000150440 001__ 150440
000150440 005__ 20240708132741.0
000150440 037__ $$aFZJ-2014-00496
000150440 041__ $$aEnglish
000150440 1001_ $$0P:(DE-Juel1)158083$$aGuin, Marie$$b0$$ufzj
000150440 1112_ $$aFachtagung  Kraftwerk Batterie 2014$$cMünster$$d2014-03-25 - 2014-03-26$$wGermany
000150440 245__ $$aReview of physical properties of NASICON materials for use in sodium         batteries
000150440 260__ $$c2014
000150440 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1390482171_18378
000150440 3367_ $$033$$2EndNote$$aConference Paper
000150440 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000150440 3367_ $$2ORCID$$aOTHER
000150440 3367_ $$2DRIVER$$aconferenceObject
000150440 3367_ $$2BibTeX$$aINPROCEEDINGS
000150440 520__ $$aThe environmental concerns about the use of fossil fuels and their resource constraints have led to a great interest in renewable energy sources and new electrical energy storage systems. One promising solution is the electrochemical storage of electricity in batteries. Among all rechargeable battery technologies, the Li-ion cells offer the largest energy density and output voltage. But recently, Na-ion batteries are back in the focus of interest due to the abundant availability of Na instead of the limited resources of Li. However, much work has to be done in the field of Na-ion in order to catch up with Li-ion technology. 
NASICON materials (sodium super ionic conductors) are a thoroughly-studied class of solid electrolytes for Na-ion batteries. In this study, their structure, compositional diversity and ionic conductivity are reviewed in order to correlate the lattice parameters and specific crystal structure data with the sodium mobility and the activation energy.   
For approximately 150 structures with the general formula Na1+x+yMxM’2-xSiyP3-yO12 (M and M’ di-, tri-, tetra- or pentavalent cations) an optimal size for M and M’ could be found and the impact on the conductivity of the amount of Na per formula unit could be pointed out. This understanding will be useful for the search of new and improved NASICON materials. 
An extensive study of the size of the structural bottleneck for the sodium conduction (formed by triangles of oxygen ions) has been made to validate the influence of this geometrical parameter on the sodium mobility.
000150440 536__ $$0G:(DE-HGF)POF2-435$$a435 - Energy Storage (POF2-435)$$cPOF2-435$$fPOF II$$x0
000150440 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000150440 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b1$$ufzj
000150440 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b2$$ufzj
000150440 909CO $$ooai:juser.fz-juelich.de:150440$$pVDB
000150440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158083$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000150440 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000150440 9131_ $$0G:(DE-HGF)POF2-435$$1G:(DE-HGF)POF2-430$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lNANOMIKRO$$vEnergy Storage$$x0
000150440 9141_ $$y2014
000150440 920__ $$lyes
000150440 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000150440 980__ $$aabstract
000150440 980__ $$aVDB
000150440 980__ $$aUNRESTRICTED
000150440 980__ $$aI:(DE-Juel1)IEK-1-20101013
000150440 981__ $$aI:(DE-Juel1)IMD-2-20101013