000150441 001__ 150441
000150441 005__ 20240708132741.0
000150441 037__ $$aFZJ-2014-00497
000150441 1001_ $$0P:(DE-Juel1)159367$$aReppert, Thorsten$$b0$$eCorresponding author$$ufzj
000150441 1112_ $$aThe 6th German Symposium Kraftwerk Batterie$$cMuenster$$d2014-03-24 - 2014-03-26$$wGermany
000150441 245__ $$aDevelopment of Li7La3Zr2O12-slurries for Lithium ion battery (LIB) functional components
000150441 260__ $$c2014
000150441 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1390482261_18379
000150441 3367_ $$033$$2EndNote$$aConference Paper
000150441 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000150441 3367_ $$2ORCID$$aOTHER
000150441 3367_ $$2DRIVER$$aconferenceObject
000150441 3367_ $$2BibTeX$$aINPROCEEDINGS
000150441 520__ $$aIn the last decades, electricity generation from renewable energy sources has gained importance in our society. With the “Energiewende” there are promising changes in energy supply already; however there is a major demand for developing new energy storage systems. Solid state lithium ion batteries have, in comparison to common LIBs, better safety properties due to the solid electrolyte. Ceramic oxide materials as solid lithium ion conductors have the advantage of inertness against atmosphere and are easier in fabrication. Li7La3Zr2O12 (LLZ) is a promising oxide material for electrolyte layers in all solid state batteries (ASBs). Its cubic phase shows one of the highest total Li+ ion conductivities (σ≈5∙〖10〗^(-4) S/cm). In Addition, dopants like Al, Ta and Y can be used to improve the garnets properties. However, to fabricate a working ASB, the materials needs to be processed into functional electrolyte layers. Different powder synthesis methods have been investigated. These powders have then been used for dispersion studies and different LLZ-slurries for further processing trials.
000150441 536__ $$0G:(DE-HGF)POF2-435$$a435 - Energy Storage (POF2-435)$$cPOF2-435$$fPOF II$$x0
000150441 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000150441 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1$$ufzj
000150441 7001_ $$0P:(DE-Juel1)156292$$aHammer, Eva-Maria$$b2$$ufzj
000150441 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b3
000150441 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b4$$ufzj
000150441 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b5$$ufzj
000150441 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b6$$ufzj
000150441 909CO $$ooai:juser.fz-juelich.de:150441$$pVDB
000150441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159367$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000150441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156292$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000150441 9101_ $$0I:(DE-Juel1)VS-II-20090406$$6P:(DE-Juel1)145623$$aWissenschaftlicher Geschäftsbereich II$$b3$$kVS-II
000150441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000150441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000150441 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000150441 9131_ $$0G:(DE-HGF)POF2-435$$1G:(DE-HGF)POF2-430$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lNANOMIKRO$$vEnergy Storage$$x0
000150441 9141_ $$y2014
000150441 920__ $$lyes
000150441 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000150441 980__ $$aabstract
000150441 980__ $$aVDB
000150441 980__ $$aUNRESTRICTED
000150441 980__ $$aI:(DE-Juel1)IEK-1-20101013
000150441 981__ $$aI:(DE-Juel1)IMD-2-20101013