the genotypes (Fig. 4.31). Before and after 12 h/12 h LD cycles with

constant light NPQ of WT and npq21 were similar while NPQ of npq3 was lower.

Before 12 h/12 h LD cycles with fluctuating light NPQ of npq3 and npq21 were

similar while NPQ of WT was slightly lower, yet after the experiment WT showed

slightly higher NPQ than the other two genotypes.
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Figure 4.30: NPQ during light induction and dark relaxation before and after 12 h/12 h LD cycles
with constant light (circles) (A, B and C) and fluctuating light (triangles) (D, E and
F) of WT (black symbols), npq3 (grey symbols) and npq21 (white symbols). Data
before treatment are without error bars, data after treatment are means of three
replicates and error bars indicate SD.
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Figure 4.31: NPQ during light induction and dark relaxation before and after 12 h/12 h LD cycles
with constant light (circles) (A and B) and fluctuating light (triangles) (C and D) of
WT (black symbols), npq3 (grey symbols) and npq21 (white symbols). Data before
treatment are without error bars (A and C), data after treatment are means of three
replicates (B and D) and error bars indicate SD.

4.1.2.2 Continuous light with constant and fluctuating light

N. gaditana WT, npq3 and npq21 were grown under LL with either a constant

light intensity (200 µmol photons m−2 s−1) or periodic light switching between very

low light (10 µmol photons m−2 s−1 for 3 min) and high light (770 µmol photons

m−2 s−1 for 1 min). Under LL constant light the values of OD680 increased expo-

nentially for approximately 37 h for WT and npq21 before reaching the stationary

phase; the curves of these two genotypes were very similar (Fig. 4.32A). For npq3

the inflection point of the OD680 curve was approximately 10 h later than the others

(i.e. after 47 h of growth) and from the time point of approximately 24 h OD680 val-

ues of npq3 were lower than those of WT and npq21, leading to a lower end-OD680

at 96 h. In contrast, under the continuously fluctuating light condition all three

strains grew extremely slowly throughout 96 h. Even though values were rather

low, npq21 showed a trend of faster density increase followed by WT, while npq3

showed lowest values.
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Figure 4.32: Changes in OD680 (A) and OD735 (B) under constant LL of WT (black circles),
npq3 (grey circles) and npq21 (white circles) and under fluctuating LL of WT (black
triangles), npq3 (grey triangles) and npq21 (white triangles). Data are means of
three replicates and error bars indicate SD.

A similar picture was found for OD735, yet the inflection points of the curves

under constant LL were approximately after 47 h of growth for all three genotypes

and again from the time point of approximately 24 h OD735 values of npq3 were

lower than those of WT and npq21 (Fig. 4.32B). Under the fluctuating LL, OD735

values showed a similar behavior as OD680.

The relative increase in OD680 (Fig. 4.33) calculated from OD680 values in Fig.

4.32 indicated rapid growth during the first 48 h under constant LL, followed by a

drastic decrease between 48 and 72 h. During the last 24 h the values were very

low. A different picture of slow and gradual increase in OD680 was observed un-
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Figure 4.33: Relative increase in OD680 per day for WT, npq3 and npq21 under constant LL (C)
and fluctuating LL (F). Data are means of three replicates and error bars indicate
SD. Asterisks indicate significant differences between the treatments P≤0.01 (**)
and P≤0.001 (***). Letters indicate significant differences compared to WT P≤0.05
(a), P≤0.01 (b) and P≤0.001 (c).

der fluctuating LL. Thus, the values of the fluctuating LL exceeded those of the

constant LL between 72 and 96 h. Yet, the relative increase values were always

significantly different between the treatments except for WT between 48 and 72 h.

When comparing the mutants with the WT, significant differences under constant

LL were found for npq21 (npq21>WT) in the first 24 h and for npq3 (npq3>WT)

in the third 24 h period. Under fluctuating LL npq21 had higher rates of relative

increase than WT in the first 48 h while npq3 always had lower rates than WT.

Also for npq21 the values became lower than WT in the last 24 h (72 - 96 h).

PS II quantum yield was recorded only in the experiment with constant LL, as

the timing of fluorescence measurements and light fluctuations in the fluctuating

LL were not synchronized, which resulted in strong fluctuations also of fluorescence

signal (Fig. 4.34). Under the constant LL WT and npq21 showed very similar

PS II quantum yields whereas yield for npq3 was clearly lower. After the first 24 h

PS II quantum yields started to decrease to reach a steady state after ≈40 h for

WT and npq21 and ≈52 h for npq3. Thereafter PS II quantum yield remained

unchanged until the end of the experiments with the values of WT and npq21 still

lying higher than those of npq3 by ca. 0.1.
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Figure 4.34: Changes in PS II quantum yield under constant LL of WT (black circles), npq3 (grey
circles) and npq21 (white circles). Data are means of three replicates and error bars
indicate SD. Dashed lines show a reference value of 0.6.

The mean values of the molar pigment concentration per liter of vaucheriax-

anthin, violaxanthin, antheraxanthin, chlorophyll a and β-carotene were all lower

under fluctuating LL compared to constant LL (Fig. 4.35). When looking at the

ratios of each carotenoid to chlorophyll a, violaxanthin values were lower under fluc-

tuating light for WT and npq3 (Fig. 4.36). Unlike in the constant light with LD

cycles (Fig. 4.23), WT accumulated antheraxanthin in constant LL, even though

the level was significantly lower than in the mutants. Again, npq21 had the highest

amount of antheraxanthin among the three strains under constant LL. Figure 4.37

shows that the ratios of carotenoids per chlorophyll a increased strongly in npq3

under constant LL, reaching the values of about 0.5 (i.e. carotenoids:chlorophylls

1:2), which is much higher than the values found in this mutant in the fluctuating

LL or in the two light regimes with LD cycles (Fig. 4.24). The values were around

0.4 for WT and npq21 in LL, with or without light fluctuation.

In accordance to Fig. 4.32, cell numbers were significantly lower after fluctuating

LL treatment than after constant LL treatment (Fig. 4.38). Compared to WT,

npq3 showed a significantly lower cell number under constant light whereas npq21

showed a significantly high cell number under fluctuating light.



86 4 Results

Figure 4.35: Molar pigment concentration of vaucheriaxanthin (Vau), violaxanthin (V), antherax-
anthin (A), chlorophyll a (Chl a) and β-carotene (β-car) after 96 h in culture of WT,
npq3 and npq21 under constant LL (C) and fluctuating LL (F). Data are means of
three replicates and error bars indicate SD. Asterisks indicate significant differences
between the treatments P≤0.05 (*), P≤0.01 (**) and P≤0.001 (***). Letters indi-
cate significant differences compared to WT P≤0.05 (a), P≤0.01 (b) and P≤0.001
(c).

Figure 4.36: Ratio of vaucheriaxanthin (Vau), violaxanthin (V), antheraxanthin (A) or β-carotene
(β-car) to chlorophyll (Chl) after 96 h in culture of WT, npq3 and npq21 under
constant LL (C) and fluctuating LL (F). Data are means of three replicates and error
bars indicate SD. Asterisks indicate significant differences between the treatments
P≤0.05 (*) and P≤0.01 (**). Letters indicate significant differences compared to
WT P≤0.05 (a), P≤0.01 (b) and P≤0.001 (c).
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Figure 4.37: Ratio of carotenoids (Car) to chlorophyll (Chl) after 96 h in culture of WT, npq3
and npq21 under constant LL (C) and fluctuating LL (F). Data are means of three
replicates and error bars indicate SD. Asterisks indicate significant difference between
the treatments P≤0.01 (**). Letter indicates significant difference compared to WT
P≤0.05 (a).

Figure 4.38: Cell number after 96 h of WT, npq3 and npq21 under constant LL (C) and fluctuating
LL (F). Data are means of three replicates and error bars indicate SD. Asterisks indi-
cate significant differences between the treatments P≤0.01 (**) and P≤0.001 (***).
Letters indicate significant differences compared to WT P≤0.05 (a) and P≤0.001 (c).
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Figure 4.39: Chlorophyll a (Chl a) per cell after 96 h of WT, npq3 and npq21 under constant
LL (C) and fluctuating LL (F). Data are means of three replicates and error bars
indicate SD. Asterisk indicates significant difference between the treatments P≤0.05
(*). Letter indicates significant difference compared to WT P≤0.05 (a).

For WT and npq3 no differences were found in chlorophyll a per cell between the

treatments (Fig. 4.39) whereas npq21 showed higher chlorophyll a per cell under

fluctuating LL and a significantly lower value under constant LL compared with

WT.

4.1.2.3 Temperature cycles

The above results for npq3 did not suggest a better performance under differ-

ent light regimes compared to WT or npq21, whereas npq21 had similar or higher

growth than WT. Thus, npq3 was excluded from the following experiments with

temperature cycles.

Cultures of WT and npq21 were grown under LD cycles, with temperature cy-

cles of either 23◦C/15◦C or 30◦C/23◦C. Figure 4.40 shows an increase of OD680

and OD735 values during the light periods. For WT the increase in OD values was

strongly suppressed under 23◦C/15◦C unlike under 30◦C/23◦C. The difference be-

tween the two temperature regimes was not very pronounced for npq21.

While the relative increase in OD680 continued to rise for WT under 23◦C/15◦C

in the first three LD cycles and stagnated in the fourth, it started to decrease
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Figure 4.40: Changes in OD680 (A) and OD735 (B) under 12 h/12 h LD cycles and temperature
cycles with either 23◦C/15◦C (circles) or 30◦C/23◦C (triangles) of WT (black sym-
bols) and npq21 (white symbols). Dark grey areas in the background show dark
periods. Data are means of six replicates and error bars indicate SD.
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Figure 4.41: Relative increase in OD680 per 24 h period for WT and npq21 under 12 h/12 h LD
cycles and temperature cycles with either 23◦C/15◦C or 30◦C/23◦C. Data are means
of six replicates and error bars indicate SD. Asterisks indicate significant differences
between the treatments P≤0.05 (*), P≤0.01 (**) and P≤0.001 (***). Letters indicate
significant differences compared to WT P≤0.05 (a) and P≤0.01 (b).

under 30◦C/23◦C in the third LD cycle (Fig. 4.41). Similar to WT, npq21 de-

creased in the relative increase in OD680 between 48 and 72 h whereas under the

control conditions the second and third 24 h periods showed nearly the same val-

ues. When comparing WT and npq21 the values of npq21 were higher in the first

two LD cycles while in the third they were similar and in the fourth lower than WT.

Contrary to the pictures for OD680 (Figs. 4.40 and 4.41), Fig. 4.42A-B shows

higher PS II quantum yields during light and dark periods for 23◦C/15◦C compared

to 30◦C/23◦C for both WT and npq21. The differences between the two strains

were only minor, if any, in 23◦C/15◦C or 30◦C/23◦C (Fig. 4.42C-D).

The concentrations of chlorophyll a, violaxanthin and β-carotene were higher un-

der 30◦C/23◦C compared to 23◦C/15◦C and values were higher for npq21 than for

WT (Fig. 4.43). When looking at the ratios of individual carotenoids to chloro-

phyll a, significant differences between the treatments were detected for WT for

all carotenoids except vaucheriaxanthin while no significant differences were found

for npq21 (Fig. 4.44). Under 23◦C/15◦C conditions npq21 showed significantly

higher levels of violaxanthin and antheraxanthin than WT while under 30◦C/23◦C

they were similar. Accumulation of antheraxanthin was found only in 30◦C/23◦C
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Figure 4.42: Changes in PS II quantum yield of WT under 23◦C/15◦C (black circles) and under
30◦C/23◦C (black triangles) (A), npq21 under 23◦C/15◦C (white circles) and un-
der 30◦C/23◦C (white triangles) (B), WT (black circles) and npq21 (white circles)
under 23◦C/15◦C (C) and WT (black triangles) and npq21 (white triangles) under
30◦C/23◦C (D). Data are means of six replicates and error bars indicate SD. Dashed
lines show a reference value of 0.6.
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Figure 4.43: Molar pigment concentration of vaucheriaxanthin (Vau), violaxanthin (V), antherax-
anthin (A), chlorophyll a (Chl a) and β-carotene (β-car) after 96 h in culture of WT
and npq21 under 12 h/12 h LD cycles and temperature cycles with either 23◦C/15◦C
or 30◦C/23◦C. Data are means of six replicates and error bars indicate SD. Asterisks
indicate significant differences between the treatments P≤0.05 (*), P≤0.01 (**) and
P≤0.001 (***). Letters indicate significant differences compared to WT P≤0.05 (a),
P≤0.01 (b) and P≤0.001 (c).

for WT, whereas npq21 always had some antheraxanthin, as was seen in the ex-

periments with fluctuating light (Figs. 4.23 and 4.36). The total caroteniods to

chlorophyll a ratio was nearly the same as measured in the LD cycle with constant

light and temperature (Fig. 4.24) for WT under both treatments (Fig. 4.45). Like-

wise, the values of npq21 under 23◦C/15◦C were comparable with those in the LD

cycle with constant temperature (Fig. 4.24), while they decreased in 30◦C/23◦C.

Figure 4.46 shows lower cell numbers under 30◦C/23◦C than 23◦C/15◦C for both

genotypes, with significant differences for the WT. Between WT and npq21 the

values of npq21 were higher than WT under 30◦C/23◦C.

Chlorophyll a per cell was significantly higher under 30◦C/23◦C than 23◦C/15◦C

for WT and npq21, yet no differences were found between the genotypes (Fig. 4.47).

Table 4.2 gives an overview of the highest values of relative OD680 increase in

WT, npq3 and npq21 under the different light and temperature treatments. Under

all treatments highest relative OD680 increase was found for npq21, except under

fluctuating LL WT had a significant higher value. On the other hand, npq3 showed
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Figure 4.44: Ratio of vaucheriaxanthin (Vau), violaxanthin (V), antheraxanthin (A) or β-carotene
(β-car) to chlorophyll a (Chl) after 96 h in culture of WT and npq21 under 12 h/12 h
LD cycles and temperature cycles with either 23◦C/15◦C or 30◦C/23◦C. Data are
means of six replicates and error bars indicate SD. Asterisks indicate significant
differences between the treatments P≤0.05 (*) and P≤0.01 (**). Letters indicate
significant differences compared to WT P≤0.05 (a).

Figure 4.45: Ratio of carotenoids (Car) to chlorophyll (Chl) after 96 h in culture of WT and
npq21 under 12 h/12 h LD cycles and temperature cycles with either 23◦C/15◦C or
30◦C/23◦C. Data are means of six replicates and error bars indicate SD. Asterisk
indicates significant difference between the treatments P≤0.05 (*). Letter indicates
significant difference compared to WT P≤0.001 (c).
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Figure 4.46: Cell number at end of fourth day of WT and npq21 under 12 h/12 h LD cycles
and temperature cycles with either 23◦C/15◦C or 30◦C/23◦C. Data are means of six
replicates and error bars indicate SD. Asterisks indicate significant difference between
the treatments P≤0.001 (***). Letter indicates significant difference compared to
WT P≤0.05 (a).

Figure 4.47: Chlorophyll a (Chl a) per cell at end of fourth day of WT and npq21 under 12 h/12 h
LD cycles and temperature cycles with either 23◦C/15◦C or 30◦C/23◦C. Data are
means of six replicates and error bars indicate SD. Asterisks indicate significant
differences between the treatments P≤0.01 (**) and P≤0.001 (***).
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lower values under all treatments compared with the other two genotypes, which

were significant under fluctuating LD and fluctuating LL. The levels of carotenoids

per chlorophyll a (Table 4.3) were highest for npq21 under most treatments except

under constant LL and constant LD with 30◦C/23◦C where npq21 and WT had

similar values. Under fluctuating LD npq3 achieved a slightly higher value than

WT and in addition had the significantly highest carotenoids per chlorophyll a

value under constant LL.

Table 4.2: Highest values of relative OD680 increase of WT, npq3 and npq21 under different light
(C-constant, F-fluctuating) and temperature treatments. Letters indicate significant
differences compared to WT P≤0.05 (a), P≤0.01 (b) and P≤0.001 (c).

light temp. WT npq3 npq21
(◦C) (% d−1) (% d−1) (% d−1)

LD (C) 23 40 (±0.59) 39 (±1.1) 42 (±1.9)
LD (F) 23 50 (±0.62) 41 (±0.51) (c) 53 (±0.57) (b)
LL (C) 23 53 (±2.0) 52 (±1.1) 58 (±2.6)
LL (F) 23 23 (±0.75) 17 (±0.41) (c) 20 (±0.84) (a)
LD (C) 23/15 35 (±0.24) 40 (±4.5)
LD (C) 30/15 46 (±1.3) 51 (±1.4) (a)

Table 4.3: Highest values of carotenoids (Car) per chlorophyll (Chl) of WT, npq3 and npq21
under different light (C-constant, F-fluctuating) and temperature treatments. Letters
indicate significant differences compared to WT P≤0.05 (a).

light temp. WT npq3 npq21
(◦C)

LD (C) 23 0.36 (±0.023) 0.35 (±0.026) 0.44 (±0.021) (a)
LD (F) 23 0.4 (±0.014) 0.42 (±0.042) 0.44 (±0.021) (a)
LL (C) 23 0.42 (±0.017) 0.52 (±0.041) (a) 0.42 (±0.011)
LL (F) 23 0.39 (±0.037) 0.38 (±0.033) 0.41 (±0.018)
LD (C) 23/15 0.35 (±0.013) 0.41 (±0.017) (a)
LD (C) 30/15 0.37 (±0.0093) 0.37 (±0.0062)
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4.2 Experiments under greenhouse conditions

4.2.1 Comparison of WT in four PBRs

N. gaditana was continuously cultivated under greenhouse conditions in four

pilot-scale closed PBR systems, which were set up in two small greenhouses with a

constructed area of 12 m2 each. The PBRs were numbered according to the green-

house, thus PBR 1.1 and PBR 1.2 were located in greenhouse 1, whereas PBR 2.1

and PBR 2.2 were located in greenhouse 2. To investigate the comparability of the

four systems, they were run in parallel from middle of October until middle of De-

cember 2012. The sunshine duration per day varied between 0 and about 500 min

whereas maximal solar radiation reached 1,600 Wh m−2 d−1 (Fig. 4.48) [143]. Fur-

ther growth conditions were monitored by recording the temperature (Fig. 4.50)

in the culture. The day length (Fig. 4.49) decreased during the cultivation period

from 11 h mid of October till 8 h mid of December [143], whereby temperatures

rarely exceed 23◦C during the day and the heater was turned on, preventing tem-

peratures from falling below 14◦C during the night. The pH-values (Fig. 4.51) were

mostly around 7.5, with transient fluctuations up to 9 or down to 7 depending on

the rate of CO2 uptake by the algae and addition of CO2.

During cultivation OD was measured at three different wavelengths: 540 nm

(OD540), 680 nm (OD680) and 735 nm (OD735) (Fig. 4.52). To ensure sufficient

light for algae inside the PBR, OD540 was maintained within a range between ≈0.5

and ≈0.7; at these OD540 values growth curves of N. gaditana culture (obtained

by measuring OD540) seldom reached saturation under the greenhouse conditions

in the experimental period. When OD540 exceeded a value of ≈0.7 the culture was

diluted to ≈0.5 by discarding culture and refilling the system with fresh f/2 medium

containing 2% sea salt. Due to the harvesting, OD values fluctuate in Fig. 4.52 but

with very similar patterns for all three wavelengths. A technical problem occurred

on November 8th where the pump hose of PBR 1.2 leaked, so that the system was

filled with fresh medium leading to a dilution and thus a change of OD540 values

for the samples taken prior to the following harvest.

The biomass dry weight was determined at each harvest for every cultivation

system (Fig. 4.53). There is a variation between the data, yet no clear trend for

any reactor producing more or less compared to the others. On November 12th
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Figure 4.48: Changes in daily light in greenhouse from October until December 2012. Sunshine
duration (A) and solar radiation (B) [143].

there was a strong decrease in biomass for PBR 1.2, as four days before the system

had been filled up with fresh medium due to the leaking pump hose. In general,

the biomass concentration on the harvesting days lied between 0.05 and 0.2 g l−1,

on average ≈0.1 g l−1 at OD540 of ≈0.7. This corresponds to an aerial productivity

of ≈2 g m−2 at each harvest, except for the last day on which the whole system

(≈300 l) was harvested.

The variation in cell numbers (Fig. 4.54) as well as chlorophyll a concentrations

(Fig. 4.55) often showed a similar pattern as biomass concentrations. On average,

the cell numbers within the PBRs was ≈5 x 109 cells l−1. The average chlorophyll a

concentration was ≈3.7 mg l−1 (Fig. 4.55), leading to ca. 3% chlorophyll a content

in dry biomass with an average of ≈33 g kg−1 (Fig. 4.56).
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Figure 4.49: Changes in day length in Jülich (Germany) from October until December 2012 [143].

The total amount of nitrogen was determined in the biomass, which is an im-

portant macronutrient needed for growth and metabolic processes within the algae.

Figure 4.57 shows the total nitrogen content in the algae per liter of the culture

which lied between 9 and 15 mg l−1, except on November 6th where the average

was ≈19 mg l−1. A particularly low nitrogen concentration was measured in PBR

1.2 on November 12th due to the dilution resulting from the technical defect. When

looking at the total nitrogen content in the biomass (Fig. 4.58), the values were

higher in the first half of the experimental period (except for November 12th), lying

between 120 to 170 g kg−1, while later values were between 70 to 100 g kg−1.

As algae were harvested by discarding a certain volume of the culture and refill-

ing the cultivation system with fresh medium, water was needed. In Fig. 4.59 the

addition of water is given. At the beginning of the experiment the systems were

filled with a volume of 300 l each. The added volumes of water at each harvest

ranged between 90 and 144 l.

Sea salt was needed for cultivation as N. gaditana is a marine alga. Therefore

salt was added to the f/2 medium to obtain 2% saline water. Thus, 6 kg of salt

were added to the initial volume of the system, then salt was given in the systems

according to the volume of water added after harvest, which lied around 2 kg (Fig.

4.60).
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Figure 4.50: Changes in temperature of WT culture cultivated under greenhouse conditions from
October until December 2012. Data are means of four replicate PBRs.

Figure 4.51: Changes in pH of WT culture cultivated under greenhouse conditions from October
until December 2012. Data are means of four replicate PBRs.



100 4 Results

Figure 4.52: Changes in optical density monitored at 540 nm (OD540) (A and D), 680 nm (OD680)
(B and E) and 735 nm (OD735) (C and F) of WT cultivated under greenhouse
conditions from October until December 2012 of PBR 1.1 (black circles), PBR 1.2
(white circles), PBR 2.1 (black triangles), PBR 2.2 (white triangles) and means (grey
circles). Data (D-F) are means of four replicate PBRs and error bars indicate SD.
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Figure 4.53: Biomass dry weight per liter (A and B) or area (C and D) at each harvest of WT
cultivated under greenhouse conditions from October until December 2012. Data (B
and D) are means of four replicate PBRs with error bars indicating SD.
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Figure 4.54: Cell number per liter at each harvest of WT cultivated under greenhouse conditions
from October until December 2012. Data (B) are means of four replicate PBRs with
error bars indicating SD.
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Figure 4.55: Chlorophyll a (Chl a) content per liter at each harvest of WT cultivated under
greenhouse conditions from October until December 2012. Data (B) are means of
four replicate PBRs with error bars indicating SD.
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Figure 4.56: Chlorophyll a (Chl a) in dry biomass at each harvest of WT cultivated under green-
house conditions from October until December 2012. Data (B) are means of four
replicate PBRs with error bars indicating SD.
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Figure 4.57: Total nitrogen in biomass per liter at each harvest of WT cultivated under greenhouse
conditions from October until December 2012. Data (B) are means of four replicate
PBRs with error bars indicating SD.
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Figure 4.58: Total nitrogen per dry biomass at each harvest of WT cultivated under greenhouse
conditions from October until December 2012. Data (B) are means of four replicate
PBRs with error bars indicating SD.
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Figure 4.59: Water added during cultivation of WT under greenhouse conditions from October
until December 2012. Values from October 30th and onwards show the volume of
water needed to fill up each PBR to the starting volume (300 l). Data (B) are means
of four replicate PBRs with error bars indicating SD.
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Figure 4.60: Sea salt added during cultivation of WT under greenhouse conditions from October
until December 2012. Data (B) are means of four replicate PBR with error bars
indicating SD.

On day of harvest the nitrate concentration was measured as a representative

compound in the medium to determine the amount of the f/2 nutrient stock so-

lution which needed to be added to reach the initial concentration. The added

volume was calculated as a sum of the volume missing in the remaining culture in

the PBRs after discarding and the volume needed for the fresh medium with which

the PBRs were filled up again or, if it was not a day of harvest then the difference

to the initial concentration was added (Fig. 4.61). Therefore values varied strongly

between 11 and 223 ml containing 0.5 to 2.5 g NO3-N.
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Figure 4.61: Addition of f/2 nutrient stock solution (A and B) and nitrogen (C) during cultivation
of WT under greenhouse conditions from October until December 2012. Data (B and
C) are means of four replicate PBRs with error bars indicating SD.
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Throughout the whole production period 115 g biomass were produced on av-

erage per PBR with a content of 3.7 g chlorophyll a (Table 4.4). Based on the

constructed area, 19 g m−2 biomass and 0.62 g m−2 chlorophyll a were produced.

The main components used were needed for the composition of the medium, in-

cluding 942 l water, 19 kg salt and 2.1 l f/2 nutrient stock solution. Referring the

addition of the components to the production of 1 g biomass 8.3 l water, 0.17 kg

salt and 18.5 ml f/2 nutrient stock solution were needed. During cultivation and

harvest period a biomass production of 450 mg m−2 with 12 mg m−2 chlorophyll a

was achieved (Table 4.5). Higher amounts of nitrogen were found in the biomass

compared to nitrogen added in f/2 nutrient solution (excluding the added f/2 nu-

trient solution before first harvest), yet it is unsure if nitrogen was also available in

the sea salt as well as how much was available in the fresh water. It is also possible

that differences occur due to the use of two different kits. During cultivation an

average of 14 l water per day were added to each PBR.

Table 4.4: Total biomass and chlorophyll a (Chl a) production and total consumption of medium
components during cultivation of WT in a greenhouse PBR from October 10th until
December 11th, 2012. Data are means of four replicate PBRs (±SD).

WT
production
biomass (g PBR−1) / (g m−2) 115 (±18) / 19 (±2.9)
Chl a (g PBR−1) / (g m−2) 3.7 (±0.46) / 0.62 (±0.076)

addition
water (l PBR−1) / (l g−1

biomass) 942 (±53) / 8.3 (±0.72)
salt (kg PBR−1) / (kg g−1

biomass) 19 (±1.1) / 0.17 (±0.014)
f/2 stock solution (l PBR−1) / (ml g−1

biomass) 2.1 (±0.21) / 18.5 (±3.9)

Table 4.5: Average daily cultivation parameters for WT in a greenhouse PBR from October 28th

until December 11th, 2012. Data are means of four replicate PBRs.

average daily WT
biomass (mg l−1) / (mg m−2) 8.5 / 450
Chl a (mg l−1) / (mg m−2) 0.23 / 15
NO3-N consumption (mg l−1) / (mg m−2) 1.4 / 67
N in biomass (mg l−1) / (mg m−2) 2.4 / 117
water added (l PBR−1) 14
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4.2.2 Comparison of WT and npq21

After selecting npq21 as a promising strain under lab-conditions, it was cultivated

in the greenhouse systems in comparison to WT. Both genotypes were cultivated

in each greenhouse, npq21 in PBR 1.1 and PBR 2.1, and WT in PBR 1.2 and PBR

2.2. The inoculation was done end of January 2013 and as the PBRs were filled,

data was recorded until end of March 2013. The cultivation conditions were again

recorded including PAR as well as sunshine duration and solar radiation (Fig. 4.62)

[143], temperature (Fig. 4.64) and pH (Fig. 4.65) of the culture. Higher PAR val-

ues were recorded in March with a peak value of 19 mol m−2 d−1, whereas highest

sunshine duration reached about 600 min d−1 and solar radiation 2,800 Wh m−2

d−1, while day length increased throughout the cultivation period from ≈9.5 up

to 12 h (Fig. 4.63). Temperatures varied between 14◦C in the night and 32◦C

(transiently) during the day and pH values varied between 7 and 9.5, showing less

variation at the beginning of February and higher variation throughout March.

In Fig. 4.66 the optical densities of the four systems are shown during cultiva-

tion and continuous harvest. At the beginning npq21 showed higher increase in

OD compared with WT. Therefore, harvest was performed earlier for npq21 than

for WT, yet in March all four systems had similar OD values and thus harvested

on the same days.

On most days of harvest the biomass concentration lied around 0.1 g l−1 while

on March 6th, 13th and 18th biomass concentrations were about double (Fig. 4.67).

Only on three days harvest was performed in parallel for all four PBR, while in

most cases only one system was harvested. The aerial production was mostly be-

tween 2 and 6 g m−2 whereas on the last day it was ≈11 g m−2. A similar picture

is found for cell numbers in Fig. 4.68. The number of cells was between 3 and 9

x 109 cells l−1. The chlorophyll a content in the culture ranged from 2.7 to 7 mg

l−1 with higher values measured on the days when all PBRs were harvested (Fig.

4.69). The chlorophyll a content in the biomass ranged from 20 to 50 mg kg−1 with

higher content in February and lower in March (Fig. 4.70).

During harvest 100 to 150 l of water were discarded and the PBRs needed to

be filled up again with the same volume of fresh water (Fig. 4.71). This led to

an addition of salt of 2 to 3 kg per refilling (Fig. 4.72) and an addition of 180 to
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Figure 4.62: Changes in daily light in greenhouse from February until March 2013. Photosynthetic
active radiation (PAR) (A), sunshine duration (B) and solar radiation (C) [143].
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Figure 4.63: Changes in day length in Jülich (Germany) from February until March 2013 [143].

300 ml f/2 nutrient stock solution containing less than one to over 3 g NO3-N (Fig.

4.73).

For the entire duration of the cultivation period slightly more biomass was pro-

duced by npq21 (164 g) compared to WT (146 g) and therefore a slightly higher

aerial productivity of 26 g m−2 in npq21 in comparison to 24 g m−2 in WT (+8%;

Table 4.6). Higher chlorophyll a was produced in total by the npq21 culture (3.6 g

or 0.60 g m−2) whereas WT produced 3.3 g (0.55 g m−2). Higher productivity

also resulted in greater consumption of nutrients for npq21 compared to WT. The

average daily PAR was 7.5 mol m−2 during cultivation and harvest period. Slightly

higher daily biomass and chlorophyll a production was achieved by npq21 com-

pared to WT (Table 4.7). Higher amounts of nitrogen were found in the biomass

compared to nitrogen added in f/2 nutrient solution as in Table 4.5, assuming the

same reasons as mentioned before for cultivation of WT including additional nitro-

gen sources as sea salt and fresh water as well as differences due to the utilization

of two different kits. For cultivation of WT 23 l water were added to each 300 l

PBR per day, whereas for npq21 water addition was 26 l.
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Figure 4.64: Changes in temperature of WT (A) and npq21 (B) culture under greenhouse condi-
tions from February until March 2013. Data are means of two replicate PBRs.
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Figure 4.65: Changes in pH of WT (A) and npq21 (B) culture cultivated under greenhouse con-
ditions from February until March 2013. Data are means of two replicate PBRs.
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Figure 4.66: Changes in optical density monitored at 540 nm (OD540) (A and D), 680 nm (OD680)
(B and E) and 735 nm (OD735) (C and F) under greenhouse conditions from February
until March 2013 of PBR 1.1 npq21 (black triangles), PBR 1.2 WT (black circles),
PBR 2.1 npq21 (white triangles), PBR 2.2 WT (white circles) and means of WT
(black circles) and npq21 (black triangles). Data (D-F) are means of two replicate
PBRs.
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Figure 4.67: Biomass dry weight per liter (A) or area (B) at each harvest of WT and npq21
cultivated under greenhouse conditions from February until March 2013.
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Figure 4.68: Cell number per liter at each harvest of WT and npq21 cultivated under greenhouse
conditions from February until March 2013.

Figure 4.69: Chlorophyll a (Chl a) content per liter at each harvest of WT and npq21 cultivated
under greenhouse conditions from February until March 2013.
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Figure 4.70: Chlorophyll a (Chl a) in dry biomass at each harvest of WT and npq21 cultivated
under greenhouse conditions from February until March 2013.

Figure 4.71: Water added during cultivation of WT and npq21 under greenhouse conditions from
February until March 2013.
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Figure 4.72: Sea salt added during cultivation of WT and npq21 under greenhouse conditions
from February until March 2013.

Table 4.6: Total biomass and chlorophyll a (Chl a) production and consumption of medium com-
ponents for WT and npq21 from January 31st until March 18th, 2013. Data are means
of two replicates.

WT npq21
production
biomass (g PBR−1) / (g m−2) 146 / 24 164 / 27
Chl a (mg/PBR−1) / (g m−2) 3.3 / 0.55 3.6 / 0.60

addition
water (l PBR−1) / (l g−1

biomass) 896 / 4.1 976 / 4.1
salt (kg PBR−1) / (kg g−1

biomass) 20 / 0.14 22 / 0.13
f/2 stock solution (l PBR−1) / (ml g−1

biomass) 1.7 / 11.5 1.8 / 11.6
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Figure 4.73: Addition of f/2 nutrient stock solution during cultivation of WT and npq21 under
greenhouse conditions from February until March 2013.

Table 4.7: Average daily cultivation parameters for WT and npq21 per PBR from February 21st

until March 18th, 2013. Data are means of two replicate PBRs.

average daily WT npq21
PAR (mol m−2) 7.5 7.5
biomass (mg l−1) / (g m−2) 19 / 0.94 21 / 1.1
Chl a (mg l−1) / (mg m−2) 0.42 / 21 0.46 / 23
NO3-N consumption (mg l−1) / (mg m−2) 1.8 / 92 2.0 / 103
N in biomass (mg l−1) / (mg m−2) 2.0 / 101 2.4 / 119
water added (l PBR−1) 23 26





5 Discussion

5.1 Laboratory experiments

5.1.1 Circadian and light control of chlorophyll accumulation

and growth in N. gaditana

The growth of N. gaditana, as assessed by measurements of OD680 and OD735,

was confined to the light periods; the OD680 and OD735 values never increased,

or even decreased, during the dark periods (Figs. 4.1, 4.7, 4.10 and 4.11). Thus,

the growth of N. gaditana is a function of light duration, as has been described

for N. oceanica cultivated in greenhouse photobioreactors [144]. It appears that

chlorophyll accumulation and growth processes, which give rise to an increase in

OD680 and OD735 in N. gaditana cultures, are regulated by light and/or require

assimilates provided by photosynthesis. On the other hand, persistent oscillation

could be observed at least in the first 24 h after switching to the LL conditions,

especially for OD680 (Figs. 4.7 and 4.8), suggesting endogenous regulation of the

processes. Oscillations of OD680 were found in the first 24 h in LL even when the

algae were entrained to the 18 h/6 h LD cycle (Fig. 4.10). The time courses of

OD680 in both 12 h/12 h and 18 h/6 h LD cycles, i.e. rapid increase in the first

half of the light period followed by slowing down in the second half and no increase

during the dark period (Fig. 4.1, Table 4.1), most likely arise from the interactions

between the external conditions (LD cycles) and internal regulation of algae.

The circadian clocks allow organisms to synchronize physiological and metabolic

processes (and also behavioral patterns) to daily environmental cycles [48]. Per-

sistent oscillation in constant light and temperature conditions are a hallmark of

circadian processes. In photosynthetic organisms such ”free-running” oscillations

continuing for several days have been demonstrated, e.g. for rhythmic gene ex-

pression of the kaiBC reporter in Synechococcus elongatus [50] or light-harvesting

123
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antenna complex Lhcb1.1 (also called cab2) and catalase CAT3 in A. thaliana [49].

In the case of Arabidopsis stomatal conductance and CO2 assimilation in leaves also

exhibit free-running oscillations in LL [145]. In contrast, rhythmic changes in OD680

faded away in N. gaditana after 24 h in LL (Fig. 4.7). The continuous illumination

with red + blue LED may not be optimal for monitoring OD680 oscillation in N. ga-

ditana; compared with red + blue LL, strong oscillation of OD680 continued longer

(for >50 h) in blue LL, albeit not in red LL (Figs. 4.11 and 4.12). Furthermore, os-

cillations of OD680 and OD735 were detectable for >50 h even in red + blue LL when

the algae were growing slowly (10-15% of the growth rates in Figs. 4.7 and 4.8).

Thus, growth enhancement in LL may have obscured the endogenous oscillations

in the experiments in Figs. 4.7 and 4.8. This is reminiscent of the previous report

in the green macroalga Ulva pseudocurvata, in which rhythmic growth of thalli

could be observed for 3-4 days at low growth rates in constant darkness, whereas

the rhythmicity quickly vanished in constant light [146]. These findings are also in

line with the notion that cells cannot maintain circadian rhythms when they divide

more than once a day [50].

Circadian oscillation of δ-aminolevulinic acid (δ-ALA) accumulation, which is

an early regulatory step in chlorophyll biosynthesis, has been reported in leaves

of Hordeum vulagare (barley) under LL, with pronounced δ-ALA accumulation

during the subjective night and a gradual decline concomitant with a chlorophyll

increase during the subjective day [147, 148]. In these studies the amplitude of

rhythmic oscillation of the δ-ALA level diminished during the first 24 to 48 h in

LL, in much the same way as seen for OD680 in N. gaditana in the present study

(Figs. 4.7 and 4.11). The circadian clocks in flowering plants are supposed to

coordinate synthesis of chlorophylls and chlorophyll-binding proteins (especially

light-harvesting antenna complexes) by regulating the accumulation of chlorophyll

precursor δ-ALA [147, 148] and Lhc gene expression that peaks at early to mid-

morning [52, 147, 149, 150]. In addition, the light-dependent reduction of pro-

toChlide to Chlide catalized by the enzyme NADPH:protoChlide oxydoreductase

(POR) represents an environmental control step to suppress chlorophyll synthesis

in the dark, although the light-independent POR found in photosynthetic bacteria,

algae and gymnosperms can catalyze the same reaction in the dark [151]. While cir-

cadian regulation of Lhc gene expression awaits demonstration in Nannochloropsis,

it has been reported in the green microalga C. reinhardtii [152, 153]. Interestingly,
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N. gaditana does show diurnal increase in cellular chlorophyll a content [87], as do

natural phytoplankton populations [154]. Furthermore, the draft genome sequence

of N. gaditana contains two gene models for light-dependent, nuclear-encoded POR

but two out of the three subunits of the light-independent, plastid-encoded POR

are missing [44]. The results showing the strictly diurnal increase of OD680 and

OD735 in LD cycles and persistent oscillation of OD680 in LL support both circa-

dian and light control of chlorophyll accumulation and growth in N. gaditana.

The slope of OD680 declined in all treatments after 12 h in LL (the light period

III; Figs. 4.7 and 4.8), which falls on the first subjective night, assuming reset-

ting of the clock by light-on. The capacity of N. gaditana to grow and accumulate

chlorophyll in the period III was no more than 50% of the control, regardless of the

timing to switch to LL during the last dark period (Fig. 4.8B). Hence, the processes

associated with OD680 increase, which normally take place in the light period of

LD cycles (Figs. 4.1A and 4.7A), are likely programmed to synchronize with the

daylight and photosynthesis, hence not for the subjective night. The slightly lower

increase in OD680 found in the period II after switching to LL at ZT15 (Fig. 4.8A)

may be indicative of strong suppression of these processes in the early night. In

flowering plants the expression of Lhc genes is the lowest in the early night [52, 149].

The correlation between the onset of LL during the dark period and the recovery

in the period IV (Fig. 4.8) seems to reflect different “phase shifts” [48] induced by

clock resetting with respect to the original LD phases; the larger the phase shift

(e.g. ZT15), the greater the OD680 increase in the second subjective day. The

OD680 oscillation in LL was not accompanied by rhythmic changes in the PS II

quantum yield (Fig. 4.9), underscoring the dominant effect of light environment on

photosynthetic electron transport (“light” reactions), as opposed to the circadian

oscillation described for leaf stomatal conductance and gas exchange [145].

Besides chlorophyll accumulation, cell division and growth are also under the

circadian control in many photosynthetic organisms, such as Synechococcus PCC

7942 [57], C. reinhardtii [56], diatom Skeletonema costatum [155], macroalgae U.

pseudocurvata [146] and Porphyra umbilicalis [156], or hypocotyl and leaves of A.

thaliana [51, 53, 157, 158]. The studies in macroalgae [146, 156] and leaves of dif-

ferent dicotyledonous plants [159, 160] have shown that the timing of the highest

growth in LD cycles can vary substantially between different species. Nevertheless,



126 5 Discussion

mitosis occurs predominantly during the dark periods in both macroalgae U. pseu-

docurvata and P. umbilicalis [146, 156] as well as in shoots of different plant species

[55], which coincides with the timing of mitotic activities in C. reinhardtii [56] or

Euglena gracilis [161].

Although neither OD680 nor OD735 increased in the dark in our experiments (Fig.

4.1), cell number can increase in N. gaditana cultures during the dark period (sup-

plementary Fig. 7.1; [87]) or at the beginning of the light period [162]. Despite the

reasonable correlations with the cell number (Fig. 4.2B and 4.3), it thus seems that

OD680 and OD735 of N. gaditana are strongly influenced by cellular compounds that

accumulate during the light period, such as pigments, proteins, sugars and lipids

[87]. By analogy with starch which serves as transient carbohydrate storage and for

which circadian turnover has been described in Arabidopsis leaves [53, 54], turnover

of triacylglycerides in N. gaditana may well be subject to the circadian clock reg-

ulation. Whether the much weaker oscillation of OD735 compared to OD680 (Fig.

4.12, Table 4.1) is due to the relatively poor signal-to-noise ratio of OD735 and/or a

minor impact of the circadian clock on the cellular processes/constituents detected

at OD735 is yet to be clarified.

5.1.2 Distinct effects of blue and red light on N. gaditana

Light signal input for clock entrainment is conferred by photoreceptors, such as

the blue-light photoreceptor cryptochromes and the red-light photoreceptor phy-

tochromes in plants [49]. Clock resetting by blue as well as red light has been docu-

mented for circadian phototaxis of C. reinhardtii [163, 164]. However, involvement

of phytochrome for red-light signaling seemed unlikely in this green alga because far-

red light did not reverse the action [164]. In fact, no phytochrome-like gene sequence

was found in the Chlamydomonas genome, whereas two putative cryptochromes

and another blue-light photoreceptor phototropin have been identified [62]. The

genomes of the marine diatoms P. tricornutum and Thalassiosira pseudonana, to

which N. gaditana is more closely related than to Chlamydomonas, contain seven or

eight putative blue-light photoreceptors of the cryptochrome/photolyase family and

four blue-light regulated transcription factors aureochromes [104]. Interestingly, P.

tricornutum and T. pseudonana seem to have a new variant of phytochrome-like

red-light photoreceptor [104].
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In the present study the oscillation of OD680 was more pronounced after switch-

ing to blue LL than red LL at both ZT0 and ZT15 (Figs. 4.11 and 4.12). Moreover,

the increase in the OD values was larger in blue LL, indicating better growth of

N. gaditana in blue light than in red light [165]. While a role of photosynthesis in

clock entrainment has been postulated for illuminated cells of C. reinhardtii [163],

the data of PS II efficiency (Fig. 4.13) can explain neither the stronger oscilla-

tion nor the enhanced growth in blue LL. Rather, the decreasing PS II quantum

yield measured during the blue-LL treatment appears to be a result of an increas-

ing reduction state of the QA in PS II due to greater absorption of blue light by

PS II compared to PS I and/or higher susceptibility of PS II to photoinhibition

and photo-damage under continuous blue light than continuous red light.

The genome analysis of N. gaditana [44] will reveal potential blue-light photore-

ceptors and the presence or absence of phytochrome-like genes in this alga. Since

blue light is prevailing in aquatic environments [104], blue-light photoreceptors may

play an important role for growth and survival of algae. The strong and persistent

oscillation of OD680 found in N. gaditana under constant blue light (Fig. 4.11)

invites further investigations.

The carotenoid to chlorophyll ratios showed significantly higher values for vaucheri-

axanthin (Fig. 4.14) as well as for the total carotenoids (Fig. 4.15) after switching

to blue light compared to red light at ZT0, suggesting a higher need of these pig-

ments. This is reminiscent of increased carotenoid accumulation relative to chloro-

phyll found in species of Leptolyngby under blue light [166] or higher levels of

xanthophyll-cycle pigments observed in the diatom P. tricornutum under blue light

[167]. Blue light-induced upregulation of gene expression for carotenogenic enzymes

has been found in C. reinhardtii [168], which also supports the link between blue

light illumination and carotenoid accumulation. In contrary, no vaucheriaxanthin

was detected after switching to blue light in early night (at ZT15), although the

three replicate chromatograms showed a peak putatively identified as vaucheriax-

anthin ester, indicating accumulation in lower quantity. Blue light illumination

during subjective night may suppress vaucheriaxanthin accumulation in N. gadi-

tana. Further investigation is needed for a better understanding of interactions

between blue light, circadian clock and carotenoid metabolism.
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5.1.3 Growth of NPQ mutants

5.1.3.1 Light regimes

Light is essential for growth of microalgae as light energy is needed for photosyn-

thetic processes [66]. Depending on the design of a photobioreactor for large-scale

production, algae can be exposed to fluctuating light conditions by circulation of

the culture between the high light exposed outside layer and the light-limited inside

layer [169]. To select algae which can outperform WT under such conditions, two

NPQ mutants of N. gaditana, npq3 and npq21, were selected by the collaboration

partner at University of Verona based on their lower NPQ values compared to the

WT (Fig. 4.16); reduced heat dissipation capacities in these mutants could po-

tentially allow better light use efficiency and growth [170] provided that they can

cope with fluctuating light and other environmental changes. In order to assess the

growth performance of npq3 and npq21 mutants under variable conditions, these

genotypes were cultivated in photobioreactors along with WT under different light

and temperature regimes in this study.

Cultivation under LD cycles with either constant light or fluctuating light led

to increase in OD during the light periods and constant to slightly decreasing OD

values during the night (Fig. 4.17), confirming the strict dependence of growth

on light as seen in the experiments with 12 h/12 h and 18 h/6 h LD cycles (Fig.

4.1). The OD680 and OD735 values were higher most of the time under constant

LD than under fluctuating LD, suggesting more efficient utilization of light energy

in growth under constant light, despite lower amount of photons available. When

comparing the genotypes with each other, npq21 showed slightly larger increase in

OD680 compared to WT (Fig. 4.18), whereas npq3 showed lower values. As found

for npq21, xanthophyll cycle mutants of Chlamydomonas showed no impairment of

growth compared to the wild type under various light conditions [101], whereas npq3

showed some impairment. Similar results were found under continuous light, where

npq3 showed less increase in OD values, indicating its smaller energy utilization

capacity for growth (Fig. 4.32). No differences were found for PS II quantum yield

under LD cycles between the genotypes or between constant and fluctuating light

(Figs. 4.20 and 4.21), suggesting equal PS II efficiencies under these conditions.
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Unlike under LD cycles, however, constant LL led to similar PS II quantum yields

for npq21 and WT, whereas the values for npq3 were obviously lower (Fig. 4.34).

This is in accordance with the lower OD values found in this mutant under constant

LL. The mutation in npq3 seems to impair not only the NPQ capacity but also the

capacity to maintain high PS II activity in LL, resulting in reduced growth capacity.

A pigment trait of N. gaditana is the absence of chlorophyll c and b; chlorophyll

a is the only form of chlorophyll in this alga [40, 74, 171] (Fig. 3.1). Violaxanthin

is a major carotenoid in Nannochloropsis [74, 172] showing far higher concentra-

tions compared with vaucheriaxanthin, antheraxanthin or β-carotene (Fig. 4.22).

Violaxanthin as well as vaucheriaxanthin (including its ester) are of importance for

light harvesting [40, 173], with a violaxanthin-chlorophyll a protein complex being

the major light harvesting complex in Nannochloropsis [78]. Besides functioning

for light harvesting, it appears that violaxanthin can also provide photoprotection

after de-epoxidation to antheraxanthin under high light, as it is described in the

violaxanthin cycle [40]. The unknown peaks found in the chromatograms are likely

vaucheriaxanthin-ester (Fig. 3.1), as have been found in Nannochloropsis [74, 173]

and generally in Eustigmatophyceae [174]. Under fluctuating LD higher mean

carotenoid to chlorophyll ratios, though statistically not significant, were found for

WT and npq3 (Fig. 4.24), as has been reported also for H. pluvialis under high

light [175], suggesting enhanced need for protection against photooxidative stress

[176]. npq21 showed similar carotenoid to chlorophyll ratios under both treatments,

which, however, were always higher compared with WT. The increased accumula-

tion of carotenoid pigments may have allowed this mutant to better cope with

photooxidative stress and outperform WT under the fluctuating light conditions.

In N. gaditana the violaxanthin cycle operates to provide photoprotection under

changing environments [40, 171]. Under non-stressful constant LD conditions no

antheraxanthin or zeaxanthin was found in WT (Fig. 4.22), whereas under fluc-

tuating LD accumulation of antheraxanthin was detected. Antheraxanthin is an

intermediate pigment in the xanthophyll cycle, which is produced by deepoxidation

of violaxanthin or epoxidation of zeaxanthin [90]. The accumulation of antherax-

anthin in both mutants under constant and fluctuating LD conditions may suggest

higher degrees of light stress perceived by these mutants. Constitutive accumula-

tion of antheraxanthin was found in npq2 mutants of C. reinhardtii and this has

been associated with an impaired activity of zeaxanthin epoxidase [176]. Given the
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presence of a large amount of violaxanthin and the lack of zeaxanthin (Fig. 4.22),

however, the enzyme zeaxanthin epoxidase must have been functional in the npq21

and npq3 mutants. Detection of antheraxanthin in all genotypes under constant or

fluctuating LL (Fig. 4.35) also indicates functional but lower apparent activity of

zeaxanthin epoxidase under these conditions.

Chlorophyll content per biomass was similar for all genotypes under constant

light whereas under fluctuating LD significantly lower mean values were found for

the mutants (Fig. 4.26). Pale green phenotypes under high light were also found

for Chlamydomonas WT, npq1 and npq2 [101] or H. pluvialis [175]. The reduc-

tion in chlorophyll per biomass was accompanied by the lower chlorophyll content

per cell for npq3, as described by [40] for N. gaditana under high light treatment,

yet not for npq21 (Fig. 4.29). Although this may imply that cells of npq21 were

larger under fluctuating LD, it should be noted that the cell number data may not

be reliable given the high variability, possibly due to different cell division stages

occurring during cell counting (Fig. 4.28). Based on carotenoid to chlorophyll

ratios, light-induced stress is similar under constant LL with continuous or fluctu-

ating light, except for npq3 in which a higher carotenoid to chlorophyll ratio was

measured under constant LL (Fig. 4.37). The chlorophyll content per cell showed

no difference for WT and npq3, whereas npq21 showed lower chlorophyll content

under constant LL, suggesting bleaching or less accumulation of chlorophyll. Under

fluctuating LL, on the other hand, npq21 tended to have higher chlorophyll content

per cell than the other two genotypes. This could indicate that npq21 is able to

protect chlorophyll and tolerate photooxidative stress better than WT and npq3

under fluctuating light.

Interestingly, higher biomass production was found under fluctuating LD than

constant LD, especially for WT and npq21 (Fig. 4.25). The reason for this growth

improvement by fluctuating light under LD conditions is unknown and deserves

further investigations. npq21 showed the highest biomass production under fluctu-

ating LL (+30% compared with WT), which, in addition to the chlorophyll content,

also points to greater tolerance of this mutant to stress associated with fluctuating

LL. Decrease in nitrogen content per biomass shown for several microalgae under

high light conditions [177] was confirmed in the three genotypes under fluctuating
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LD (Fig. 4.27), indicating reduced uptake of nitrogen relative to carbon assimila-

tion under light stress conditions.

During the different light treatments NPQ values increased in all three genotypes

compared to the beginning of the experiment (Figs. 4.30 and 4.31), which demon-

strates the ability to upregulate NPQ also in the two mutants. Furthermore, unlike

in Fig. 4.16 which was obtained shortly after the arrival of the three genotypes from

Verona, only npq3 showed lower pre-treatment levels of NPQ than WT, whereas

the NPQ capacity of npq21 was found to be comparable with WT. Thus, the phe-

notypic differences found between npq21 and WT in this study cannot be explained

by different NPQ capacities of these genotypes. As EMS-induced mutants can have

several mutations, it is possible that mutation related to a factor other than NPQ

led to the better performance of npq21. Whatever the mutation(s) contributing

to increased growth and tolerance to fluctuating light in npq21 may be, it can be

concluded that NPQ, with its high plasticity and variability under changing envi-

ronments, may not be an ideal trait by which mutants should be selected for higher

biomass production under natural/variable conditions.

5.1.3.2 Temperature regimes

Growth rates of microalgae depend on the temperature [178, 179], thus temper-

ature variations in greenhouses can influence growth of microalgae. On the other

hand, when cultivating microalgae in industrial-scale under greenhouse conditions,

temperatures are difficult to regulate. Depending on the heating and cooling sys-

tems installed, temperatures can rise in summer especially when the sun shines

while during winter less sun is common in high-latitude regions, which leads to

lower temperatures. Further, temperatures vary between day and night. After the

finding of improved performance for npq21 compared with WT under different light

regimes, while npq3 never showed any growth advantages, only WT and npq21 were

examined further under different temperature regimes which are likely to occur in

greenhouses. npq21 showed less pronounced differences in OD increase between

23◦C/15◦C and 30◦C/23◦C than WT (Fig. 4.40). Higher temperatures seem to

have little influence on growth of npq21, whereas enhanced growth was recorded

for WT under 30◦C/23◦C, although PS II quantum yield of WT was higher under

23◦C/15◦C (Fig. 4.42). Increasing growth rates from 13◦C up to 26◦C have been

found for N. salina [180] and higher growth rates at 30◦C compared to 20◦C have
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also been found for Ostreopsis ovate [181]. Further, elevated biomass production

has been found for N. oculata under 30◦C [182]. Also in this study the temperature

of 30◦C was apparently not impairing growth of N. gaditana.

Even though light conditions were the same for all treatments, differences were

found in antheraxanthin accumulation. No antheraxanthin was found for WT un-

der 23◦C/15◦C (Fig. 4.43), as under LD cycles with constant temperature of 23◦C

(Fig. 4.22), whereas it was found under 30◦C/23◦C; npq21 contained antherax-

anthin under both temperature treatments (Fig. 4.43). The influence of temper-

ature on the xanthophyll-cycle pigments has been shown in N. gaditana Lubián

[183] where higher accumulation of antheraxanthin (and zeaxanthin, but in lower

quantity) were found under 35◦C compared with 25◦C. The same was found in N.

gaditana under 30◦C and 23◦C [40]. Higher temperature of 40◦C has been shown

to damage the photosynthetic apparatus [183]. When looking at the carotenoid

to chlorophyll ratio, only npq21 under 23◦C/15◦C showed an increased value, in-

dicating some kind of stress (Fig. 4.45). Higher temperatures seemed to increase

chlorophyll production in the Nannochloropsis cells as the concentration was higher

under 30◦C/23◦C for both genotypes (Fig. 4.47), as also reported for other microal-

gae [179]. These observations are also consistent with the higher growth rates of

the two genotypes under 30◦C/23◦C (Figs. 4.40, 4.41).

The lower cell number under 30◦C/23◦C (Fig. 4.46), yet similar OD as under

23◦C/15◦C, indicated larger cell volumes and/or higher chlorophyll content per cell

(Fig. 4.47) under higher temperatures. This has also been found for some other

microalgae [179, 184].

Summarizing the results from the comparison under variable light and temper-

ature regimes, the highest relative OD680 increase was found for npq21 for all ex-

periments except one, where WT had a slightly higher value under fluctuating LL

(Table 4.2), indicating a higher growth performance for npq21. On the contrary,

npq3 showed lowest values, presumably due to negative effects of reduced NPQ on

the ability to acclimate to changing environments. The carotenoid to chlorophyll

ratio varied between the experiments and the genotypes independent of the growth

rates (Table 4.3). Because the carotenoid to chlorophyll ratio not only shows a

sign of stress (negative attribute) but also reflects the capacity of algae to respond
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to the stress (positive attribute), it is difficult to evaluate genotypes based on this

parameter without more detailed examination.

5.2 Greenhouse experiments

5.2.1 Production of N. gaditana biomass in the greenhouse

PBRs

Up-scaling from laboratory to commercial-scale systems is one of the recent main

objectives in studies on algal biomass production. To scale up observations in small

PBRs in the laboratory to more realistic conditions, pilot-scale commercial PBRs

were setup in greenhouses to test productivity under conditions resembling indus-

trial production sites, which are characterized by natural fluctuations in light and

temperature. First, the comparability of the four PBRs (Table 4.4 and 4.5) was

checked for the purpose. Variations were mostly attributable to manual harvest

which is not as accurate and reproducible as a mechanically controlled and moni-

tored harvest procedure. The volume capacity of the pilot PBRs used in this study

was 50 l m−2 which is double the volume capacity given for flat panel photobioreac-

tors, but only one third of an open pond or less than one third of a tubular reactor

as described in Table 1.4.

The optical density at which the culture of N. gaditana was harvested as well as

the average optical density during the cultivation were much lower than the values

given in the literature as the optimal culture densities for production with Spirulina

or other microalgae (Tables 1.3 and 1.4, [185]). In the present study high relative

growth rates of N. gaditana were found at low optical densities in the greenhouse

PBRs, due partly to low light availability in late fall and winter time in Germany.

Thus, the lower densities were chosen to allow better light penetration and reduce

self-shading, which is a major problem in PBRs [95]. The productivity at higher

densities (i.e. much higher than the average harvest density of 0.115 g l−1 reached

during the autumn-winter experiment conducted in this study) needs to be tested

during sunnier seasons.

When comparing with the value previously reported for Nannochloropsis sp. cul-

tivated in horizontal tube reactors in September in central Italy (Table 1.7), the
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productivity measured in the greenhouse PBRs in this study was extremely low

(1.2% of the value in central Italy). Considering the different experimental loca-

tions and PBR shapes, comparability of the productivity data is not given. Yet,

further investigations are needed to check if changed growth conditions, e.g. higher

densities used during cultivation, would lead to higher productivities as given in

the literature.

The water footprint of 8.3 l g−1
biomass could be reduced by a longer production

period as well as by recycling water by e.g. using a centrifuge [5, 10, 23, 26, 135]

for separation of biomass and medium which could then be transferred back into

the PBRs. Thereby the costs for nutrient addition could also be reduced; for the

experiment in this study, 19 ml of f/2 nutrient stock solution (corresponding to

0.23 g N and 0.021 g P) were needed per gram biomass production because a high

proportion of nutrients was discarded at every harvest.

The pH-value increased with increasing culture density (Fig. 4.51) as more CO2

was taken up by the algae. Nannochloropsis is able to grow in a broad pH range

from pH 6.5 to 10 [165] so that the pH values stayed within the acceptable region

during cultivation in the greenhouse PBRs. Addition of more CO2 could have had

a positive effect on growth provided that enough light was available.

The production of WT in February to March 2013 with October to December

2012 was found to be not comparable, as the conditions were different and the

duration of cultivation was shorter for the second experiment. Nevertheless, it is

conspicuous that biomass production was clearly higher and also higher biomass

densities were reached in February-March than in October-November. The longer

light periods in February-March (Fig. 4.63) compared to October-December (Fig.

4.49) may have allowed higher growth (Fig. 4.1; [144]), even though temperatures

were lower on most days during February-March. Also, the higher OD values used

at harvest in the second experiment, and hence higher biomass concentrations con-

tained in the cultures, could have contributed to higher biomass yield. This would

indicate that higher culture density can lead to a higher overall productivity, even

though light penetration is reduced. The right balance needs to be found between

culture density and light penetration, which would be dependent on the interaction

of the different factors of the cultivation conditions.
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5.2.2 Comparison between WT and npq21

After cultivation of WT and NPQ mutants under laboratory conditions npq21

was selected as the promising candidate for higher productivity as it outcompeted

npq3 and often also WT under different light and temperature treatments in the

laboratory. The conditions for growth were not optimal as the average PAR was

as low as 7.5 mol m−2 d−1 during the experiment (Table 4.7), but temperatures

rising over 23◦C (Fig. 4.64) could have improved growth. The pH-values increased

with increasing density, yet higher pH-values were reached earlier for npq21 (Fig.

4.65), suggesting a higher CO2 uptake and faster culture growth compared to WT

(Fig. 4.66). This was also reflected by the higher biomass production of npq21

throughout the cultivation including higher chlorophyll a production (Table 4.6

and 4.7): 12% more biomass was produced by npq21 compared to WT during 29

days of cultivation between January and March, 2013. The higher production of

npq21 and thus larger harvest volume also led to increased total amounts of water,

salt and nutrient stock solution added to the culture, while these additions were

nearly the same for both genotypes when expressed for gram biomass production

(Table 4.6). These results are basically in line with the observations found under

laboratory conditions. Based on the results of this study, it can be said that,

under low light conditions in winter, npq21 achieves higher productivity than WT

in commercially available PBRs under greenhouse conditions and is therefore a

promising candidate for higher yields in an industrial-scale production. Clearly,

the productivity should be tested also under high irradiance and high temperature

conditions prevailing in summer. Attempts to evaluate the productivity of npq21

and WT during the spring-summer 2013 failed due to repeated problems with

contamination and infection of the culture in the PBRs. These problems with

contamination, common in non-sterile systems outside the laboratory, represent a

major challenge for large-scale continuous biomass production with algae.
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Bio-based economy is the new direction in which our society is headed, as fossil

resources and agricultural land are limited while global population is increasing.

Besides crops, other biomass sources need investigation for optimal production and

economic resource utilization. Being an alternative biomass source, algae need to

be further improved for “domestication” as production costs, as they currently

stand, are too high because of high initial investment and energy input needed for

cultivation and low biomass yields from WT strains. N. gaditana, containing high

amounts of lipids, is an interesting species for biodiesel production.

The results of this study show that chlorophyll accumulation and growth of N.

gaditana is under the control of both circadian clock and light, as manifested by di-

urnal increase of OD680 and OD735 in LD cycles and persistent oscillation of OD680 in

blue LL, but not in red LL. In comparison to OD680, free-running oscillations could

not be clearly recognized for OD735 and the PS II quantum yield was determined

primarily by light conditions. Understanding the interactions between endogenous

regulation (clock) and environmental signals (e.g. light, nutrients, stress) in N.

gaditana could contribute to development of genetic engineering strategies and cul-

tivation protocols for improved biomass and lipid production in this alga under

dynamic outdoor environments.

Similar or improved growth performance was found for the N. gaditana mu-

tant npq21, compared with WT or npq3. The presence of antheraxanthin in both

mutants, npq3 and npq21, indicates a possible defect in the violaxanthin cycle or

increased level of light-induced stress in these mutants. As violaxanthin was present

in large amounts in npq3 and npq21, a functional zeaxanthin epoxidase must have

been present. Lower activity of zeaxanthin epoxidase may explain the constitutive

accumulation of antheraxanthin. Higher chlorophyll contents per cell under fluc-

tuating light suggest the capacity of npq21 to activate efficient protection against

137
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photooxidative stress. The improved growth under varying temperatures, espe-

cially lower stress symptoms under high temperatures, make npq21 an interesting

candidate for large-scale cultivation in warmer regions, or in greenhouses, where

it is difficult to reduce temperatures during intensive solar radiation. Further, the

tolerance to fluctuating light, which is unavoidable due to circulation in the PBRs,

is another advantageous characteristic of npq21 for large-scale production in PBRs.

Indeed, the experiments in the PBRs under the greenhouse conditions have con-

firmed these findings in the laboratory experiments; also in the greenhouse PBRs

npq21 showed higher biomass production in the same period of time under the

same conditions compared to WT. This was achieved at the same production costs

as WT, based on the equal amounts of water, salt and nutrient solution needed for

a unit biomass production. Together, npq21 seems to have interesting traits, such

as high tolerance to changing light and temperature as well as improved biomass

yield compared to WT, thus inviting further tests at a larger scale for potential use

in industrial biomass or oil production.

It remains to be investigated whether the higher growth and biomass produc-

tion of npq21 under stressful light conditions may arise from mutations that are

not directly related to NPQ or pigment composition. The metabolic processes

and pathways which are suppressed or enhanced in this alga may shed light on its

physiology. Given the availability of the genome sequence, rapid sequencing tech-

nologies in combination with bioinformatics tools could help identify the mutations

in npq21, which can then be used, e.g. for genetic engineering. Better understand-

ing of regulatory processes of growth and metabolism within the algal cell, such

as the circadian clock, would also be essential to develop strategies for targeted

genetic modifications and to optimize cultivation conditions.

Collection of monthly, seasonal or annual data on biomass production and yield

of other high-value products are needed, especially for Central Europe where the

climate conditions are characterized by long but not too hot days during summer

and limited solar radiation and temperature during winter. Despite some technical

and climatic bottlenecks, the potential of these photosynthetic microorganisms as

producers of fuels, raw materials and high-value products in bio-based economy is

high. The quest for optimal strains and cultivation protocols is worth continuing.



7 Supplementary

Figure 7.1: Changes in cell number during dark period under the control conditions with 12 h/12 h
LD cycles. Data are means of three replicates and error bars indicate SD.
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Zeitschrift für Botanik, 40:193–199, 1952.

[56] K. Goto and C.H. Johnson. Is the cell-division cycle gated by a circadian

clock - the case of Chlamydomonas reinhardtii. Journal of Cell Biology,

129:1061–1069, MAY 1995.



Bibliography 147

[57] T. Mori, B. Binder, and C.H. Johnson. Circadian gating of cell division in

cyanobacteria growing with average doubling times of less than 24 hours. Pro-

ceedings of the National Academy of Sciences of the United States of America,

93:10183–10188, SEP 1996.

[58] D.E. Somers, P.F. Devlin, and S.A. Kay. Phytochromes and cryptochromes in

the entrainment of the Arabidopsis circadian clock. Science, 282(5393):1488–

1490, NOV 1998.

[59] L. Rensing and P. Ruoff. Temperature effect on entrainment, phase shifting,

and amplitude of circadian clocks and its molecular bases. Chronobiology

International, 19:807–864, 2002.

[60] J. Aschoff. Exogenous and endogenous components in circadian rhythms.

Cold Spring Harbor Symposia on Quantitative Biology, 25:11–28, 1960.

[61] S.S. Golden and S.R. Canales. Cyanobacterial circadian clocks - Timing is

everything. Nature Reviews Microbiology, 1:191–199, DEC 2003.

[62] M. Mittag, S. Kiaulehn, and C.H. Johnson. The circadian clock in Chlamy-

domonas reinhardtii. What is it for? What is it similar to? Plant Physiology,

137:399–409, 2005.

[63] T. Matsuo and M. Ishiura. Chlamydomonas reinhardtii as a new model

system for studying the molecular basis of the circadian clock. FEBS Letters,

585:1495–1502, 2011.

[64] S. Hwang, R. Kawazoe, and D.L. Herrin. Transcription of tufA and other

chloroplast-encoded genes is controlled by a circadian clock in Chlamy-

domonas. Proceedings of the National Academy of Sciences, 93(3):996–1000,

1996.

[65] T. Kondo, C.A. Strayer, R.D. Kulkarni, W. Taylor, M. Ishiura, S.S. Golden,

and C.H. Johnson. Circadian rhythms in prokaryotes: luciferase as a reporter

of circadian gene expression in cyanobacteria. Proceedings of the National

Academy of Sciences, 90(12):5672–5676, 1993.

[66] A.P. Carvalho, S.O. Silva, J.M. Baptista, and F.X. Malcata. Light require-

ments in microalgal photobioreactors: an overview of biophotonic aspects.

Applied Microbiology and Biotechnology, 89:1275–1288, 2010.



148 Bibliography

[67] M. Ballottari, J. Girardon, L. Dall’Osto, and R. Bassi. Evolution and func-

tional properties of photosystem II light harvesting complexes in eukaryotes.

Biochimica Et Biophysica Acta-bioenergetics, 1817(1):143–157, JAN 2012.

[68] E.J. Boekema, B. Hankamer, D. Bald, J. Kruip, J. Nield, A.F. Boonstra,

J. Barber, and M. Rogner. Supramolecular structure of the photosystem II

complex from green plants and cyanobacteria. Proceedings of the National

Academy of Sciences of the United States of America, 92:175–179, JAN 1995.

[69] A. Ben-Shem, F. Frolow, and N. Nelson. Crystal structure of plant photosys-

tem I. Nature, 426:630–635, 2003.

[70] E. Gantt. Phycobilisomes. Annual Review of Plant Physiology, 32(1):327–347,

1981.

[71] Z.F. Liu, H.C. Yan, K.B. Wang, T.Y. Kuang, J.P. Zhang, L.L. Gui, X.M.

An, and W.R. Chang. Crystal structure of spinach major light-harvesting

complex at 2.72 angstrom resolution. Nature, 428(6980):287–292, MAR 18

2004.

[72] R. Standfuss, A.C.T. van Scheltinga, M. Lamborghini, and W. Kuhlbrandt.

Mechanisms of photoprotection and nonphotochemical quenching in pea light-

harvesting complex at 2.5A resolution. EMBO Journal, 24(5):919–928, MAR

9 2005.

[73] A. Sukenik, A. Livne, A. Neori, Y.Z. Yacobi, and D. Katcoff. Purification

and characterization of a light-harvesting chlorophyll-protein complex from

the marine Eustigmatophyte Nannochloropsis sp. Plant and Cell Physiology,

33(8):1041–1048, DEC 1992.

[74] J.S. Brown. Functional-organization of Chlorophyll a and Carotenoids In the

Alga, Nannochloropsis salina. Plant Physiology, 83(2):434–437, FEB 1987.

[75] L. Bogorad. Phycobiliproteins and complementary chromatic adaptation.

Annulal review of Plant Physiology and Plant Molecular Biology, 26:369–401,

1975.

[76] K.S. Kan and J.P. Thornber. Light-harvesting chlorophyll a-b-protein com-

plex of Chlamydomonas-reinhardii. Plant Physiology, 57(1):47–52, 1976.



Bibliography 149

[77] A. Pandit, T. Morosinotto, M. Reus, A.R. Holzwarth, R. Bassi, and H.J.M.

de Groot. First solid-state NMR analysis of uniformly 13C-enriched major

light-harvesting complexes from Chlamydomonas reinhardtii and identifica-

tion of protein and cofactor spin clusters. Biochimica et Biophysica Acta

(BBA) - Bioenergetics, 1807(4):437 – 443, 2011.

[78] A. Sukenik, A. Livne, K.E. Apt, and A.R. Grossman. Characterization of a

gene encoding the light-harvesting violaxanthin-chlorophyll protein of Nan-

nochloropsis sp (Eustigmatophyceae). Journal of Phycology, 36(3):563–570,

JUN 2000.

[79] E. Pfundel and W. Bilger. Regulation and possible function of the violaxan-

thin cycle. Photosynthesis Research, 42(2):89–109, NOV 1994.

[80] W.M. Manning and H.H. Strain. Chlorophyll d, a green pigment of red algae.

Journal of Biological Chemistry, 151(1):1–19, NOV 1943.

[81] S.W. Jeffrey. Profiles of photosynthetic pigments in ocean using thin-layer

chromatography. Marine Biology, 26(2):101–110, 1974.

[82] G. Bonente, S. Pippa, S. Castellano, R. Bassi, and M. Ballottari. Acclimation

of Chlamydomonas reinhardtii to Different Growth Irradiances. Journal of

Biological Chemistry, 287(8):5833–5847, FEB 17 2012.

[83] H.H. Strain, W.M. Manning, and G. Hardin. Chlorophyll c (chlorofucine) of

diatoms and dinoflagellates. Journal of Biological Chemistry, 148(3):655–668,

JUN 1943.

[84] J.E.W. Polle, K.K. Niyogi, and A. Melis. Absence of Lutein, Violaxanthin and

Neoxanthin Affects the Functional Chlorophyll Antenna Size of Photosystem-

II but not that of Photosystem-I in the Green Alga Chlamydomonas rein-

hardtii. Plant and Cell Physiology, 42(5):482–491, 2001.

[85] M. Koller, A. Salerno, P. Tuffner, M. Koinigg, H. Böchzelt, S. Schober,
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