000150473 001__ 150473
000150473 005__ 20210129213204.0
000150473 0247_ $$2doi$$a10.1088/0957-4484/24/32/325201
000150473 0247_ $$2ISSN$$a1361-6528
000150473 0247_ $$2ISSN$$a0957-4484
000150473 0247_ $$2WOS$$aWOS:000322001100005
000150473 037__ $$aFZJ-2014-00528
000150473 041__ $$aEnglish
000150473 082__ $$a530
000150473 1001_ $$0P:(DE-Juel1)125566$$aBlömers, Christian$$b0$$eCorresponding author
000150473 245__ $$aGate-induced transition between metal-type and thermally activated transport in self-catalyzed MBE-grown InAs nanowires
000150473 260__ $$aBristol$$bIOP Publ.$$c2013
000150473 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1390308227_19112
000150473 3367_ $$2DataCite$$aOutput Types/Journal article
000150473 3367_ $$00$$2EndNote$$aJournal Article
000150473 3367_ $$2BibTeX$$aARTICLE
000150473 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000150473 3367_ $$2DRIVER$$aarticle
000150473 500__ $$3POF3_Assignment on 2016-02-29
000150473 520__ $$aElectronic transport properties of InAs nanowires are studied systematically. The nanowires
are grown by molecular beam epitaxy on a SiOx-covered GaAs wafer, without using foreign
catalyst particles. Room-temperature measurements revealed relatively high resistivity and
low carrier concentration values, which correlate with the low background doping obtained by
our growth method. Transport parameters, such as resistivity, mobility, and carrier
concentration, show a relatively large spread that is attributed to variations in surface
conditions. For some nanowires the conductivity has a metal-type dependence on temperature,
i.e. decreasing with decreasing temperature, while other nanowires show the opposite
temperature behavior, i.e. temperature-activated characteristics. An applied gate voltage in a
field-effect transistor configuration can switch between the two types of behavior. The effect is
explained by the presence of barriers formed by potential fluctuations.
000150473 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000150473 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000150473 7001_ $$0P:(DE-Juel1)141766$$aRieger, Torsten$$b1
000150473 7001_ $$0P:(DE-HGF)0$$aGrap, T$$b2
000150473 7001_ $$0P:(DE-HGF)0$$aRaux, M$$b3
000150473 7001_ $$0P:(DE-Juel1)128603$$aLepsa, Mihail Ion$$b4
000150473 7001_ $$0P:(DE-Juel1)128608$$aLüth, Hans$$b5
000150473 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6
000150473 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Thomas$$b7
000150473 773__ $$0PERI:(DE-600)1362365-5$$a10.1088/0957-4484/24/32/325201$$gVol. 24, no. 32, p. 325201 -$$n32$$p325201 -$$tNanotechnology$$v24$$x1361-6528$$y2013
000150473 8564_ $$uhttp://iopscience.iop.org/0957-4484/24/32/325201/pdf/0957-4484_24_32_325201.pdf
000150473 8564_ $$uhttps://juser.fz-juelich.de/record/150473/files/FZJ-2014-00528.pdf$$yRestricted
000150473 909CO $$ooai:juser.fz-juelich.de:150473$$pVDB
000150473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125566$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141766$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000150473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000150473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000150473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128603$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000150473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128608$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000150473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000150473 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128634$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000150473 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000150473 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000150473 9141_ $$y2013
000150473 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000150473 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000150473 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000150473 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000150473 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000150473 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000150473 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000150473 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000150473 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000150473 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000150473 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000150473 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000150473 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000150473 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000150473 980__ $$ajournal
000150473 980__ $$aVDB
000150473 980__ $$aUNRESTRICTED
000150473 980__ $$aI:(DE-Juel1)PGI-9-20110106
000150473 980__ $$aI:(DE-Juel1)VDB881
000150473 981__ $$aI:(DE-Juel1)VDB881