001     150441
005     20240708132741.0
037 _ _ |a FZJ-2014-00497
100 1 _ |a Reppert, Thorsten
|0 P:(DE-Juel1)159367
|b 0
|u fzj
|e Corresponding author
111 2 _ |a The 6th German Symposium Kraftwerk Batterie
|c Muenster
|d 2014-03-24 - 2014-03-26
|w Germany
245 _ _ |a Development of Li7La3Zr2O12-slurries for Lithium ion battery (LIB) functional components
260 _ _ |c 2014
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1390482261_18379
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a In the last decades, electricity generation from renewable energy sources has gained importance in our society. With the “Energiewende” there are promising changes in energy supply already; however there is a major demand for developing new energy storage systems. Solid state lithium ion batteries have, in comparison to common LIBs, better safety properties due to the solid electrolyte. Ceramic oxide materials as solid lithium ion conductors have the advantage of inertness against atmosphere and are easier in fabrication. Li7La3Zr2O12 (LLZ) is a promising oxide material for electrolyte layers in all solid state batteries (ASBs). Its cubic phase shows one of the highest total Li+ ion conductivities (σ≈5∙〖10〗^(-4) S/cm). In Addition, dopants like Al, Ta and Y can be used to improve the garnets properties. However, to fabricate a working ASB, the materials needs to be processed into functional electrolyte layers. Different powder synthesis methods have been investigated. These powders have then been used for dispersion studies and different LLZ-slurries for further processing trials.
536 _ _ |a 435 - Energy Storage (POF2-435)
|0 G:(DE-HGF)POF2-435
|c POF2-435
|x 0
|f POF II
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 1
|u fzj
700 1 _ |a Hammer, Eva-Maria
|0 P:(DE-Juel1)156292
|b 2
|u fzj
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 3
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 4
|u fzj
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 5
|u fzj
700 1 _ |a Buchkremer, Hans Peter
|0 P:(DE-Juel1)129594
|b 6
|u fzj
909 C O |o oai:juser.fz-juelich.de:150441
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159367
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)156292
910 1 _ |a Wissenschaftlicher Geschäftsbereich II
|0 I:(DE-Juel1)VS-II-20090406
|k VS-II
|b 3
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129594
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-430
|0 G:(DE-HGF)POF2-435
|2 G:(DE-HGF)POF2-400
|v Energy Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l NANOMIKRO
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21