000150384 001__ 150384
000150384 005__ 20250129092423.0
000150384 0247_ $$2WOS$$aWOS:000325853400607
000150384 037__ $$aFZJ-2014-00445
000150384 041__ $$aEnglish
000150384 082__ $$a610
000150384 1001_ $$0P:(DE-HGF)0$$aBecker, GA$$b0$$eCorresponding author
000150384 245__ $$aComparison of (-)-[18F]-Flubatine and 2-[18F]FA-85380 Binding to Nicotinic alpha4beta2 Acetylcholine Receptors in Human Brains.
000150384 260__ $$c2013
000150384 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1391521809_1226
000150384 3367_ $$2DataCite$$aOutput Types/Journal article
000150384 3367_ $$00$$2EndNote$$aJournal Article
000150384 3367_ $$2BibTeX$$aARTICLE
000150384 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000150384 3367_ $$2DRIVER$$aarticle
000150384 500__ $$3POF3_Assignment on 2016-02-29
000150384 500__ $$aAbstract
000150384 520__ $$aAim: Nicotinic α4β2* acetylcholine receptors (nAChR) are an important target for diagnostic neuroimaging because of their involvement in Alzheimer's disease, Parkinson's disease, tobacco and alcohol addiction. 2-[18F]FA-85380 (2-FA) has been used extensively for PET imaging of α4β2* receptors but is limited as biomarker by its unfavourable slow kinetic. The newly developed radiotracer (-)-[18F]-Flubatine (Flubatine) shows a significantly improved brain uptake, receptor affinity and selectivity (1). Here we estimated the compartmental parameters of both tracers by full kinetic modeling and compared them. Materials and Methods: After intravenous administration of ~370 MBq radiotracer PET brain imaging was performed in 20 healthy controls with Flubatine (age 70.6±4.6, scan duration 90 min) and in 7 healthy controls with 2-FA (age 60.7±9.0, scan duration 420 min) using an ECAT EXACT HR+ system. PET frames were motion corrected with SPM2 and kinetic modeling using a 1-tissue compartment model (1TCM) with arterial input-function was applied to the volume of interest (VOI) based tissue time-activity curves (TACs) generated for 29 brain regions (anatomically defined via MRI co-registration). The model-based receptor parameter used was the total distribution volume VT (ml/cm3), tracer uptake was measured by K1 (ml/cm3/min) and tracer tissue clearance by k2 (1/min). Results: For both tracers TACs of all 29 brain regions could be described appropriately with the 1TCM and all kinetic parameters could be reliably estimated from the PET data. Regional VT increased as expected with regional nAChR density. Parameters of Flubatine in characteristic regions with very low, medium and high receptor density were: Corpus callosum (K1= 0.18±0.04, k2= 0.032±0.004, VT= 5.68±1.01), Frontal cortex (K1= 0.37±0.04, k2= 0.040±0.003, VT= 9.18±0.59), Thalamus (K1= 0.48±0.06, k2= 0.020±0.003, VT= 25.03±3.33). The respective parameters of 2-FA were: Corpus callosum (K1= 0.063±0.009, k2= 0.014±0.003, VT= 4.45±0.65), Frontal cortex (K1= 0.099±0.013, k2= 0.018±0.001, VT= 5.42±0.56), Thalamus (K1= 0.13±0.019, k2= 0.010±0.001, VT= 13.06±2.62). Conclusions: Flubatine is superior to 2-FA in tracer uptake velocity (characterized by K1), velocity of washout (characterized by k2) and in the amount of measured specific binding (characterized by VT-target - VT-reference). It shows a threefold higher uptake rate constant K1 and a twofold higher washout rate constant k2, providing the rational for much shorter scan durations in case of Flubatine. These results are in good agreement with our former findings in an animal (pig) model (1). Reference: 1. P. Brust, ..O. Sabri: In vivo measurement of nicotinic acetylcholine receptors with [18F]Norchloro-Fluoro-Homoepibatidine (Flubatine). Synapse 2008;62:205-218.
000150384 536__ $$0G:(DE-HGF)POF2-332$$a332 - Imaging the Living Brain (POF2-332)$$cPOF2-332$$fPOF II$$x0
000150384 536__ $$0G:(DE-Juel1)BMBF-01EZ0822$$aBMBF-01EZ0822 - NorChloro-Fluoro HomoEpiBatidin (NCFHEB)  ein potentieller Positronen-Emission Tomographie-(PET) Marker der frühen Alzheimer-Demenz (BMBF-01EZ0822)$$cBMBF-01EZ0822$$x1
000150384 536__ $$0G:(DE-Juel1)HGF-HVF-0012$$aNikotinPET - Validierung von (+)-[18F]Flubatine als PET-Radiotracer zur Untersuchung von Nikotinrezeptoren bei Demenz (HGF-HVF-0012)$$cHGF-HVF-0012$$x2
000150384 7001_ $$0P:(DE-HGF)0$$aWilke, S$$b1
000150384 7001_ $$0P:(DE-HGF)0$$aSchönknecht, P$$b2
000150384 7001_ $$0P:(DE-HGF)0$$aPatt, M$$b3
000150384 7001_ $$0P:(DE-HGF)0$$aLuthardt, J$$b4
000150384 7001_ $$0P:(DE-HGF)0$$aHesse, S$$b5
000150384 7001_ $$0P:(DE-HGF)0$$aMeyer, PM$$b6
000150384 7001_ $$0P:(DE-HGF)0$$aBarthel, H$$b7
000150384 7001_ $$0P:(DE-HGF)0$$aSorger, D$$b8
000150384 7001_ $$0P:(DE-HGF)0$$aSeese, A$$b9
000150384 7001_ $$0P:(DE-Juel1)133954$$aWagenknecht, Gudrun$$b10
000150384 7001_ $$0P:(DE-HGF)0$$aHöpping, A$$b11
000150384 7001_ $$0P:(DE-HGF)0$$aFischer, S$$b12
000150384 7001_ $$0P:(DE-HGF)0$$aBrust, P$$b13
000150384 7001_ $$0P:(DE-HGF)0$$aSabri, O$$b14
000150384 773__ $$0PERI:(DE-600)2098375-X$$pS271$$tEuropean journal of nuclear medicine and molecular imaging$$v40 (Suppl 2)$$x1432-105X
000150384 909CO $$ooai:juser.fz-juelich.de:150384$$pVDB
000150384 9141_ $$y2013
000150384 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000150384 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000150384 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000150384 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000150384 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000150384 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000150384 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000150384 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000150384 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000150384 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000150384 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000150384 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)133954$$aZentralinstitut für Elektronik$$b10$$kZEA-2
000150384 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133954$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000150384 9132_ $$0G:(DE-HGF)POF3-579H$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vAddenda$$x0
000150384 9131_ $$0G:(DE-HGF)POF2-332$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vImaging the Living Brain$$x0
000150384 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000150384 980__ $$ajournal
000150384 980__ $$aVDB
000150384 980__ $$aUNRESTRICTED
000150384 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000150384 981__ $$aI:(DE-Juel1)PGI-4-20110106