Home > Publications database > Gate-induced transition between metal-type and thermally activated transport in self-catalyzed MBE-grown InAs nanowires > print |
001 | 150473 | ||
005 | 20210129213204.0 | ||
024 | 7 | _ | |a 10.1088/0957-4484/24/32/325201 |2 doi |
024 | 7 | _ | |a 1361-6528 |2 ISSN |
024 | 7 | _ | |a 0957-4484 |2 ISSN |
024 | 7 | _ | |a WOS:000322001100005 |2 WOS |
037 | _ | _ | |a FZJ-2014-00528 |
041 | _ | _ | |a English |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Blömers, Christian |0 P:(DE-Juel1)125566 |b 0 |e Corresponding author |
245 | _ | _ | |a Gate-induced transition between metal-type and thermally activated transport in self-catalyzed MBE-grown InAs nanowires |
260 | _ | _ | |a Bristol |c 2013 |b IOP Publ. |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1390308227_19112 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
500 | _ | _ | |3 POF3_Assignment on 2016-02-29 |
520 | _ | _ | |a Electronic transport properties of InAs nanowires are studied systematically. The nanowires
are grown by molecular beam epitaxy on a SiOx-covered GaAs wafer, without using foreign
catalyst particles. Room-temperature measurements revealed relatively high resistivity and
low carrier concentration values, which correlate with the low background doping obtained by
our growth method. Transport parameters, such as resistivity, mobility, and carrier
concentration, show a relatively large spread that is attributed to variations in surface
conditions. For some nanowires the conductivity has a metal-type dependence on temperature,
i.e. decreasing with decreasing temperature, while other nanowires show the opposite
temperature behavior, i.e. temperature-activated characteristics. An applied gate voltage in a
field-effect transistor configuration can switch between the two types of behavior. The effect is
explained by the presence of barriers formed by potential fluctuations. |
536 | _ | _ | |a 421 - Frontiers of charge based Electronics (POF2-421) |0 G:(DE-HGF)POF2-421 |c POF2-421 |x 0 |f POF II |
588 | _ | _ | |a Dataset connected to CrossRef, juser.fz-juelich.de |
700 | 1 | _ | |a Rieger, Torsten |0 P:(DE-Juel1)141766 |b 1 |
700 | 1 | _ | |a Grap, T |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Raux, M |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Lepsa, Mihail Ion |0 P:(DE-Juel1)128603 |b 4 |
700 | 1 | _ | |a Lüth, Hans |0 P:(DE-Juel1)128608 |b 5 |
700 | 1 | _ | |a Grützmacher, Detlev |0 P:(DE-Juel1)125588 |b 6 |
700 | 1 | _ | |a Schäpers, Thomas |0 P:(DE-Juel1)128634 |b 7 |
773 | _ | _ | |a 10.1088/0957-4484/24/32/325201 |g Vol. 24, no. 32, p. 325201 - |p 325201 - |n 32 |0 PERI:(DE-600)1362365-5 |t Nanotechnology |v 24 |y 2013 |x 1361-6528 |
856 | 4 | _ | |u http://iopscience.iop.org/0957-4484/24/32/325201/pdf/0957-4484_24_32_325201.pdf |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/150473/files/FZJ-2014-00528.pdf |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:150473 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)125566 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)141766 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-HGF)0 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)128603 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)128608 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)125588 |
910 | 1 | _ | |a Forschungszentrum Jülich GmbH |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)128634 |
913 | 2 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-529H |2 G:(DE-HGF)POF3-500 |v Addenda |x 0 |
913 | 1 | _ | |a DE-HGF |b Schlüsseltechnologien |1 G:(DE-HGF)POF2-420 |0 G:(DE-HGF)POF2-421 |2 G:(DE-HGF)POF2-400 |v Frontiers of charge based Electronics |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |l Grundlagen zukünftiger Informationstechnologien |
914 | 1 | _ | |y 2013 |
915 | _ | _ | |a JCR/ISI refereed |0 StatID:(DE-HGF)0010 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1030 |2 StatID |b Current Contents - Life Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-Juel1)VDB881 |
981 | _ | _ | |a I:(DE-Juel1)VDB881 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|