000150548 001__ 150548
000150548 005__ 20210129213217.0
000150548 037__ $$aFZJ-2014-00602
000150548 041__ $$aEnglish
000150548 1001_ $$0P:(DE-Juel1)128650$$avon der Ahe, Martina$$b0$$eCorresponding author$$ufzj
000150548 1112_ $$a15th European Workshop on Metalorganic Vapour Phase Epitaxie$$cAachen$$d2013-06-02 - 2013-06-05$$gEWMOVPE XV$$wGermany
000150548 245__ $$aMOCVD and characterization of GaAs layers on Al pseudo-substrates forfuture ultrafast optoelectronics
000150548 260__ $$c2013
000150548 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1390464913_1596$$xOther
000150548 3367_ $$033$$2EndNote$$aConference Paper
000150548 3367_ $$2DataCite$$aOutput Types/Conference Poster
000150548 3367_ $$2DRIVER$$aconferenceObject
000150548 3367_ $$2ORCID$$aCONFERENCE_POSTER
000150548 3367_ $$2BibTeX$$aINPROCEEDINGS
000150548 520__ $$aGaAs is broadly used in modern electronics. The application of GaAs-based devices in high power electronics,
however, is complicated due to the substantial excess heat generated during device operation. One possibility to
dissipate the excess heat is to employ substrates with high thermal conductivity. In this contribution we present
the growth of GaAs layers by metalorganic vapor phase epitaxy (MOVPE) on aluminum (111) pseudosubstrates
designed for an improved heat management in GaAs electronic circuits. They were prepared by Al
evaporation on (100) GaAs substrates and subsequent heat treatment. The GaAs layers are polycrystalline. The
roughnesses of the layers were in the range of 13 to 62 nm and the thickness in the range of 600 – 2300 nm.
The layers exhibit extremely low carrier lifetime due to the growth-induced defects and are suitable for the
fabrication of ultrafast metal-semiconductor-metal (MSM) photodetectors (PDs).
000150548 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0
000150548 7001_ $$0P:(DE-Juel1)144014$$aWinden, Andreas$$b1$$ufzj
000150548 7001_ $$0P:(DE-HGF)0$$aSofer, Zdenek$$b2
000150548 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b3$$ufzj
000150548 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b4$$ufzj
000150548 7001_ $$0P:(DE-HGF)0$$aMarso, Michel$$b5
000150548 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b6$$ufzj
000150548 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b7$$ufzj
000150548 909CO $$ooai:juser.fz-juelich.de:150548$$pVDB
000150548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128650$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144014$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000150548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000150548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000150548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000150548 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000150548 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0
000150548 9141_ $$y2013
000150548 920__ $$lyes
000150548 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000150548 980__ $$aposter
000150548 980__ $$aVDB
000150548 980__ $$aUNRESTRICTED
000150548 980__ $$aI:(DE-Juel1)PGI-9-20110106