000150385 001__ 150385
000150385 005__ 20250129092423.0
000150385 037__ $$aFZJ-2014-00446
000150385 041__ $$aEnglish
000150385 1001_ $$0P:(DE-HGF)0$$aBecker, GA (Corresponding author)$$b0$$eCorresponding author
000150385 1112_ $$aAnnual Congress of the European Association of Nuclear Medicine$$cLyon$$d2013-10-19 - 2013-10-23$$gEANM 2013$$wFrance
000150385 245__ $$aComparison of (-)-[18F]-Flubatine and 2-[18F]FA-85380 Binding to Nicotinic alpha4beta2 Acetylcholine Receptors in Human Brains.
000150385 260__ $$c2013
000150385 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1391508724_2681$$xOther
000150385 3367_ $$033$$2EndNote$$aConference Paper
000150385 3367_ $$2DataCite$$aOutput Types/Conference Poster
000150385 3367_ $$2DRIVER$$aconferenceObject
000150385 3367_ $$2ORCID$$aCONFERENCE_POSTER
000150385 3367_ $$2BibTeX$$aINPROCEEDINGS
000150385 520__ $$aAim: Nicotinic α4β2* acetylcholine receptors (nAChR) are an important target for diagnostic neuroimaging because of their involvement in Alzheimer's disease, Parkinson's disease, tobacco and alcohol addiction. 2-[18F]FA-85380 (2-FA) has been used extensively for PET imaging of α4β2* receptors but is limited as biomarker by its unfavourable slow kinetic. The newly developed radiotracer (-)-[18F]-Flubatine (Flubatine) shows a significantly improved brain uptake, receptor affinity and selectivity (1). Here we estimated the compartmental parameters of both tracers by full kinetic modeling and compared them. Materials and Methods: After intravenous administration of ~370 MBq radiotracer PET brain imaging was performed in 20 healthy controls with Flubatine (age 70.6±4.6, scan duration 90 min) and in 7 healthy controls with 2-FA (age 60.7±9.0, scan duration 420 min) using an ECAT EXACT HR+ system. PET frames were motion corrected with SPM2 and kinetic modeling using a 1-tissue compartment model (1TCM) with arterial input-function was applied to the volume of interest (VOI) based tissue time-activity curves (TACs) generated for 29 brain regions (anatomically defined via MRI co-registration). The model-based receptor parameter used was the total distribution volume VT (ml/cm3), tracer uptake was measured by K1 (ml/cm3/min) and tracer tissue clearance by k2 (1/min). Results: For both tracers TACs of all 29 brain regions could be described appropriately with the 1TCM and all kinetic parameters could be reliably estimated from the PET data. Regional VT increased as expected with regional nAChR density. Parameters of Flubatine in characteristic regions with very low, medium and high receptor density were: Corpus callosum (K1= 0.18±0.04, k2= 0.032±0.004, VT= 5.68±1.01), Frontal cortex (K1= 0.37±0.04, k2= 0.040±0.003, VT= 9.18±0.59), Thalamus (K1= 0.48±0.06, k2= 0.020±0.003, VT= 25.03±3.33). The respective parameters of 2-FA were: Corpus callosum (K1= 0.063±0.009, k2= 0.014±0.003, VT= 4.45±0.65), Frontal cortex (K1= 0.099±0.013, k2= 0.018±0.001, VT= 5.42±0.56), Thalamus (K1= 0.13±0.019, k2= 0.010±0.001, VT= 13.06±2.62). Conclusions: Flubatine is superior to 2-FA in tracer uptake velocity (characterized by K1), velocity of washout (characterized by k2) and in the amount of measured specific binding (characterized by VT-target - VT-reference). It shows a threefold higher uptake rate constant K1 and a twofold higher washout rate constant k2, providing the rational for much shorter scan durations in case of Flubatine. These results are in good agreement with our former findings in an animal (pig) model (1). Reference: 1. P. Brust, ..O. Sabri: In vivo measurement of nicotinic acetylcholine receptors with [18F]Norchloro-Fluoro-Homoepibatidine (Flubatine). Synapse 2008;62:205-218.
000150385 536__ $$0G:(DE-HGF)POF2-332$$a332 - Imaging the Living Brain (POF2-332)$$cPOF2-332$$fPOF II$$x0
000150385 536__ $$0G:(DE-Juel1)BMBF-01EZ0822$$aBMBF-01EZ0822 - NorChloro-Fluoro HomoEpiBatidin (NCFHEB) ein potentieller Positronen-Emission Tomographie-(PET) Marker der frühen Alzheimer-Demenz (BMBF-01EZ0822)$$cBMBF-01EZ0822$$x1
000150385 536__ $$0G:(DE-Juel1)HGF-HVF-0012$$aNikotinPET - Validierung von (+)-[18F]Flubatine als PET-Radiotracer zur Untersuchung von Nikotinrezeptoren bei Demenz (HGF-HVF-0012)$$cHGF-HVF-0012$$x2
000150385 7001_ $$aWilke, S$$b1
000150385 7001_ $$aSchönknecht, P$$b2
000150385 7001_ $$0P:(DE-HGF)0$$aPatt, M$$b3
000150385 7001_ $$aLuthardt, J$$b4
000150385 7001_ $$aHesse, S$$b5
000150385 7001_ $$0P:(DE-HGF)0$$aMeyer, PM$$b6
000150385 7001_ $$aBarthel, H$$b7
000150385 7001_ $$aSorger, D$$b8
000150385 7001_ $$aSeese, A$$b9
000150385 7001_ $$0P:(DE-Juel1)133954$$aWagenknecht, Gudrun$$b10
000150385 7001_ $$aHöpping, A$$b11
000150385 7001_ $$0P:(DE-HGF)0$$aFischer, S$$b12
000150385 7001_ $$aBrust, P$$b13
000150385 7001_ $$aSabri, O$$b14
000150385 909CO $$ooai:juser.fz-juelich.de:150385$$pVDB
000150385 9101_ $$0I:(DE-Juel1)ZEA-2-20090406$$6P:(DE-Juel1)133954$$aZentralinstitut für Elektronik$$b10$$kZEA-2
000150385 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133954$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000150385 9131_ $$0G:(DE-HGF)POF2-332$$1G:(DE-HGF)POF2-330$$2G:(DE-HGF)POF2-300$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bGesundheit$$lFunktion und Dysfunktion des Nervensystems$$vImaging the Living Brain$$x0
000150385 9141_ $$y2013
000150385 9201_ $$0I:(DE-Juel1)ZEA-2-20090406$$kZEA-2$$lZentralinstitut für Elektronik$$x0
000150385 980__ $$aposter
000150385 980__ $$aVDB
000150385 980__ $$aUNRESTRICTED
000150385 980__ $$aI:(DE-Juel1)ZEA-2-20090406
000150385 981__ $$aI:(DE-Juel1)PGI-4-20110106