001     150280
005     20240708132738.0
037 _ _ |a FZJ-2014-00354
041 _ _ |a English
100 1 _ |a Tokariev, O.
|0 P:(DE-Juel1)156165
|b 0
|u fzj
|e Corresponding author
111 2 _ |a Conference for Young Scientists in Ceramics
|w Serbia
|c Novi Sad
|d 2013-11-06 - 2013-11-09
|g SM-2013
245 _ _ |a Study of storage materials for high-temperature rechargeable oxide batteries (ROB)
260 _ _ |c 2013
336 7 _ |a Conference Presentation
|b conf
|m conf
|0 PUB:(DE-HGF)6
|s 1393421131_2929
|2 PUB:(DE-HGF)
|x Plenary/Keynote
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Other
|2 DataCite
336 7 _ |a LECTURE_SPEECH
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
502 _ _ |c IEK-1
520 _ _ |a The work focuses on the research of porous storage material of a novel high-temperature rechargeable oxide battery (ROB). The ROB consist of regenerative solid oxide cell (SOC) and hydrogen/water vapor storage redox unit with embedded Fe/FeO porous redox material which has to meet the requirements, such as good kinetic properties, high oxygen storage capacity and high lifetime. Because of long-term redox reactions at 800 °C the structure of the storage material can degrade, and thus makes the storage material incapable to store enough oxygen for continuous redox reactions. Due to that the Fe/FeO porous storage material has to be supported by e.g. inert and reactive oxides. To some extent the inert and stable mixed oxides show some resistance against structural degradation however, they could not completely provide a significant long-term oxygen storage capacity. In contrast to the stable oxides, reactive mixed oxides seem to be promising candidates which are capable to suppress a structural degradation after several redox cycles and improve the kinetic activity of Fe/MeO based storage material.
536 _ _ |a 123 - Fuel Cells (POF2-123)
|0 G:(DE-HGF)POF2-123
|c POF2-123
|x 0
|f POF II
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|x 1
|f SOFC
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 2
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Berger, C.
|0 P:(DE-Juel1)156166
|b 1
|u fzj
700 1 _ |a Orzessek, P.
|0 P:(DE-Juel1)145679
|b 2
|u fzj
700 1 _ |a Bram, M.
|0 P:(DE-Juel1)129591
|b 3
|u fzj
700 1 _ |a Menzler, N. H.
|0 P:(DE-Juel1)129636
|b 4
|u fzj
909 C O |o oai:juser.fz-juelich.de:150280
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156165
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156166
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145679
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129636
913 1 _ |a DE-HGF
|b Energie
|l Rationelle Energieumwandlung und -nutzung
|1 G:(DE-HGF)POF2-120
|0 G:(DE-HGF)POF2-123
|2 G:(DE-HGF)POF2-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2013
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a conf
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21