001     150442
005     20240708132741.0
037 _ _ |a FZJ-2014-00498
100 1 _ |a Dellen, Christian
|0 P:(DE-Juel1)158085
|b 0
|u fzj
|e Corresponding author
111 2 _ |a The 6th German Symposium Kraftwerk Batterie
|c Muenster
|d 2014-03-24 - 2014-03-26
|w Germany
245 _ _ |a Quantification of Lithium in thin films of the solid Li ion conductor Li7La3Zr2O12 by secondary ion mass spectrometry
260 _ _ |c 2014
336 7 _ |a Abstract
|b abstract
|m abstract
|0 PUB:(DE-HGF)1
|s 1390482319_18380
|2 PUB:(DE-HGF)
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a Output Types/Conference Abstract
|2 DataCite
336 7 _ |a OTHER
|2 ORCID
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
520 _ _ |a The transition from fossil fuels to renewable energies goes along with increasing requirements for batteries in the field of electro mobility and energy storage. One possible improvement for safety and energy density of Lithium ion batteries is the replacement of the organic electrolyte with a solid Li ion conductor. A promising candidate for such a future solid electrolyte in a so called all solid state battery is the oxide ceramic Li7La3Zr2O12 (LLZ). It exhibits an excellent performance regarding the stability against metallic Lithium and compatibility with high voltage electrode materials due to its wide electrochemical window. To improve the overall conductivity of the cell, the material is deposited using thin film processes. Because of the correlation between the ionic conductivity and the Lithium content in the LLZ, a method to quantify the Lithium content in thin films by secondary ion mass spectrometry is presented.
536 _ _ |a 435 - Energy Storage (POF2-435)
|0 G:(DE-HGF)POF2-435
|c POF2-435
|x 0
|f POF II
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
700 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 1
|u fzj
700 1 _ |a Breuer, Uwe
|0 P:(DE-Juel1)133840
|b 2
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 3
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 4
|u fzj
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 5
|u fzj
700 1 _ |a Buchkremer, Hans Peter
|0 P:(DE-Juel1)129594
|b 6
|u fzj
909 C O |o oai:juser.fz-juelich.de:150442
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)158085
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156244
910 1 _ |a Analytik
|0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|b 2
|6 P:(DE-Juel1)133840
910 1 _ |a Wissenschaftlicher Geschäftsbereich II
|0 I:(DE-Juel1)VS-II-20090406
|k VS-II
|b 3
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129594
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-430
|0 G:(DE-HGF)POF2-435
|2 G:(DE-HGF)POF2-400
|v Energy Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l NANOMIKRO
914 1 _ |y 2014
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a abstract
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21