000150549 001__ 150549
000150549 005__ 20210129213218.0
000150549 020__ $$a978-3-89336-870-9
000150549 037__ $$aFZJ-2014-00603
000150549 1001_ $$0P:(DE-Juel1)141986$$aHaab, Anna$$b0$$eCorresponding author
000150549 1112_ $$a15th European Workshop on Metalorganic Vapour Phase Epitaxie$$cAachen$$d2013-06-02 - 2013-06-05$$gEWMOVPE XV$$wGermany
000150549 245__ $$aInnovative fabrication of columnar InxGa1-xN/GaN nanostructures for photovoltaic applications
000150549 260__ $$c2013
000150549 300__ $$a231 - 234
000150549 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1390465082_10361
000150549 3367_ $$033$$2EndNote$$aConference Paper
000150549 3367_ $$2ORCID$$aCONFERENCE_PAPER
000150549 3367_ $$2DataCite$$aOutput Types/Conference Paper
000150549 3367_ $$2DRIVER$$aconferenceObject
000150549 3367_ $$2BibTeX$$aINPROCEEDINGS
000150549 500__ $$3POF3_Assignment on 2016-02-29
000150549 520__ $$aGroup III-nitride nanostructures for future generation, high efficient energy device applications were fabricated
by capping nanostructured GaN templates with InxGa1-xN grown by metal-organic vapour phase epitaxy
(MOVPE) in a concentration range of x between 0 and 1. The nanostructure GaN templates exhibit a high
crystallinity and excellent optical properties before overgrowth. After overgrowth a large band gap variation in
the solar spectrum could be achieved. The indium concentration in the ternary InxGa1-xN alloy was controllable
between x = 0 to 1. The investigations demonstrate that the nanostructures are promising for photovoltaic
applications.
000150549 536__ $$0G:(DE-HGF)POF2-421$$a421 - Frontiers of charge based Electronics (POF2-421)$$cPOF2-421$$fPOF II$$x0
000150549 7001_ $$0P:(DE-Juel1)128613$$aMikulics, Martin$$b1
000150549 7001_ $$0P:(DE-Juel1)128637$$aStoica, Toma$$b2
000150549 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b3
000150549 7001_ $$0P:(DE-Juel1)144014$$aWinden, Andreas$$b4
000150549 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, Hilde$$b5
000150549 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b6
000150549 7001_ $$0P:(DE-Juel1)136933$$aJin, Jiehong$$b7$$ufzj
000150549 7001_ $$0P:(DE-Juel1)128617$$aMussler, Gregor$$b8$$ufzj
000150549 909CO $$ooai:juser.fz-juelich.de:150549$$pVDB
000150549 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141986$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150549 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128613$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000150549 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128637$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000150549 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000150549 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144014$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000150549 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125593$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000150549 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000150549 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)136933$$aForschungszentrum Jülich GmbH$$b7$$kFZJ
000150549 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128617$$aForschungszentrum Jülich GmbH$$b8$$kFZJ
000150549 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000150549 9131_ $$0G:(DE-HGF)POF2-421$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vFrontiers of charge based Electronics$$x0
000150549 9141_ $$y2013
000150549 920__ $$lyes
000150549 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000150549 980__ $$acontrib
000150549 980__ $$aVDB
000150549 980__ $$aUNRESTRICTED
000150549 980__ $$aI:(DE-Juel1)PGI-9-20110106