000150280 001__ 150280
000150280 005__ 20240708132738.0
000150280 037__ $$aFZJ-2014-00354
000150280 041__ $$aEnglish
000150280 1001_ $$0P:(DE-Juel1)156165$$aTokariev, O.$$b0$$eCorresponding author$$ufzj
000150280 1112_ $$aConference for Young Scientists in Ceramics$$cNovi Sad$$d2013-11-06 - 2013-11-09$$gSM-2013$$wSerbia
000150280 245__ $$aStudy of storage materials for high-temperature rechargeable oxide batteries (ROB)
000150280 260__ $$c2013
000150280 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1393421131_2929$$xPlenary/Keynote
000150280 3367_ $$033$$2EndNote$$aConference Paper
000150280 3367_ $$2DataCite$$aOther
000150280 3367_ $$2ORCID$$aLECTURE_SPEECH
000150280 3367_ $$2DRIVER$$aconferenceObject
000150280 3367_ $$2BibTeX$$aINPROCEEDINGS
000150280 502__ $$cIEK-1
000150280 520__ $$aThe work focuses on the research of porous storage material of a novel high-temperature rechargeable oxide battery (ROB). The ROB consist of regenerative solid oxide cell (SOC) and hydrogen/water vapor storage redox unit with embedded Fe/FeO porous redox material which has to meet the requirements, such as good kinetic properties, high oxygen storage capacity and high lifetime.
Because of long-term redox reactions at 800 °C the structure of the storage material can degrade, and thus makes the storage material incapable to store enough oxygen for continuous redox reactions. Due to that the Fe/FeO porous storage material has to be supported by e.g. inert and reactive oxides. To some extent the inert and stable mixed oxides show some resistance against structural degradation however, they could not completely provide a significant long-term oxygen storage capacity. In contrast to the stable oxides, reactive mixed oxides seem to be promising candidates which are capable to suppress a structural degradation after several redox cycles and improve the kinetic activity of Fe/MeO based storage material.
000150280 536__ $$0G:(DE-HGF)POF2-123$$a123 - Fuel Cells (POF2-123)$$cPOF2-123$$fPOF II$$x0
000150280 536__ $$0G:(DE-Juel1)SOFC-20140602$$aSOFC - Solid Oxide Fuel Cell (SOFC-20140602)$$cSOFC-20140602$$fSOFC$$x1
000150280 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000150280 7001_ $$0P:(DE-Juel1)156166$$aBerger, C.$$b1$$ufzj
000150280 7001_ $$0P:(DE-Juel1)145679$$aOrzessek, P.$$b2$$ufzj
000150280 7001_ $$0P:(DE-Juel1)129591$$aBram, M.$$b3$$ufzj
000150280 7001_ $$0P:(DE-Juel1)129636$$aMenzler, N. H.$$b4$$ufzj
000150280 909CO $$ooai:juser.fz-juelich.de:150280$$pVDB
000150280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156165$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156166$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000150280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145679$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000150280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000150280 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129636$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000150280 9131_ $$0G:(DE-HGF)POF2-123$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vFuel Cells$$x0
000150280 9141_ $$y2013
000150280 920__ $$lyes
000150280 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000150280 980__ $$aconf
000150280 980__ $$aVDB
000150280 980__ $$aUNRESTRICTED
000150280 980__ $$aI:(DE-Juel1)IEK-1-20101013
000150280 981__ $$aI:(DE-Juel1)IMD-2-20101013