000150598 001__ 150598
000150598 005__ 20240619091111.0
000150598 0247_ $$2doi$$a10.1016/j.snb.2012.07.099
000150598 0247_ $$2ISSN$$a0925-4005
000150598 0247_ $$2ISSN$$a1873-3077
000150598 0247_ $$2WOS$$aWOS:000324298300002
000150598 0247_ $$2altmetric$$aaltmetric:890815
000150598 037__ $$aFZJ-2014-00647
000150598 082__ $$a530
000150598 1001_ $$0P:(DE-Juel1)142466$$aSchusser, S.$$b0$$eCorresponding author$$ufzj
000150598 245__ $$aCharacterization of biodegradable polymers with capacitive field-effect sensors.
000150598 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2013
000150598 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1390813304_14684
000150598 3367_ $$2DataCite$$aOutput Types/Journal article
000150598 3367_ $$00$$2EndNote$$aJournal Article
000150598 3367_ $$2BibTeX$$aARTICLE
000150598 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000150598 3367_ $$2DRIVER$$aarticle
000150598 500__ $$3POF3_Assignment on 2016-02-29
000150598 520__ $$aIn vitro studies of the degradation kinetic of biopolymers are essential for the design and optimization of implantable biomedical devices. In the presented work, a field-effect capacitive sensor has been applied for the real-time and in situ monitoring of degradation processes of biopolymers for the first time. The polymer-covered field-effect sensor is, in principle, capable to detect any changes in bulk, surface and interface properties of the polymer induced by degradation processes. The feasibility of this approach has been experimentally proven by using the commercially available biomedical polymer poly(d,l-lactic acid) (PDLLA) as a model system. PDLLA films of different thicknesses were deposited on the Ta2O5-gate surface of the field-effect structure from a polymer solution by means of spin-coating method. The polymer-modified field-effect sensors have been characterized by means of capacitance–voltage and impedance-spectroscopy method. The degradation of the PDLLA was accelerated by changing the degradation medium from neutral (pH 7.2) to alkaline (pH 9) condition, resulting in drastic changes in the capacitance and impedance spectra of the polymer-modified field-effect sensor.
000150598 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0
000150598 536__ $$0G:(DE-HGF)POF2-453$$a453 - Physics of the Cell (POF2-453)$$cPOF2-453$$fPOF II$$x1
000150598 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000150598 7001_ $$0P:(DE-Juel1)128717$$aPoghossian, A.$$b1$$ufzj
000150598 7001_ $$0P:(DE-Juel1)128668$$aBäcker, M.$$b2$$ufzj
000150598 7001_ $$0P:(DE-Juel1)145544$$aLeinhos, M.$$b3$$ufzj
000150598 7001_ $$0P:(DE-HGF)0$$aWagner, P.$$b4
000150598 7001_ $$0P:(DE-Juel1)128727$$aSchöning, M. J.$$b5$$ufzj
000150598 773__ $$0PERI:(DE-600)1500731-5$$a10.1016/j.snb.2012.07.099$$gVol. 187, p. 2 - 7$$p2 - 7$$tSensors and actuators <Lausanne> / B$$v187$$x0925-4005$$y2013
000150598 8564_ $$uhttps://juser.fz-juelich.de/record/150598/files/FZJ-2014-00647.pdf$$yRestricted$$zPublished final document.
000150598 909__ $$ooai:juser.fz-juelich.de:150598$$pVDB
000150598 909CO $$ooai:juser.fz-juelich.de:150598$$pVDB
000150598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142466$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128717$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000150598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128668$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000150598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145544$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000150598 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128727$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000150598 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000150598 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x1
000150598 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0
000150598 9131_ $$0G:(DE-HGF)POF2-453$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vPhysics of the Cell$$x1
000150598 9141_ $$y2013
000150598 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000150598 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000150598 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000150598 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000150598 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000150598 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000150598 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000150598 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000150598 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000150598 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000150598 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000150598 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000150598 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000150598 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x2
000150598 980__ $$ajournal
000150598 980__ $$aVDB
000150598 980__ $$aUNRESTRICTED
000150598 980__ $$aI:(DE-Juel1)PGI-8-20110106
000150598 980__ $$aI:(DE-82)080009_20140620
000150598 980__ $$aI:(DE-Juel1)ICS-8-20110106
000150598 981__ $$aI:(DE-Juel1)IBI-3-20200312
000150598 981__ $$aI:(DE-Juel1)ICS-8-20110106