000150362 001__ 150362
000150362 005__ 20220930130025.0
000150362 0247_ $$2doi$$a10.2136/vzj2013.04.0075
000150362 0247_ $$2WOS$$aWOS:000330971700007
000150362 037__ $$aFZJ-2014-00432
000150362 082__ $$a550
000150362 1001_ $$0P:(DE-Juel1)129445$$aDimitrov, M.$$b0$$eCorresponding author
000150362 245__ $$aSoil Hydraulic Parameters and Surface Soil Moisture of a Tilled Bare Soil Plot Inversely Derived from L-Band Brightness Temperatures
000150362 260__ $$aMadison, Wis.$$bSSSA$$c2014
000150362 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1397044575_8373
000150362 3367_ $$2DataCite$$aOutput Types/Journal article
000150362 3367_ $$00$$2EndNote$$aJournal Article
000150362 3367_ $$2BibTeX$$aARTICLE
000150362 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000150362 3367_ $$2DRIVER$$aarticle
000150362 520__ $$aL-band radiometers can be used to remotely monitor the microwave brightness temperature of land surfaces. We investigated how soil hydraulic properties and soil moisture contents of a bare soil plot can be inferred from L-band brightness temperatures using a coupled inversion approach.We coupled a radiative transfer model and a soil hydrologic model (HYDRUS 1D) with an optimization routine to derive soil hydraulic parameters, surface roughness, and soil moisture of a tilled bare soil plot using measured brightness temperatures at 1.4 GHz (L-band), rainfall, and potential soil evaporation. The robustness of the approach was evaluated using five 28-d data sets representing different meteorological conditions. We considered two soil hydraulic property models: the unimodal Mualem–van Genuchten and the bimodal model of Durner. Microwave radiative transfer was modeled by three different approaches: the Fresnel equation with depth-averaged dielectric permittivity of either 2- or 5-cm-thick surface layers and a coherent radiative transfer model (CRTM) that accounts for vertical gradients in dielectric permittivity. Brightness temperatures simulated by the CRTM and the 2-cm-layer Fresnel model fitted well to the measured ones. L-band brightness temperatures are therefore related to the dielectric permittivity and soil moisture in a 2-cm-thick surface layer. The surface roughness parameter that was derived from brightness temperatures using inverse modeling was similar to direct estimates from laser profiler measurements. The laboratory-derived water retention curve was bimodal and could be retrieved consistently for the different periods from brightness temperatures using inverse modeling. A unimodal soil hydraulic property function underestimated the hydraulic conductivity near saturation. Surface soil moisture contents simulated using retrieved soil hydraulic parameters were compared with in situ measurements. Depth-specific calibration relations were essential to derive soil moisture from near-surface installed sensors.
000150362 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000150362 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000150362 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b1
000150362 7001_ $$0P:(DE-HGF)0$$aKostov, K. G.$$b2
000150362 7001_ $$0P:(DE-Juel1)129476$$aJadoon, K. Z.$$b3
000150362 7001_ $$0P:(DE-Juel1)129553$$aWeihermüller, L.$$b4
000150362 7001_ $$0P:(DE-HGF)0$$aJackson, T. J.$$b5
000150362 7001_ $$0P:(DE-HGF)0$$aBindlish, R.$$b6
000150362 7001_ $$0P:(DE-HGF)0$$aPachepsky, Y.$$b7
000150362 7001_ $$0P:(DE-HGF)0$$aSchwank, M.$$b8
000150362 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b9
000150362 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2013.04.0075$$gVol. 13, no. 1, p. 0 -$$n1$$p1-18$$tVadose zone journal$$v13$$x1539-1663$$y2014
000150362 8564_ $$uhttps://juser.fz-juelich.de/record/150362/files/FZJ-2014-00432.pdf$$yRestricted$$zPublished final document.
000150362 8767_ $$92014-01-15$$d2014-01-15$$ePublication charges$$jZahlung erfolgt$$zUSD 1100,-
000150362 909CO $$ooai:juser.fz-juelich.de:150362$$pVDB:Earth_Environment$$pVDB$$pOpenAPC$$popenCost
000150362 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129445$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150362 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000150362 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129476$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000150362 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129553$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000150362 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich GmbH$$b9$$kFZJ
000150362 9132_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000150362 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000150362 9141_ $$y2014
000150362 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000150362 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000150362 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000150362 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000150362 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000150362 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000150362 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000150362 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000150362 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000150362 980__ $$ajournal
000150362 980__ $$aVDB
000150362 980__ $$aI:(DE-Juel1)IBG-3-20101118
000150362 980__ $$aUNRESTRICTED
000150362 980__ $$aAPC