000150312 001__ 150312
000150312 005__ 20210129213133.0
000150312 0247_ $$2doi$$a10.2136/vzj2012.0139
000150312 0247_ $$2WOS$$aWOS:000319393200014
000150312 037__ $$aFZJ-2014-00382
000150312 041__ $$aEnglish
000150312 082__ $$a550
000150312 1001_ $$0P:(DE-Juel1)142576$$aQu, Wei$$b0$$eCorresponding author$$ufzj
000150312 245__ $$aCalibration of a Novel Low-Cost Soil Water Content Sensor Based on a Ring Oscillator
000150312 260__ $$aMadison, Wis.$$bSSSA$$c2012
000150312 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1392371094_28197
000150312 3367_ $$2DataCite$$aOutput Types/Journal article
000150312 3367_ $$00$$2EndNote$$aJournal Article
000150312 3367_ $$2BibTeX$$aARTICLE
000150312 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000150312 3367_ $$2DRIVER$$aarticle
000150312 500__ $$3POF3_Assignment on 2016-02-29
000150312 520__ $$aWireless sensor networks are becoming more popular to monitor spatial and temporal variability of soil water content. The aim of this paper is to calibrate and test the newly developed SPADE sensor for wireless sensor network applications. During calibration, the measured sensor output is related to dielectric permittivity using an empirical calibration in liquids with well-defined permittivities. Using these calibration measurements, we have evaluated sensor-to-sensor variability and compared the accuracy of a universal calibration between sensor output and permittivity with a sensor-specific calibration. Our results showed that the sensor-to-sensor variability of the SPADE sensor is larger than sensor noise, and that a sensor-specific calibration can improve the accuracy of soil water content estimation as compared to a single universal calibration. To quantify the effect of temperature on the sensor output, we have derived a temperature correction function in a temperature range from 5 to 40 °C. The results showed an underestimation for low temperatures (5 to 25 °C) and an overestimation for high temperatures (25 to 40 °C). A second order polynomial function was fitted to the measurements with good agreement (R2 = 0.9831, RMSE = 0.1489). The transferability of the temperature correction function from reference liquids to soils was verified using saturated coarse sand and a silty loam soil sample. The temperature-corrected SPADE sensor measurements in soil showed good agreement with TDR measurements and corresponded well with theoretical predictions from a dielectric mixing model.
000150312 536__ $$0G:(DE-HGF)POF2-246$$a246 - Modelling and Monitoring Terrestrial Systems: Methods and Technologies (POF2-246)$$cPOF2-246$$fPOF II$$x0
000150312 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b1$$ufzj
000150312 7001_ $$0P:(DE-Juel1)129472$$aHuisman, Johan Alexander$$b2$$ufzj
000150312 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b3$$ufzj
000150312 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2012.0139$$n2$$p10$$tVadose zone journal$$v12$$x1539-1663
000150312 8564_ $$uhttps://juser.fz-juelich.de/record/150312/files/FZJ-2014-00382.pdf$$yRestricted
000150312 909__ $$ooai:juser.fz-juelich.de:150312$$pVDB
000150312 909CO $$ooai:juser.fz-juelich.de:150312$$pVDB:Earth_Environment$$pVDB
000150312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142576$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000150312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129472$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000150312 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000150312 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000150312 9131_ $$0G:(DE-HGF)POF2-246$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vModelling and Monitoring Terrestrial Systems: Methods and Technologies$$x0
000150312 9141_ $$y2013
000150312 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000150312 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000150312 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000150312 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000150312 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000150312 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000150312 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000150312 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000150312 920__ $$lyes
000150312 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000150312 980__ $$ajournal
000150312 980__ $$aVDB
000150312 980__ $$aUNRESTRICTED
000150312 980__ $$aI:(DE-Juel1)IBG-3-20101118