000150600 001__ 150600
000150600 005__ 20240619091112.0
000150600 0247_ $$2doi$$a10.1007/s00216-013-6951-9
000150600 0247_ $$2ISSN$$a1618-2642
000150600 0247_ $$2ISSN$$a1618-2650
000150600 0247_ $$2ISSN$$a1432-1130
000150600 0247_ $$2WOS$$aWOS:000321911800005
000150600 037__ $$aFZJ-2014-00649
000150600 082__ $$a540
000150600 1001_ $$0P:(DE-Juel1)128717$$aPoghossian, A.$$b0$$eCorresponding author$$ufzj
000150600 245__ $$aElectrical monitoring of polyelectrolyte multilayer formation by means of capacitive field-effect devices.
000150600 260__ $$aBerlin$$bSpringer$$c2013
000150600 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1390919579_7663
000150600 3367_ $$2DataCite$$aOutput Types/Journal article
000150600 3367_ $$00$$2EndNote$$aJournal Article
000150600 3367_ $$2BibTeX$$aARTICLE
000150600 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000150600 3367_ $$2DRIVER$$aarticle
000150600 500__ $$3POF3_Assignment on 2016-02-29
000150600 520__ $$aThe semiconductor field-effect platform represents a powerful tool for detecting the adsorption and binding of charged macromolecules with direct electrical readout. In this work, a capacitive electrolyte–insulator–semiconductor (EIS) field-effect sensor consisting of an Al-p-Si-SiO2 structure has been applied for real-time in situ electrical monitoring of the layer-by-layer formation of polyelectrolyte (PE) multilayers (PEM). The PEMs were deposited directly onto the SiO2 surface without any precursor layer or drying procedures. Anionic poly(sodium 4-styrene sulfonate) and cationic weak polyelectrolyte poly(allylamine hydrochloride) have been chosen as a model system. The effect of the ionic strength of the solution, polyelectrolyte concentration, number and polarity of the PE layers on the characteristics of the PEM-modified EIS sensors have been studied by means of capacitance–voltage and constant-capacitance methods. In addition, the thickness, surface morphology, roughness and wettabilityof the PE mono- and multilayers have been characterised by ellipsometry, atomic force microscopy and water contact-angle methods, respectively. To explain potential oscillations on the gate surface and signal behaviour of the capacitive field-effect EIS sensor modified with a PEM, a simplified electrostatic model that takes into account the reduced electrostatic screening of PE charges by mobile ions within the PEM has been proposed and discussed.
000150600 536__ $$0G:(DE-HGF)POF2-423$$a423 - Sensorics and bioinspired systems (POF2-423)$$cPOF2-423$$fPOF II$$x0
000150600 536__ $$0G:(DE-HGF)POF2-453$$a453 - Physics of the Cell (POF2-453)$$cPOF2-453$$fPOF II$$x1
000150600 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000150600 7001_ $$0P:(DE-HGF)0$$aCherstvy, A. G.$$b1
000150600 7001_ $$0P:(DE-Juel1)128727$$aSchöning, M. J.$$b2$$ufzj
000150600 773__ $$0PERI:(DE-600)1459122-4$$a10.1007/s00216-013-6951-9$$gVol. 405, no. 20, p. 6425 - 6436$$n20$$p6425 - 6436$$tAnalytical and bioanalytical chemistry$$v405$$x1618-2650$$y2013
000150600 8564_ $$uhttps://juser.fz-juelich.de/record/150600/files/FZJ-2014-00649.pdf$$yRestricted$$zPublished final document.
000150600 909CO $$ooai:juser.fz-juelich.de:150600$$pVDB
000150600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128717$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150600 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128727$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000150600 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000150600 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x1
000150600 9131_ $$0G:(DE-HGF)POF2-423$$1G:(DE-HGF)POF2-420$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lGrundlagen zukünftiger Informationstechnologien$$vSensorics and bioinspired systems$$x0
000150600 9131_ $$0G:(DE-HGF)POF2-453$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vPhysics of the Cell$$x1
000150600 9141_ $$y2013
000150600 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000150600 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000150600 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000150600 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000150600 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000150600 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000150600 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000150600 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000150600 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000150600 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000150600 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000150600 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000150600 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000150600 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000150600 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x2
000150600 980__ $$ajournal
000150600 980__ $$aVDB
000150600 980__ $$aUNRESTRICTED
000150600 980__ $$aI:(DE-Juel1)PGI-8-20110106
000150600 980__ $$aI:(DE-82)080009_20140620
000150600 980__ $$aI:(DE-Juel1)ICS-8-20110106
000150600 981__ $$aI:(DE-Juel1)IBI-3-20200312
000150600 981__ $$aI:(DE-Juel1)ICS-8-20110106