001     150586
005     20230426083107.0
024 7 _ |a 10.1103/PhysRevB.86.214422
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a WOS:000312674200005
|2 WOS
024 7 _ |a 2128/5856
|2 Handle
037 _ _ |a FZJ-2014-00635
082 _ _ |a 530
100 1 _ |a Sluka, V.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Quenched Slonczewski windmill in spin-torque vortex oscillators
260 _ _ |a College Park, Md.
|c 2012
|b APS
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 150586
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a We present a combined analytical and numerical study on double-vortex spin-torque nano-oscillators and describe a mechanism that suppresses the windmill modes. The magnetization dynamics is dominated by the gyrotropic precession of the vortex in one of the ferromagnetic layers. In the other layer, the vortex gyration is strongly damped. The dominating layer for the magnetization dynamics is determined by the sign of the product between sample current and the chiralities. Measurements on Fe/Ag/Fe nanopillars support these findings. The results open up a new perspective for building high quality-factor spin-torque oscillators operating at selectable, well-separated frequency bands.
536 _ _ |a 422 - Spin-based and quantum information (POF2-422)
|0 G:(DE-HGF)POF2-422
|c POF2-422
|f POF II
|x 0
542 _ _ |i 2012-12-20
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
542 _ _ |i 2013-12-20
|2 Crossref
|u http://link.aps.org/licenses/aps-default-accepted-manuscript-license
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Kákay, A.
|0 P:(DE-Juel1)130747
|b 1
|u fzj
700 1 _ |a Deac, A. M.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Bürgler, D. E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hertel, R.
|0 P:(DE-Juel1)130709
|b 4
|u fzj
700 1 _ |a Schneider, C. M.
|0 P:(DE-Juel1)130948
|b 5
|u fzj
773 1 8 |a 10.1103/physrevb.86.214422
|b American Physical Society (APS)
|d 2012-12-20
|n 21
|p 214422
|3 journal-article
|2 Crossref
|t Physical Review B
|v 86
|y 2012
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.86.214422
|g Vol. 86, no. 21, p. 214422
|0 PERI:(DE-600)2844160-6
|n 21
|p 214422
|t Physical review / B
|v 86
|y 2012
|x 1098-0121
856 4 _ |y Publishers version according to licensing conditions.
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/150586/files/FZJ-2014-00635.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/150586/files/FZJ-2014-00635.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/150586/files/FZJ-2014-00635.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/150586/files/FZJ-2014-00635.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:150586
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130747
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)130709
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130948
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|1 G:(DE-HGF)POF2-420
|0 G:(DE-HGF)POF2-422
|2 G:(DE-HGF)POF2-400
|v Spin-based and quantum information
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
|l Grundlagen zukünftiger Informationstechnologien
914 1 _ |y 2013
915 _ _ |a American Physical Society Transfer of Copyright Ag
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a VDB
999 C 5 |a 10.1126/science.1065389
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature01967
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1105722
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature04036
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nature04035
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.jmmm.2007.12.022
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys1036
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0304-8853(96)00062-5
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.54.9353
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0304-8853(02)00291-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nphys619
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2822436
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3012380
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.100.257201
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.140401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.054412
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/ncomms1006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.106.167202
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/1742-6596/292/1/012006
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3553771
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1166/jnn.2008.18314
|9 -- missing cx lookup --
|1 Y. B. Bazaliy
|p 2891 -
|2 Crossref
|t J. Nanosci. Nanotechnol.
|v 8
|y 2008
999 C 5 |a 10.1103/PhysRevLett.30.230
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.99.247208
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 E. Feldtkeller
|y 1965
|2 Crossref
|o E. Feldtkeller 1965
999 C 5 |a 10.1126/science.1075302
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3441405
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.1450816
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0022-3727/44/38/384002
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3498009
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21