000150442 001__ 150442
000150442 005__ 20240708132741.0
000150442 037__ $$aFZJ-2014-00498
000150442 1001_ $$0P:(DE-Juel1)158085$$aDellen, Christian$$b0$$eCorresponding author$$ufzj
000150442 1112_ $$aThe 6th German Symposium Kraftwerk Batterie$$cMuenster$$d2014-03-24 - 2014-03-26$$wGermany
000150442 245__ $$aQuantification of Lithium in thin films of the solid Li ion conductor Li7La3Zr2O12 by secondary ion mass spectrometry
000150442 260__ $$c2014
000150442 3367_ $$0PUB:(DE-HGF)1$$2PUB:(DE-HGF)$$aAbstract$$babstract$$mabstract$$s1390482319_18380
000150442 3367_ $$033$$2EndNote$$aConference Paper
000150442 3367_ $$2DataCite$$aOutput Types/Conference Abstract
000150442 3367_ $$2ORCID$$aOTHER
000150442 3367_ $$2DRIVER$$aconferenceObject
000150442 3367_ $$2BibTeX$$aINPROCEEDINGS
000150442 520__ $$aThe transition from fossil fuels to renewable energies goes along with increasing requirements for batteries in the field of electro mobility and energy storage. One possible improvement for safety and energy density of Lithium ion batteries is the replacement of the organic electrolyte with a solid Li ion conductor. A promising candidate for such a future solid electrolyte in a so called all solid state battery is the oxide ceramic Li7La3Zr2O12 (LLZ). It exhibits an excellent performance regarding the stability against metallic Lithium and compatibility with high voltage electrode materials due to its wide electrochemical window. To improve the overall conductivity of the cell, the material is deposited using thin film processes. Because of the correlation between the ionic conductivity and the Lithium content in the LLZ, a method to quantify the Lithium content in thin films by secondary ion mass spectrometry is presented.
000150442 536__ $$0G:(DE-HGF)POF2-435$$a435 - Energy Storage (POF2-435)$$cPOF2-435$$fPOF II$$x0
000150442 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000150442 7001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b1$$ufzj
000150442 7001_ $$0P:(DE-Juel1)133840$$aBreuer, Uwe$$b2
000150442 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b3
000150442 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b4$$ufzj
000150442 7001_ $$0P:(DE-Juel1)129591$$aBram, Martin$$b5$$ufzj
000150442 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b6$$ufzj
000150442 909CO $$ooai:juser.fz-juelich.de:150442$$pVDB
000150442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)158085$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000150442 9101_ $$0I:(DE-Juel1)ZEA-3-20090406$$6P:(DE-Juel1)133840$$aAnalytik$$b2$$kZEA-3
000150442 9101_ $$0I:(DE-Juel1)VS-II-20090406$$6P:(DE-Juel1)145623$$aWissenschaftlicher Geschäftsbereich II$$b3$$kVS-II
000150442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000150442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129591$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000150442 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000150442 9131_ $$0G:(DE-HGF)POF2-435$$1G:(DE-HGF)POF2-430$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lNANOMIKRO$$vEnergy Storage$$x0
000150442 9141_ $$y2014
000150442 920__ $$lyes
000150442 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000150442 980__ $$aabstract
000150442 980__ $$aVDB
000150442 980__ $$aUNRESTRICTED
000150442 980__ $$aI:(DE-Juel1)IEK-1-20101013
000150442 981__ $$aI:(DE-Juel1)IMD-2-20101013