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Abstract

Exchange processes between rivers and groundwater are an important driver for the hy-

drological, chemical and ecological environment around streams and the cycling of water

at the catchment scale. Management decisions for such systems are very often derived

on the basis of model predictions and it is therefore essential to properly estimate the

relevant model parameters that govern the interaction between river and aquifer. Vari-

ous field studies indicate that hydraulic parameters in and around streams are associated

with a considerable uncertainty regarding their temporal and spatial distribution. These

uncertainties have to be regarded in the estimation of hydraulic parameters and differ-

ent stochastic inversion methods are available for that task. Among these methods, the

Ensemble Kalman Filter (EnKF) has been proven to work well for the characterization

of subsurface parameters where its advantage over other stochastic inversion techniques

is the calculation of a full posterior probability density function without linearization

around an optimum, its computational efficiency and its ability to be used for real-time

predictions.

In this work, EnKF was applied to a 3D groundwater model of a well field within the

Limmat aquifer in Zurich (Switzerland) which is strongly influenced by river-aquifer in-

teractions. The specific aim was to investigate different aspects of the spatio-temporal

characterization of river bed properties with EnKF and to explore the worth of differ-

ent conditioning data for this site. In a first study, the model was used in synthetic

experiments where reference runs with temporally varying river bed hydraulic conduc-

tivities were generated. Then it was tested, to what extend state-parameter updates

with EnKF are able to detect these changes in river bed properties based on a limited

set of piezometric head measurements from the reference simulations. In a second study,

it was investigated how the spatial representation of heterogeneity influences the updat-

ing behavior of EnKF. In this case, synthetic references with spatially heterogeneous

fields of river bed permeabilities were generated and piezometric head data from these

references were used to update four different parameter ensembles that varied in the

spatial representation of heterogeneity (i.e., fully heterogeneous versus zonated leakage

parameters). In a third study, the value of a joint assimilation of piezometric head
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and groundwater temperature data was first examined with a simple synthetic model of

a river-aquifer system under well defined conditions. Then, the extended assimilation

scheme was also tested for a historic real-world data set of the Limmat aquifer model

where up to 87 piezometric head and 22 groundwater temperature measurements were

available as conditioning data for EnKF on a daily basis.

Results for the assimilation experiments on the temporal variability of river bed hydraulic

conductivities showed that EnKF is able to adapt time-varying model parameters under

different conditions. However, the response of EnKF to changes in river bed properties

was relatively slow which is related to the weighting of prediction and observation uncer-

tainty in the EnKF updating scheme. An extension of the data assimilation algorithm

with adaptive covariance inflation, a methodology to increase the ensemble variance de-

pendent on the mismatch between simulations and observations, led to a decrease in the

adaptation time and to a lower bias between true and updated parameter values.

Data assimilation experiments on the spatial variability of leakage parameters showed

that EnKF is also able to identify the spatial structure of heterogeneous reference fields

of leakage parameters even when there is a considerable variability in the geostatisti-

cal parameters of the initial ensemble. Results for this study also revealed that data

assimilation with different ensembles of effective (i.e., spatially aggregated) leakage pa-

rameters leads to a biased estimation of exchange fluxes between river and aquifer even

if groundwater levels are continuously updated. Therefore, the usage of a stochastic

field approach is recommended for representing heterogeneous river bed structures as

this approach was never outperformed by any of the coarser parameterizations.

Results for a joint assimilation of hydraulic and thermal data with EnKF for the syn-

thetic river-aquifer model suggest that the additional assimilation of temperature data

can generally improve the estimation of hydraulic subsurface parameters. Here, the most

significant improvement was found for the reconstruction of the spatial structure of leak-

age parameters. Experiments with the real-world data of the Limmat aquifer showed

that the prediction of groundwater temperatures could be improved by the use of ther-

mal observation data compared to a use of hydraulic data only. However, the results did

not reveal significant differences between the estimation of subsurface parameters with

and without thermal data because the state predictions after the calibration for both

cases were very similar.

In summary, these results show that EnKF is well suited for the characterization of spa-

tially and temporally variable river bed hydraulic properties. Using temperature data

as additional conditioning data for EnKF generally improved predictions of groundwa-

ter states which demonstrates the feasibility of EnKF for the application to real-time

predictions of groundwater temperatures although the effect on parameter updates was

relatively limited compared to hydraulic data.



Zusammenfassung

Austauschprozesse zwischen Flüssen und dem Grundwasser stellen eine wichtige Ein-

flussvariable für die flussnahen hydrologischen, chemischen und ökologischen Gegeben-

heiten dar und beeinflussen zudem den Wasserkreislauf auf Einzugsgebietsebene. Mana-

gemententscheidungen für solche Systeme werden häufig auf der Grundlage von Modell-

vorhersagen getroffen, was eine adäquate Bestimmung der relevanten Modellparameter

für Fluss-Grundwasser-Interaktionen unabdingbar macht. Verschiedene Studien haben

gezeigt, dass die hydraulischen Eigenschaften des Flussbettes durch ein hohes Maß an

Unsicherheit bezüglich ihrer zeitlichen und räumlichen Verteilung geprägt sind. Diese

Unsicherheiten müssen bei der Abschätzung hydraulischer Parameter mit in Betracht

gezogen werden, wobei verschiedene stochastische Inversionsverfahren für diese Aufgabe

zur Verfügung stehen. Unter diesen Methoden hat der Ensemble Kalman Filter (EnKF)

seine Tauglichkeit hinsichtlich der Charakterisierung von Untergrundparametern bewie-

sen, wobei seine Vorzüge gegenüber anderen stochastischen Verfahren darin begründet

sind, dass er die vollständige a posteriori Wahrscheinlichkeit ohne eine Linerarisierung

um ein Optimum bestimmt, weniger rechenintensiv ist und für Echtzeitanwendungen

verwendet werden kann.

In dieser Arbeit wurde EnKF für ein 3D Grundwassermodell eines Brunnenfeldes in-

nerhalb des Limmat Aquifers in Zürich (Schweiz) verwendet, welches sehr stark durch

Fluss-Grundwasser-Interaktion beeinflusst wird. Ein wesentliches Ziel dieser Arbeit war

die Untersuchung verschiedener Aspekte der räumlich-zeitlichen Charakterisierung von

Flussbetteigenschaften durch EnKF sowie die Erfassung des Informationsgewinns ver-

schiedener Konditionierungsdaten für das Untersuchungsgebiet. In einer ersten Studie

wurde das Modell für synthetische Experimente verwendet, in denen Referenzsimulatio-

nen mit zeitlich variablen hydraulischen Flussbettleitfähigkeiten erstellt wurden. Dabei

wurde untersucht, in welchem Maße Aktualisierungen der Zustandsvariablen und Para-

meter durch EnKF in der Lage sind, diese Änderungen der Flussbettleitfähigkeiten durch
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eine limitierte Anzahl von Piezometerdaten aus den Referenzsimulationen nachzuvollzie-

hen. In einer zweiten Studie wurde untersucht, wie die räumliche Repräsentation von He-

terogenität das Anpassungsverhalten von EnKF beeinflusst. In diesem Fall wurden syn-

thetische Referenzen mit räumlich heterogenen Flussbettpermeabilitätsfeldern erzeugt

und Piezometerdaten dieser Referenzen wurden im Weiteren verwendet, um vier ver-

schiedene Ensemble zu aktualisieren, die sich hinsichtlich der räumlichen Repräsentation

der Heterogenität (vollkommen heterogen vs. zoniert) unterschieden. In einer dritten Stu-

die wurde der Informationsgewinn einer simultanen Assimilierung von Piezometer- und

Grundwassertemperaturdaten zunächst für ein synthetisches Fluss-Aquifermodell unter

wohldefinierten Bedingungen getestet. Im Folgenden wurde dieses erweiterte Assimilie-

rungsschema auch für historische reale Daten des Limmatgrundwassermodells getestet,

wobei bis zu 87 Grundwasserspiegel- und 22 Grundwassertemperaturmessungen als Kon-

ditionierungsdaten auf täglicher Basis zur Verfügung standen.

Die Ergebnisse für die Assimilierungsexperimente zur zeitlichen Variabilität der Flussbett-

leitfähigkeiten konnten zeigen, dass EnKF dazu in der Lage ist, zeitlich variable Modell-

parameter unter verschiedenen Bedingungen anzupassen. Die Anpassungszeiten waren

dabei jedoch relativ lange, was auf die Gewichtung von Vorhersage- und Messfehlern

in der Anpassungsroutine von EnKF zurückzuführen ist. Eine Erweiterung des As-

similierungsschemas von EnKF durch adaptive Kovarianzinflation, einer Methode zur

Erhöhung der Ensemble-Varianz anhand der Residuen zwischen Vorhersage und Mes-

sung, führte zu einer Verringerung der Anpassungszeit und einem geringeren Fehler

zwischen angepassten und wahren Parameterwerten.

Datenassimierungsexperimente bezüglich der räumlichen Variabilität von Leakagepara-

metern zeigten, dass EnKF auch in der Lage ist, die räumliche Struktur heterogener

Referenzfelder zu identifizieren, selbst wenn eine beträchtliche Variabilität bezüglich der

geostatistischen Parameter des Anfangsensembles vorhanden war. Die Ergebnisse dieser

Studie zeigten zudem, dass Datenassimilierung mit verschiedenen Ensemblen effektiver

(räumlich aggregierter) Leakageparameter zu einer systematischen Fehlinterpretation

der Austauschflüsse zwischen Fluss und Grundwasserleiter führen kann, selbst wenn die

Grundwasserstände kontinuierlich angepasst werden. Aus diesem Grund wird empfoh-

len, heterogene Flussbettstrukturen durch stochastischen Felder zu repräsentieren da

dieser Ansatz im Vergleich zu niedriger aufgelöster Parametrisierungen stets die besten

Ergebnisse erzielte.

Ergebnisse für die gleichzeitige Assimilierung hydraulischer und thermischer Daten mit

EnKF für das synthetische Fluss-Grundwasser-Modell lassen darauf schließen, dass die

zusätzliche Assimilierung von Temperaturdaten generell zu einer verbesserten Schätzung

von hydraulischen Aquifereigenschaften führen kann. Dabei wurden die signifikantesten

Verbesserungen bei der Rekonstruktion der räumlichen Struktur der Leakagaparameter

beobachtet. Experimente mit den realen Daten des Limmatgrundwasserleiters zeigten,
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dass die Vorhersage von Grundwassertemperaturen durch die Verwendung der thermi-

schen Beobachtungsdaten, im Vergleich zur ausschließlichen Verwendung von hydrauli-

schen Daten, verbessert werden konnte. Jedoch konnten keine signifikante Unterschie-

de bezüglich der Abschätzung hydraulischer Parametern hinsichtlich der Verwendung/

Nichtverwendung von thermischen Daten gefunden werden, da nach der Kalibrierung in

beiden Fällen die Vorhersage der Zustandsgrößen relativ ähnlich war.

Zusammenfassend lässt sich feststellen, dass EnKF sehr gut dazu geeignet ist, räumlich

und zeitlich variable Flussbetteigenschaften zu charakterisieren. Die Verwendung von

Temperaturdaten als eine zusätzliche Informationsquelle führte zu einer verbesserten

Vorhersage der Zustandsgrößen des Grundwassers. Dies zeigt, dass diese Methode prin-

zipiell für die Verwendung in Echtzeitsystemen zur Abschätzung von Temperaturfeldern

geeignet ist, obwohl im Vergleich zur Assimilierung hydraulischen Daten nur ein be-

grenzter Einfluss auf die Parameterabschätzung festgestellt werden konnte.





Chapter 1

Introduction

Water resources are increasingly threatened by pollution and overexploitation. In order

to cope with the challenges for maintaining healthy water resource conditions there is an

increasing need for a deeper understanding of processes that drive the terrestrial water

cycle and the ability to properly predict the future evolution of the quantity and quality

of available water resources. In this sense, surface water bodies, like rivers and lakes, as

well as groundwater are of special interest. These two compartments of the terrestrial

water cycle have long been treated as separate entities but in the last decades there was

growing awareness that they are closely linked (Bouwer and Maddock, 1997; Winter,

1999; Sophocleous, 2002) which is also reflected in the increasing research interest in

this area (Fleckenstein et al., 2010). The interaction between streams and the ground-

water body is driven and influenced by different variables which include the hydraulic

gradient between river level and groundwater, dynamics and spatial distribution of the

river bed sediments (Schälchli, 1992; Blaschke et al., 2003; Genereux et al., 2008), ge-

omorphological aspects of the river bed (Boano et al., 2006; Cardenas et al., 2004) as

well as the state of hydraulic connection between river and groundwater (Brunner et al.,

2009). The increasing research interest in river-aquifer exchange is owed to the various

processes that occur in the transition zone (or hyporheic zone) between surface water

and groundwater which influence the hydrological, chemical and biological environment

around streams. In the hyporheic zone, water of different chemical composition gets

mixed which drives a variety of biogeochemical transformation processes. It has also

been shown that various aquatic species adapt their life cycle to the physico-chemical

conditions that arise through river-aquifer exchange (e.g., Brunke and Gonser, 1997).

The hydraulic connection between rivers and groundwater also facilitates the transfer of

contaminants from one compartment to the other. For example, micro pollutants, such

as pharmaceuticals, can be detected in rivers because they are not transformed during

passage of waste water treatment plants. These contaminants can then pose a thread

1
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to the drinking water supply close to rivers (e.g., Heberer, 2002). The opposite contam-

ination pathway holds true for nitrate which can be transferred from groundwater to

surface water via hyporheic exchange (e.g., Kennedy et al., 2009) which can induce envi-

ronmental problems for river ecology. Especially for groundwater management also the

hydraulic aspects of river-aquifer interactions play an important role because exchange

fluxes between surface water and groundwater largely influence the regional water bal-

ance and the groundwater flow around streams (Woessner, 2000). For example, river

bank filtration is commonly used in Europe to maintain a sustainable use of ground-

water resources and the transition of river water through the river sediment towards

pumping wells is also used as a purification step to remove unwanted pathogens and

micro pollutants from the river water (e.g., Tufenkji et al., 2002; Schubert, 2002). Such

techniques of course depend on the hydraulic properties of the river sediment and river

stage fluctuations (Schubert, 2002; Zhang et al., 2011; Wett et al., 2002).

For such medium to large scale systems it is essential to have a reliable estimate on

the hydraulic parameters of the river bed and the adjacent aquifer. Although there

are different field methods available to estimate hydraulic parameters (see e.g., Kalbus

et al., 2006) it is often unaffordable for management authorities to apply such methods

for their larger scale systems. A commonly used method for such systems are modeling

approaches where the relevant hydraulic model parameters are estimated through cal-

ibration and the calibrated model is then used for predicting the system response for

future times. However, the morphogenesis of fluvial deposits is usually very complex

and can exhibit a high degree of spatial heterogeneity which is often largely unknown

for the calibration of groundwater models. Also within an existing river bed there are

spatially and temporally varying deposition and erosion processes which also depend on

the sediment load and discharge behavior of the river under question. As a result of

these various processes, parameter estimation around streams can be highly uncertain.

Generally, there are different inversion techniques available for distributed hydrological

models (Zimmerman et al., 1998; Hendricks Franssen et al., 2009) which can be roughly

divided into two classes: (I) deterministic methods that provide a single best solution

for the inversion problem and (II) stochastic inversions which also try to include the

uncertainty of different variables in the inversion process. Regarding the high parameter

uncertainty that is associated with fluvial systems it would be a natural choice to use

stochastic inversion techniques. A very attractive method in this sense is sequential data

assimilation with the Ensemble Kalman Filter (EnKF). For this method an ensemble

of uncertain parameter sets and model forcings is simulated forward in time. At times

when measurements of model variables are available, EnKF adapts the model states and

parameters to provide a better fit between predictions and measurements. This method

offers a high flexibility for the incorporation of different sources of uncertainty and is
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relatively easy to implement. Moreover, through its sequential updating scheme it is well

suited for systems in which state variables are continuously monitored which is often the

case for groundwater management sites. An example of such a system is the operation

of a well field within the Limmat aquifer in Zurich (Switzerland). At this site, differ-

ent measures are undertaken to ensure a sustainable use of groundwater resources and

to prevent a contamination of drinking water wells from diffuse contamination sources.

This is done by extracting water close to the river Limmat and recharging this water to

the aquifer through several recharge wells and recharge basins. This artificial recharge

aims to provide a sufficient water supply to the drinking water wells and to protect

them from a diffuse contamination outside the well field. A dense monitoring network of

groundwater levels is available for this site which makes it very suitable for the applica-

tion of EnKF. Only recently, a real-time modeling system was set up for this site where

EnKF is used to continuously correct model predictions and parameters with real-time

data from the monitoring network (Hendricks Franssen et al., 2011). These real-time

predictions are then also used for the real-time control of the well field (Bauser et al.,

2010). As this system is strongly influenced by river-aquifer exchange it provides an ex-

cellent test bed to investigate the capability of EnKF to deal with the spatio-temporal

variability of river bed hydraulic properties and will be used throughout this work. Apart

from piezometric head observations also groundwater temperatures are monitored con-

tinuously at this site. Especially for river-groundwater systems temperature data have

recently gained attention as a valuable source of information regarding the exchange

processes between rivers and aquifers. The reason is that river temperatures typically

follow a seasonal cycle with a high amplitude whereas groundwater temperatures are

usually rather constant throughout the year. As a consequence, a temperature signal

from the river is propagated into the aquifer in case of infiltrating conditions (with re-

spect to the aquifer). For the opposite case when the aquifer discharges into the river,

the temperature contrasts underneath the river bed will be dampened compared to infil-

trating conditions. Therefore, measured temperature profiles underneath the river can

be deployed to characterize the exchange fluxes as well as relevant material properties

of the river bed and the adjacent aquifer (Anderson, 2005; Constantz, 2008). As it is

relatively straightforward to incorporate additional types of measurements in EnKF the

monitored groundwater temperatures at the Limmat aquifer could be utilized as an ad-

ditional source of information for the characterization of subsurface parameters. For this

site there is also an interest from groundwater authorities to gain reliable predictions of

the temperature distribution around the drinking water wells. This is of special inter-

est because the extraction of water that is too warm can negatively influence drinking

water quality due to microbial contamination which then needs to be accounted for by

disinfection measures.

Chapter 1 Introduction
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The general aim of this work is to explore the possible advantages and limitations of

using sequential data assimilation with EnKF to improve the prediction of groundwater

states close to streams and to estimate the relevant hydraulic parameter that drive the

exchange between rivers and groundwater. Before presenting the different conducted

numerical experiments in detail, Chapter 2 gives a short overview over the governing

equation of groundwater flow, heat transport and river-aquifer exchange. Furthermore,

this chapter introduces the basic data assimilation scheme of EnKF and provides a short

literature review on the application of EnKF in groundwater hydrology. In Chapter 3

the capability of EnKF to detect and adapt to temporal changes of hydraulic subsurface

parameters is investigated with synthetic experiments. For these numerical experiments

different virtual realities for temporal changes of river bed properties are generated

on the basis of the 3D groundwater model of the Limmat aquifer. Piezometric head

data from these synthetic realities (or references) are then used in data assimilation

experiments with EnKF and it is evaluated to which extend EnKF is able to correct

model parameters towards the temporal dynamics of river bed properties that were

assigned in the synthetic reference runs. In Chapter 4 a similar model setup as in

Chapter 3 is used but the focus is more on the spatial variability of river bed properties.

Here, the aim is to explore whether EnKF is able to identify the heterogeneous spatial

structure of leakage parameters through the assimilation of piezometric head data. A

further goal is to investigate the consequences of using effective leakage parameters to

characterize highly heterogeneous streambeds with EnKF. In Chapter 5 it is tested to

what extent the additional assimilation of groundwater temperatures with EnKF can

provide further information for the characterization of subsurface parameters. This is

done with coupled flow and heat transport calculations for two types of experiments.

First, synthetic experiments with a relatively simple model setup for a river-aquifer

system are used to identify the principal capabilities of a joint assimilation of hydraulic

and thermal data with EnKF. In a second step, assimilation experiments with real-world

data for the Limmat aquifer are conducted. Finally, Chapter 6 synthesizes the outcomes

of the different experiments and provides some thoughts for further research directions.



Chapter 2

Theory

2.1 Flow and heat transport in porous media

The following section tries to give a short overview over the governing equations of flow

and heat transport in porous media and the coupling of groundwater and surface water.

This short summary is based on information from Domenico and Schwartz (1990) and

Bear and Chen (2010).

Groundwater flow

Groundwater flow is governed by potential gradients where the potential is usually ex-

pressed as piezometric head:

h = z +
p

ρwg
(2.1)

where h is piezometric head [L], z is height above datum [L], p is pressure [ML−1T−2],

ρw is density of water [ML−3] and g is gravitational acceleration [LT−2].

Groundwater flux can be calculated according to Darcy’s law as:

v = −K∇h = −ρwgk
µ
∇h (2.2)

where v is groundwater flow velocity [LT−1], K is hydraulic conductivity [LT−1], µ is

dynamic viscosity [ML−1T−1], k is permeability [L2] and ∇ is Nabla operator in three

dimensions [L−1].

The mass balance for an infinitesimal control volume is given as:

5
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1

ρw

∂(nρw)

∂t
= Ss

∂h

∂t
= −∇v +

qf
ρw

(2.3)

where qf is a source/ sink term [ML−3T−1], n is porosity [−] and Ss is specific storativity

[L−1].

Inserting Equation 2.2 into Equation 2.3 gives the groundwater flow equation for satu-

rated conditions:

Ss
∂h

∂t
= ∇

(
ρwgk

µ
∇h
)

+
qf
ρw

(2.4)

Unsaturated flow

For unsaturated conditions Equation 2.4 has to be modified in order to account for the

saturation dependent reduction of hydraulic conductivity:

∂(nρwS(θ))

∂t
= ∇

(
ρwkkr(θ)

µ
(∇p+ ρwg∇z)

)
+ qf (2.5)

where θ is water content [L3L−3], S(θ) is saturation [−] and kr(θ) is relative permeability

[−].

In hydrology the most common parameterization to derive kr(θ) is the Mualem-van

Genuchten model (van Genuchten, 1980):

kr(θ) = θ̂l
(

1− (1− θ̂
np

np−1 )
np−1

np

)2

(2.6a)

θ̂ =
θ − θr
θs − θr

(2.6b)

where θ̂ is a normalized water content [L3L−3], θr is residual water content [L3L−3], θs

is saturated water content [L3L−3], l is an empirical parameter [−] and np is pore size

index [−].

Heat transport

Heat transport in porous media is driven by three processes: heat conduction, hydro-

dynamic dispersion and heat advection. For reasons of simplicity, heat transport in the

gas phase is neglected in the following description. Heat conduction through a porous

medium is then described by Fourier’s law as:

jm = −((1− n)κs + θκw)∇T (2.7)



Chapter 2 Theory 7

where jm is heat flux through molecular conduction [MT−3], κs is thermal conductivity

of solid material [MLΘ−1T−3], κw is thermal conductivity of water [MLΘ−1T−3], θ is

water content [L3L−3], n is porosity [−] and T is temperature [Θ].

Advective heat transport is given as:

ja = cwρwTv (2.8)

where ja is advective heat flux [MT−3], v is groundwater flow velocity [MT−1] and cw

is specific heat capacity of water [L2T−2Θ−1].

Hydrodynamic dispersion can be expressed as:

jd = −ρwcwD∇T (2.9)

where jd is heat flux due to hydrodynamic dispersion [MT−3] and D is the dispersion

coefficient [L2T−1].

Balancing the given heat fluxes jm, ja and jd for a control volume and taking into account

other source/sink terms and storage of heat, the heat transport equation is derived as:

∂cv
∗T

∂t
= −∇(ρwcwvT ) +∇(κv

∗∇T ) +∇(ρwcwD∇T ) + qh (2.10a)

cv
∗ = (1− n)ρscs + θρwcw (2.10b)

κv
∗ = (1− n)κs + θκw (2.10c)

where qh are thermal source/ sink terms [ML−1T−3], ρs is substance density of solid

material [ML−3] and cs is specific heat capacity of solid material [L2T−2Θ−1].

Coupling of surface water and groundwater

A very common approach for calculating the exchange between river and aquifer is a

Cauchy-type boundary condition:

Qleak = AleakL(hriver − hgw) (2.11)

whereQleak is the leakage flux between river and aquifer [L3T−1], Aleak is the surface area

through which the leakage flux occurs [L2], hriver is river stage [L], hgw is groundwater

level underneath the river [L] and L is leakage coefficient [T−1] which is a lumped

parameter for the hydraulic conductivity and the thickness of the river bed.
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This approach is implemented in many popular groundwater modeling codes and often

certain restriction can be applied to this type of boundary conditions. For example, a

maximal infiltration rate can be specified either directly or by restricting the maximal

head difference between river and aquifer. This is often done to account for the develop-

ment of an unsaturated zone underneath the river bed. Another type of modification is

to apply an anisotropy ratio for the fluxes with respect to flux direction. In recent years

the development of model codes also moved towards more physically based coupling

of surface and subsurface equations where the routing of surface water flow is directly

linked to the Richards equation in the subsurface compartment (e.g., VanderKwaak and

Loague, 2001; Panday and Huyakorn, 2004; Kollet and Maxwell, 2006). Brunner et al.

(2010) compared the popular groundwater modeling software MODFLOW (which basi-

cally utilized the leakage principle of Equation 2.11) and the physically based coupled

surface-subsurface model HydroGeoSphere with respect to the coupling of surface water

and groundwater. They point out that the discretization of model cells, the represen-

tation of connectivity between surface water and groundwater and the disregarding of

negative pressure heads in MODFLOW can bias the prediction of river-aquifer exchange

fluxes compared to the physically based coupling approach of HydroGeoSphere.

2.2 Data assimilation with the Ensemble Kalman Filter

The Ensemble Kalman Filter (EnKF) is a sequential data assimilation approach which

can be utilized to improve the prediction capability of a particular model in a stochastic

framework. EnKF is an advancement of the famous Kalman Filter (KF) (Kalman, 1960)

which overcomes some limitations of KF in high-dimensional non-linear geophysical sys-

tems. In KF an uncertain model prediction is adjusted with uncertain measurements

by weighting both types of uncertainty so that the variance of the adjusted model pre-

diction is minimized. In the KF filtering scheme errors are assumed to be Gaussian and

the filter yields the best linear unbiased estimator in case of linear model dynamics.

For nonlinear model dynamics the Extended Kalman Filter (EKF) is an alternative.

In EKF the forward propagation of the covariance matrix is approximated by a Taylor

series and higher order terms are neglected which makes EKF suitable for moderately

nonlinear problems. In both filtering schemes (KF and EKF) an explicit forward prop-

agation of the covariance matrix is needed which makes both methods computationally

unaffordable for large scale geophysical systems (Evensen, 2003).

In EnKF an ensemble of model realizations (e.g., with different initial conditions, forcings

or parameters) is used to approximate the evolution of error statistics. The different

ensemble members are propagated forward in time with a model M :
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ψti = M(ψt−1i ,φi, ζi) (2.12)

where ψti is the state vector for the current time step (i.e., the forecast), ψt−1i is the state

vector for the previous time step, φi are model parameters and ζi are model forcings

for realization i.

For each assimilation cycle (i.e., at times when measurements become available) EnKF

then performs a Bayesian update on the ensemble of the state vector ψt:

p(ψt | y0) ∝ p(y0 | ψt)p(ψt) (2.13)

where p(ψt | y0) is the posterior (updated) distribution of the state vector ψt given the

observations y0, p(y0 | ψt) is the likelihood of measurements y0 given ψt and p(ψt) is

the prior distribution of ψt.

The prior of the states ψt in Equation 2.13 is obtained by advancing each realization

i of the ensemble with the model M of Equation 2.12 assuming a first-order Markov

process. The posterior distribution of ψt in Equation 2.13 is then calculated with the

EnKF analysis scheme which consists of the following steps: First, the forecasted values

of ψt at observation points have to be extracted from the ensemble for each realization

i:

ψ̂ti = Hψti (2.14)

where ψ̂t is the state vector at observation points and H is a matrix that maps or

interpolates the whole state vector ψt on the observation points.

Next, the measured states y0 have to be perturbed for an optimal functioning of the

data assimilation algorithm in order to achieve the correct posterior variance (Burgers

et al., 1998). This is done with the perturbation vector ε̃ which is composed of values

drawn from a normal distribution N (0, ε) with a mean of zero and a standard deviation

that corresponds to the measurement error ε of the assimilated state variable:

ỹi = y0 + ε̃i (2.15)

where ỹi is the perturbed measurement vector for realization i, ε̃i is the corresponding

perturbation vector and y0 is the measurement vector.
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Finally, the posterior distribution of ψt is found by applying the following equation on

each ensemble member i:

ψai = ψti + G(ỹi − ψ̂ti) (2.16)

where ψai is the analyzed (updated) state vector for realization i, ψti is the forecasted

state vector (from Equation 2.12), ỹi is the perturbed measurement vector (from Equa-

tion 2.15), ψ̂ti is the state vector at observation points (from Equation 2.14) and G is

the Kalman gain matrix which is calculated as:

G = CH>(HCH> + R)−1 (2.17)

where C is the full covariance matrix of ψt and R is the covariance matrix of observation

data y0. The Kalman gain G is calculated once for all ensemble members and weights

the uncertainties in the prediction of ψt from the forward simulations with the measure-

ment error of y0. In the analysis step (Equation 2.16) the weighting factors of G are

used to correct each member of ψt with the residuals at observation points (bracketed

term in Equation 2.16). R is usually inferred from the measurement error of the state

variable that is assimilated. The diagonal elements of R then represent the variance

of the measured state variable for each observation point and the off-diagonal elements

represent the covariances of the measured state variables between different observation

points. In order to derive G it is not necessary to calculate the full covariance matrix

of ψt but it is sufficient to calculate the covariances between ψt and ψ̂t:

CH> = Cψtψ̂t (2.18)

Various variants of the EnKF analysis scheme exist in literature. One important class

are smoothers like the Ensemble Smoother (ES) (van Leeuwen and Evensen, 1996) and

the Ensemble Kalman Smoother (EnKS) (Evensen and van Leeuwen, 2000). In these

applications the information of a specific measurement in time is also used to improve

the prediction for previous time steps, i.e. information is also propagated backward in

time. Another important variant of EnKF are Deterministic Ensemble Kalman Filters

(DEnKFs) (Bishop et al., 2001; Anderson, 2001; Whitaker and Hamill, 2002; Tippett

et al., 2003). These filters avoid the perturbation of the measurement vector y0 (Equa-

tion 2.15) which has been shown to be superior for some applications.
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EnKF has been extensively used in atmospheric and oceanographic applications (for a

comprehensive overview see Evensen (2009, p.279ff)). It has also been used in hydrologi-

cal applications like surface water modeling, radiative transfer modeling, in landsurface-

atmosphere modeling and in groundwater modeling (Montzka et al., 2012; Aanonsen

et al., 2009). Applications of EnKF in groundwater modeling and subsurface character-

ization are shortly outlined in the following section.

2.3 Usage of EnKF in subsurface characterization

EnKF and its variants have already been applied successfully for the characterization of

uncertain state variables and subsurface parameters. First applications are found in the

petroleum engineering literature (e.g., Lorentzen et al., 2003; Naevdal et al., 2005) and

EnKF was introduced slightly later in groundwater applications (e.g., Chen and Zhang,

2006; Hendricks Franssen and Kinzelbach, 2008; Nowak, 2009). In subsurface models a

high degree of uncertainty comes from the poorly known parameter fields as opposed

to atmospheric models where especially initial conditions are uncertain. Therefore, in

subsurface models EnKF is also applied to estimate uncertain model parameters. This

is usually achieved by an augmented state vector approach (e.g., Chen and Zhang, 2006;

Hendricks Franssen and Kinzelbach, 2008), i.e. the state vector ψ is augmented with

the unknown model parameters φ which gives the combined state-parameter vector Ψ:

Ψ =

(
ψ

φ

)
(2.19)

The analysis equation in the EnKF filtering scheme (Equation 2.16) is then applied with

the augmented state vector Ψ instead of the state vector ψ:

Ψa
i = Ψt

i + G(ỹi −HΨt
i) (2.20)

The covariance matrix for the simultaneous update of states and parameters is composed

of the covariances between simulated states ψt and simulated states at observation points

ψ̂t and the covariances between parameters φ and simulated states at observation points:

CH> =

(
Cψtψ̂t

Cφψ̂t

)
(2.21)

In Chen and Zhang (2006) and Hendricks Franssen and Kinzelbach (2008) the assim-

ilation of piezometric head measurements with EnKF led to an improved estimate of
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hydraulic conductivity fields with the joint state-parameter update. Nowak (2009) pro-

posed a slightly different approach to estimate hydraulic conductivities with EnKF. In

this version of EnKF, which is called p-space EnKF, only the model parameters are

updated with measurements of state variables and a rerun step is needed to ensure

the consistency between updated parameters and simulated state variables. In Hen-

dricks Franssen et al. (2011) EnKF was applied for a managed river-aquifer system

(Limmat aquifer Zurich) where piezometric heads were jointly updated with hydraulic

conductivities and leakage parameters. They applied EnKF to real-world data and

showed that a combined update of piezometric heads and model parameters provides

better predictions of groundwater levels than an assimilation of piezometric head data

alone. Synthetic experiments with the same model also emphasized that the estimation

of hydraulic model parameters can be improved through the assimilation of piezometric

head data.

Besides the assimilation of piezometric heads EnKF has also been applied with other

types of measurement data to infer subsurface parameters: Liu et al. (2008) used a

joint assimilation of piezometric heads and concentration data to estimate hydraulic

conductivities at the MADE site. Li et al. (2012) used piezometric head and tracer

data to jointly infer hydraulic conductivity and porosity fields. They found that an

additional assimilation of tracer data further improves the estimated parameter fields

and that the assimilation of piezometric head data alone has only a limited effect on

the estimation of concentration data. In Camporese et al. (2009b) the assimilation of

piezometric heads and/or discharge data was compared for a process based coupled

surface-subsurface model in terms of prediction of state variables (piezometric heads

and discharge). They found that the assimilation of piezometric heads as well as the

joint assimilation of piezometric heads and discharge data led to a better prediction of

the system state whereas an assimilation of discharge data alone only gave poor results.

The impact of uncertainties in the initial parameter ensemble on the performance of

EnKF was investigated by Jafarpour and Tarrahi (2011) and Huber et al. (2011). Jafar-

pour and Tarrahi (2011) found that a bias in the geostatistical parameters for generating

initial parameter ensembles often persist throughout the application of EnKF which was

especially pronounced for the direction of major continuity and the integral scale of the

parameter fields. They also showed that an overestimation of the variability of geo-

statistical parameters for the generation of the initial ensemble leads to better filtering

results. They also estimated geostatistical parameters directly with EnKF and found

that this procedure does not lead to improvements in subsurface characterization. In

Huber et al. (2011) the performance of EnKF for state estimation was compared for

different initial parameter ensembles. The ensembles were generated on the basis of

different deterministic calibrations of the parameter field (no calibration, steady state,
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transient with different amounts of observation data) and thus differed in the amount of

prior information regarding the parameters. They found that assimilation of piezometer

data further improved the predictions of the different ensembles. The best results were

obtained for the ensembles where a calibration with transient data was performed and

for these ensembles the errors decreased with an increasing number of conditioning data

for the inversion.

Several studies compared EnKF with other stochastic inversion techniques. Camporese

et al. (2009a) compared EnKF with Newtonian Nudging (NN) (Davies and Turner,

1977) for a coupled surface-subsurface flow model with respect to state estimation. In

this application EnKF gave better results than NN but at a higher computational cost.

Hendricks Franssen and Kinzelbach (2009) compared EnKF with Sequential Self Cali-

bration (SSC) (Sahuquillo et al., 1992), a Monte Carlo (MC) based inversion technique,

and found that both methods yield a similar performance with respect to characterizing

heterogeneous hydraulic conductivity fields. In terms of computational efficiency EnKF

was about 80 times faster than SSC. Pasetto et al. (2012) compared EnKF with the Par-

ticle Filter (PF) (van Leeuwen, 2009) for state estimation of pressure head and discharge

for a synthetic tilted V-catchment problem. They observed that both methods achieve

good prediction results. However, PF outperformed EnKF for the solely assimilation of

stream flow data when a non-linear model response in the vadose zone was present.

Different authors also applied variants of EnKF in groundwater hydrology. For example,

Bailey and Bau (2010) and Bailey et al. (2012) applied ES for the estimation of hydraulic

conductivity fields. Sun et al. (2009) compared the performance of different DEnKFs

for subsurface characterization. Liang et al. (2009) used a variant of EnKF in which

the different ensemble members were weighted according to their deviation from the

measured states.

An important issue in the application of EnKF in subsurface characterization is the as-

sumption of Gaussian error statistics in the EnKF updating scheme. Aquifer properties

are often assumed to follow a multi-Gaussian distribution although this does often not

reflect the true aquifer properties, e.g., with respect to the connectivity structure within

the aquifer (Gómez-Hernández and Wen, 1998; Zinn and Harvey, 2003; Kerrou et al.,

2008). Therefore, the application of more realistic geostatistical models of subsurface

structure is often advocated. Zhou et al. (2011) applied EnKF for an ensemble of hy-

draulic conductivity fields that was generated on the basis of multiple point geostatistics

and was composed of two distinct facies. Thus, the initial parameter ensemble followed

a bimodal distribution which converged towards a Gaussian distribution through the

assimilation with EnKF. They proposed the usage of a normal-score transform which

converts the non-Gaussian parameter distribution to a Gaussian one for the assimilation
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step. They found that this technique preserves the bimodal parameter distribution and

yields better results than the traditional EnKF. Similar results were found by Schöniger

et al. (2012) who applied a similar technique to hydraulic tomography with piezometric

head and concentration data. However, in this case, parameter fields were Gaussian and

only model states were transformed for the EnKF analysis step.

Several authors also stressed the need for applying localization techniques in the up-

dating scheme of EnKF. The rationale behind localization is to restrict the influence

of observation points in space because each observation point only has a certain area

of influence around itself. Model variables beyond this area are then not updated with

measurements from this observation point. When the ensemble size is large enough the

area of influence of a single observation point is usually well constrained through the

ensemble and covariances for very distant points from a measurement location tend to

zero. However, when the ensemble size is limited, spurious correlations may occur in

the covariance matrix because the parameter space is not covered well enough by the

ensemble. As a consequence, locations that are out of the area of influence of an ob-

servation point may be updated by EnKF due to these spurious correlations although

there is not a true physical relationship between these locations and the observation

point. A very common approach for localization is to apply a Schur product (i.e., an

element wise multiplication of two matrices) to the covariance matrix directly before

the updating equation. The localization matrix with which the covariance matrix is

multiplied contains a value between 0 and 1 for each element of the covariance matrix

and these values are calculated from a predefined localization function that defines the

influence of a measurement point in space. Nan and Wu (2011) compared six different

localization functions and found that localization improves the prediction capability of

EnKF especially for small ensembles. Localization also helped to maintain a certain

ensemble variance, i.e., the effect of filter divergence was reduced. Chen and Oliver

(2010) also found that the application of distance-dependent localization schemes im-

proves data assimilation with EnKF. They also argue that different types of data need

different localization functions and that localization is easier for state variables than for

parameters. Devegowda et al. (2010) used a localization scheme in which the covariance

matrix was tapered according to the stream trajectories around an observation well and

also found an improvement in parameter estimation compared to the unlocalized EnKF.

They also argue that their methodology is superior to distance-dependent localization

schemes in highly heterogeneous media.



Chapter 3

Identification of time-variant

river bed properties∗

3.1 Introduction

Exchange fluxes between surface water and groundwater can have a profound influence

on the chemical environment within the hyporheic zone, the riparian ecology and the

local water balance around streams (Woessner, 2000; Sophocleous, 2002; Brunke and

Gonser, 1997). For water management activities close to rivers, like bank filtration, the

amount of exchanged water between river and aquifer influences the sustainability of

groundwater use and also the quality of pumped groundwater. In order to predict the

hydrological situation around rivers it is essential to obtain reliable estimates about the

parameters that govern these exchange fluxes between river and groundwater namely

the river bed conductivities.

Information on exchange coefficients can be inferred experimentally from different meth-

ods ranging from small scale measurements like permeameter tests, medium-scale infor-

mation like temperature data as well as water balance methods for larger scales (Kalbus

et al., 2006, and references therein). On the regional scale especially when management

of groundwater is present the most common approach is to solve the groundwater flow

equation with a numerical model and to calibrate river bed conductivities with observed

head (and concentration) data. The calibrated river bed conductivities can then be used

for predicting groundwater levels in the post-calibration period.

Different studies have shown that the fluxes between river and groundwater are strongly

variable in space and time (e.g., Conant, 2004; Krause et al., 2007; Käser et al., 2009;

∗adapted from: Kurtz, W., Hendricks Franssen, H.-J., and Vereecken, H. (2012). Identification of
time-variant river bed properties with the ensemble Kalman filter. Water Resour. Res., 48(10):W10534

15



16 Chapter 3 Identification of time-variant river bed properties

Rosenberry and Pitlick, 2009b). The spatial variability of exchange fluxes is related to

the heterogeneity of the river bed and the heterogeneity of the adjacent aquifer (e.g.,

Fleckenstein et al., 2006; Kalbus et al., 2009; Frei et al., 2009). Besides their spatial

variability river bed characteristics may also change over time. Reasons for changing

river bed properties may be flooding events that erode the river bed due to larger shear

stress or an enhanced sedimentation during low flow conditions that leads to a colmation

of the river bed (Schälchli, 1992).

In a flume experiment Rehg et al. (2005) investigated the effect of clay deposition on

exchange fluxes between sediment and surface water. They observed the formation of

a thin clogging layer that substantially decreased exchange fluxes when no movement

of the bed sediment was present. However, when the bed sediment was slightly moved

by the stream current and the particle size of the clay was small enough the formation

of a clogging layer was not detected. Rosenberry and Pitlick (2009a) also used flume

experiments to investigate the effect of sedimentation of fine particles on seepage fluxes

between sediment and surface water. Their results showed that the vertical hydraulic

conductivity of the sediment was decreased during downward flux and remained almost

constant during upward flux.

Changes in river bed conductivity have also been observed at the field scale with dif-

ferent measurement and modeling techniques. Schubert (2002) investigated the relation

between river dynamics and bank filtration activities at the river Rhine and found that

the permeability of the clogging layer on top of the river bed varied temporally what was

attributed to changes in sediment load of the river, erosion processes in the river bed

and different hydraulic gradients between river and groundwater. Blaschke et al. (2003)

measured leakage coefficients at an impounded river reach of the Danube and found a

decrease of the determined river bed conductivities of about 2 log units within a time

frame of 2 years which they attributed to clogging processes. They also found that flood-

ing events led to temporary increases of river bed permeability at their site. Doppler

et al. (2007) observed a significant change between model predictions and observations

after a major flooding event which they attributed to the scouring of an impounded

part of the investigated river. Hatch et al. (2010) used time series thermal methods to

quantify the temporal evolution of river bed conductivities along a river reach. They

observed changes in river bed conductivities of up to 1 log unit within a sedimenta-

tion period of 150 days and also increasing river bed conductivities due to high flow

conditions. Zhang et al. (2011) used a 3D model of a managed site for river bank filtra-

tion to investigate the behavior of river bed permeabilities in relation to management

activities. They calibrated river bed permeabilities at several times during a one year

period and observed changes of up to a factor of 3 which they related to high and low

flow conditions which were in part induced by management activities. Genereux et al.
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(2008) repeatedly measured streambed hydraulic conductivities over a one year period

with permeameter tests. At some of their measurement locations they observed nearly

no change in river bed conductivities over time whereas for other observation points

river bed conductivities followed different temporal patterns during the measurement

campaign which they related to erosion and deposition processes of the sediment. They

also observed an increase of river bed permeabilities after the reconstruction of a dam

which they attributed to a possible scouring of the river bed. Mutiti and Levy (2010)

used head and temperature measurements to calibrate river bed conductivities during

flooding events. They observed that hydraulic conductivities had to be increased around

the discharge peak compared to pre-flood conditions in order to accomplish a good fit

between measured and simulated groundwater heads and temperatures. This was also

related to river bed erosion associated with increased shear stress during the flooding

event.

These observed changes in river bed properties can have a large impact on the prediction

of groundwater or concentration levels near a river. For instance, when a groundwater

model is calibrated for a certain time period with a specific, possibly spatially vari-

able, river bed conductivity which is assumed to be constant for further time periods

this model will not be able to respond to the changes in model parameters. This will

result in systematically erroneous predictions of groundwater levels because the fluxes

between river and groundwater are calculated with wrong parameter values for the river

bed conductivities. In case of transport calculations, e.g., of contaminants, this wrong

parameterization may be even more severe and may result in strongly biased predictions

of the extent and breakthrough of contamination plumes.

Generally, one possible solution for calibrating time-dependent leakage parameters would

be to recalibrate the model whenever deviations between measured and predicted ground-

water levels exceed a predefined threshold value. However, these deviations between

measurements and model predictions may also arise from measurement errors or pre-

dictions errors of the groundwater model (i.e., model structural errors or errors in the

forcings terms). One could argue that the measurement errors are constant and known

a priori, but the model errors are usually not. Prediction errors depend on many factors

and could be temporally variable as well. For example, the uncertainty in timing and

magnitude of a precipitation or flooding event could create deviations between mea-

surements and model predictions which would then lead to a recalibration of model

parameters although these parameters did not change in reality.

Another approach is to use sequential data assimilation methods like the Ensemble

Kalman Filter (EnKF) (Evensen, 1994; Burgers et al., 1998) which has already been
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used in various studies in groundwater hydrology (e.g., Chen and Zhang, 2006; Hen-

dricks Franssen and Kinzelbach, 2008; Nowak, 2009; Sun et al., 2009; Huber et al., 2011)

and is able to update model states as well as model parameters. EnKF offers a flexi-

ble framework to jointly handle different types of errors and uncertainty with respect

to forcings and model errors is relatively straightforward to incorporate. Since it is a

sequential method it might also be more suitable for assessing the transient behavior of

river bed conductivities than other calibration methods. Furthermore, EnKF allows an

automatization of the adaptation of model states and parameters which is an important

issue for real-time modeling and management systems (e.g. Bauser et al., 2010). Results

from Hendricks Franssen et al. (2011) indicate that EnKF is able to adapt to seasonal

changes in river bed conductivities caused by the temperature dependency of viscosity

(Doppler et al., 2007; Engeler et al., 2011) with a time lag of about 3 months what

suggests the principal capability of data assimilation to capture changes in river bed

conductivities. However, no systematic investigation of the behavior of EnKF towards

time-variant river bed conductivities has been performed so far. Thus, the objectives of

this study are to:

1. identify whether EnKF is able to capture temporal changes of river bed conduc-

tivities under different conditions

2. identify the most important factors that do affect the update of river bed conduc-

tivities with EnKF

3. find out under which conditions the characterization of temporally variable leakage

coefficients will yield improved flow predictions in practice and will therefore be

recommended

3.2 Methodology

In this chapter EnKF is used to determine time-varying river bed conductivities. EnKF is

a Monte Carlo (MC) based method in which an ensemble of different model realizations

(e.g., with varying model parameters or forcings) is propagated forward in time and

updated whenever measurements of the model states (or parameters) become available.

In contrast to other calibration techniques EnKF does not adjust parameter values of a

model based on the residuals of the whole calibration period. Instead, it steps through

time and only updates the model based on the measurements of one time step. EnKF

is therefore an interesting method to calibrate time-dependent leakage values.

The basic elements of EnKF are the forecast step, the observation equation and the

analysis step. The forecast step expresses how the states for the current time step are
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estimated from the past time step, on the basis of the simulation model (which solves

numerically the governing equation), initial conditions, boundary conditions, model forc-

ings and model parameters:

ψti = M(ψt−1i ,φi, ζi) (3.1)

where i is the stochastic realization (i = 1...Nreal), ψ
t
i is the model state vector for

the current time step, ψt−1i is the model state vector for the previous time step, φi

are model parameters, ζi are model forcings and M is the forward model which in this

case solves the 3D groundwater flow equation for variably saturated conditions including

river-aquifer interactions (Equations 2.2 to 2.6b and Equation 2.11). ψti and ψt−1i have

a length that corresponds to the size of the problem, i.e., the number of nodes of the

model Nnodes.

Next the observation equation expresses how the simulation results at locations of ob-

servation points for the current time step are related to the whole state vector ψti:

ψ̂ti = Hψti (3.2)

where ψti is the simulated state vector for the current time step, ψ̂ti is a vector for the

simulated states at observation points with a length corresponding to the number of

observations Nobs and H is a matrix that extracts or interpolates the simulated results

at observation points from the simulated state vector with a dimension of Nobs×Nnodes.

The measured states for the current time step y0 are perturbed with the perturbation

vector ε̃ which is composed of values drawn from a normal distribution N (0, ε) with a

mean of zero and a standard deviation that corresponds to the measurement error ε of

the assimilated state variable:

ỹi = y0 + ε̃i (3.3)

where y0 is the measurement vector for the current time step (with length Nobs), ε̃i is a

perturbation vector and ỹi is the perturbed measurement vector for realization i.

Finally, the analysis step expresses how the forecasted states are corrected by the mea-

surements. In the simplest configuration EnKF only updates the model states (in this

case piezometric heads) for the whole domain. However, EnKF has been reformulated

so that also model parameters can be updated with an augmented state vector approach

(e.g., Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008). The augmented



20 Chapter 3 Identification of time-variant river bed properties

state vector approach implies that the vector with the quantities to be updated in the

data assimilation procedure contains not only the model states, but also (part of) the

parameters. In this study either piezometric heads h and river bed hydraulic conductiv-

ities (expressed as leakage coefficients L) or piezometric heads, leakage coefficients and

the hydraulic conductivity of the aquifer K are updated. Thus, the most general form

of the state-parameter vector Ψ for this setup is given as:

Ψ =


h

log(K)

log(L)

 (3.4)

where h is the vector of piezometric heads (i.e., the model state vector), log(K) and

log(L) are the model parameters that should be updated and Ψ is the augmented state-

parameter vector with a total length of Nnodes + Nparam.

The analysis step itself is calculated with the following equation:

Ψa
i = Ψt

i + αG(ỹhi −HΨt
i) (3.5)

where Ψt
i is the simulated state-parameter vector of the ith ensemble member, Ψa

i is the

updated state-parameter vector, ỹhi is the perturbed measurement vector of piezometric

heads, G is the Kalman gain matrix and α is a damping factor that takes values between

0 and 1 and is only used for updates of model parameters. This damping factor is used to

reduce filter inbreeding, i.e., the underestimation of ensemble variance in the assimilation

process (see Hendricks Franssen and Kinzelbach, 2008). Note also that H has dimensions

of Nobs × (Nnodes + Nparam) for joint state-parameter updates.

The Kalman gain G in Equation 3.5 is the ratio between the simulated uncertainty and

the sum of simulated and measurement uncertainty:

G = CH>(HCH> + R)−1 (3.6)

CH> =


Chĥ

Clog(K)ĥ

Clog(L)ĥ

 (3.7)

where C is the covariance matrix of the simulated states and parameters and R is the

covariance matrix of the state measurements. The covariance matrix CH> (Equation
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3.7) that is effectively used in calculation of the Kalman gain (Equation 3.6) is inferred

from the states and parameters of the whole ensemble (h, log(K) and log(L)) and the

simulated values of h at observation locations (ĥ) and has a dimension of (Nnodes +

Nparam) × Nobs. R is inferred from measurement errors at observation points and has

a dimension of Nobs × Nobs. For the numerical experiments performed in this study,

covariances between the measurement errors at different observation points were set to

zero. Therefore, only the variances at observation points were considered in R.

3.3 Model description

The updating of time-variant L was tested in a synthetic experiment, but based on real-

world data from the Limmat aquifer in Zurich (Switzerland). A schematic representation

of the model domain is shown in Figure 3.1. The model domain covers an area of

approximately 6 × 2 km. The rivers Sihl and Limmat are located at the eastern and

northern boundaries of the model domain. In the Hardhof area (box in Figure 3.1)

groundwater is extracted for drinking water supply. For that purpose, water is pumped

from bank filtration wells located near river Limmat which is redistributed to the aquifer

through several recharge wells and three recharge basins south of the river. Drinking

water is then extracted through four drinking water wells which are located between the

recharge basins and the river Limmat. The numerical solution of the groundwater flow

equation was calculated with the software SPRING (Delta h Ingenieurgesellschaft mbH,

2006) which uses a finite-element scheme and is capable of simulating variably saturated

flow and river-aquifer exchange fluxes. The model domain was discretized into 92015

nodes, 173599 elements and 25 layers. The average element size was ∼50 m but a higher

spatial discretization was present in the Hardhof area where the average element size

was ∼20 m and refined up to ∼1 m near wells. Vertical discretization was 1.6 m.

Forcing data for the simulations (river stages, recharge, pumping schedules, lateral in-

flows) were taken from real-world measurements. A detailed description of how these

forcing data are calculated can be found in Hendricks Franssen et al. (2011). As a brief

overview, recharge was calculated on the basis of data from the meteorological station in

Zurich-Affoltern (MeteoSwiss). For this purpose, potential evapotranspiration (ET) was

calculated according to the Penman-Monteith equation. Actual ET was then estimated

on the basis of calculated potential ET with the help of a soil-water balance model by

the FAO56 method (Allen et al., 1998). With the measured precipitation and calculated

actual ET the potential recharge was calculated. Recharge was evenly distributed over

the first layer of the model domain but only 15% of the calculated recharge was used

because most of the model domain is urbanized sealed area. Small lateral inflows exist
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Figure 3.1: Schematic representation of model domain. River Sihl corresponds to
leakage zone V and river Limmat corresponds to leakage zones I-IV.

on the south face of the model where water drains from the surrounding hill slopes of

the Limmat valley. These lateral inflows were calculated on the basis of the estimated

recharge rates. For the management activities in the Hardhof area (river bank filtration,

artificial recharge) data for the extracted/ redistributed amounts of water were available

from Water Works Zurich on a daily basis. River stages were calculated with the help

of the hydraulic software FLORIS (Scietec Flussmanagement GmbH, 2000). Used in-

put for these calculations were measured river stages at three locations, daily discharge

values for the Limmat and Sihl and the expected geometry of the rivers Limmat and

Sihl (interpolated from a large number of registered profiles along the river courses).

Exchange fluxes between river and aquifer are incorporated in SPRING according to

the leakage principle:

Qleak = AleakL(hriver − hgw) (3.8)

where Qleak is the leakage flux between river and aquifer [L3T−1], Aleak is the area

through which the leakage flux occurs [L2], hriver is river stage [L], hgw is groundwater

level underneath the river [L] and L is leakage coefficient [T−1] which is a lumped

parameter for the hydraulic conductivity and the thickness of the river bed.
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The river was implemented into the model with 457 leakage nodes which reside pairwise

at the borders of the river. The river nodes were subdivided into five leakage zones with

spatially constant L values within each of the zones. These five zones were originally

defined for the region in order to capture the possible spatial variability of leakage

coefficients. One of the five zones corresponds to the river Sihl whereas the river Limmat

is divided in four zones in correspondence with the position of two weirs and management

activities.

Basic model parameters were used from a prior calibration of the model. Porosity was

set to a constant value of 0.15. Hydraulic conductivity K and leakage coefficients L

were pre-calibrated with data from 87 piezometers for two calibration periods (June

2004 and July 2005) with the regularized pilot-point method (de Marsily, 1978; Alcolea

et al., 2006). The two calibration periods were chosen because they include some main

hydrologic features like one flooding event, intensive pumping activities as well as mean

flow conditions.

3.4 Synthetic experiments

Multiple reference runs were simulated with the model described above. These reference

runs always had a specific evolution of L values which should mimic certain events in

the river bed (see Table 3.1). The starting values of L for the reference runs were always

equal to the ones determined in the calibration procedure and simulations were always

performed for the period from January 2004 to August 2005 (609 days). From these

reference runs daily piezometric head data from 100 observation points were collected

which were then used as conditioning data for the data assimilation with EnKF. The

distribution of these observation points is shown in Figure 3.1. Observation points are

mainly concentrated in the Hardhof area where most of the model dynamics takes place

which is related to the pumping and artificial recharge activities in this area. For most of

the ensemble runs with EnKF only L was assumed to be uncertain. For these scenarios

K values and forcing data were equal to the ones in the reference run. Ensembles of L

were generated by perturbing the log(L)-values from the calibration (i.e., the starting

values of the reference run) with samples from a normal distribution with mean value

of 0 and a standard deviation of 1 log(s−1). A total of 100 ensemble members was

generated for the simulations with EnKF. The basic updating scheme for EnKF was to

jointly update h and L with data from the 100 observation points every 10 days with a

damping factor α of 0.1 and a uniform measurement error of 0.05 m at the observation

points.
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Table 3.1: Employed reference scenarios for the temporal evolution of leakage coeffi-
cients (L)

scenario description temporal evolution of L

A flooding event L constant until day 155; raise of L by one log unit at
day 155; L remains constant until day 609

B sedimentation
event

L constant until day 200; linear decrease of log(L) by
one unit until day 400; L remains constant until day
609

C combined flood-
ing and sedimen-
tation event

L constant until day 155; raise of L by one log unit at
day 155; L remains constant until day 200; linear de-
crease of log(L) (one log unit) until day 600; L remains
constant until day 609

D temperature
dependency of L

L is corrected for daily changes in water viscosity with
measured temperatures of the river Limmat

In the second part of this study the setup of the experiments was varied in order to

investigate the influence of different factors on the update of L with EnKF. This sensi-

tivity study includes the effect of uncertain hydraulic conductivities, effects of spatially

varying L values, the influence of a bias in the initial L ensemble and different updating

strategies for EnKF. These different simulations always employed the reference scenario

A from Table 3.1. Additionally, simulations with an adaptive filtering approach were

performed. This approach has already been used in the atmospheric data assimilation

community and could be beneficial for reducing the possible problem of filter inbreeding

in the simulations.

The updated ensembles of h and L for the different reference scenarios were mainly eval-

uated with respect to the temporal evolution of the zonal L ensembles and the temporal

evolution of piezometric head errors at the observation points. For the evaluation of

errors the Root Mean Square Error (RMSE) of h and L was calculated:

RMSEh =

√√√√ 1

NobsNreal

Nobs∑
i=1

Nreal∑
j=1

(hij − hrefi )2 (3.9)

RMSEL =

√√√√ 1

NleakNreal

Nleak∑
i=1

Nreal∑
j=1

(log(L)ij − log(L)refi )2 (3.10)

where Nobs is equal to the number of observation points, Nreal is the number of realiza-

tions and Nleak is the number of leakage zones.

It has to be noted that the evolution of leakage coefficients was not directly evaluated

with the parameter L given in Equation 3.8 but with the slightly modified parameter L∗

which is the parameter L multiplied with half of the river width. This was done because
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the simulation code internally calculates with L∗ but that does not directly influence

the outcome of the simulations because the river width in the whole model domain is

rather constant (about 50 m) and the emphasis was to compare the response of EnKF

to relative changes towards a reference state (i.e., the initial L∗ values of the reference

runs). Thus, the two parameters L and L∗ are used interchangeable in the following

sections. As there is no explicit information about the thickness of river sediment in the

model domain, river bed characteristics are always treated as effective parameters in the

model evaluation, i.e., it is not distinguished whether changes in river bed properties are

related to changes in bed thickness or changes in river bed conductivities.

3.5 Results

3.5.1 Increase of L (scouring event)

In order to mimic a scouring of the river bed after a flooding event, L was increased by

one log unit for all zones of the reference run after a major flooding event on day 155

(scenario A). The evolution of L values of the reference run for this scenario is shown

together with the updated L values in Figure 3.2. For the update head observations

were assimilated from the 100 observation points every 10 days and heads and L values

were jointly updated at the observation times. It can be seen that the ensemble means

remain fairly constant at the beginning of the simulation. These nearly constant values

at the beginning would be the expected behavior of EnKF because the initial ensemble

mean for each leakage zone is equal to the leakage values of the reference run. After the

jump of L in the reference run at day 155 the ensemble mean of updated L values starts

to increase for all five leakage zones. This increase is strongest shortly after the flooding

event and then slows down markedly within 150 days following the step change, after

which L is nearly constant. The final ensemble means of L at the end of the simulation

period (609 days) do not exactly match the post-flooding reference values but all L

values increase >0.6 log units after the flooding event.

The variability of the ensemble continuously decreases during the course of the simulation

(see shaded area in Figure 3.2). For the period before day 155 where the reference values

for L are constant this should be the expected behavior of EnKF because the filter trusts

the ensemble mean which is close to the true value. However, after the jump in L this

process still continues and the variance in the ensemble of L almost vanished for three

of the five zones by the end of the simulation period.

In Figure 3.3 the temporal evolution of RMSE of forecasted piezometric heads at obser-

vation points (RMSEh) for this scenario is compared with the one of an unconditional
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Figure 3.2: Temporal evolution of zonal leakage coefficients (period January 2004
- August 2005) for reference run and update with the Ensemble Kalman Filter for

simulation scenario A (Table 3.1).
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Figure 3.3: Temporal evolution (period January 2004 - August 2005) of root mean
square error of piezometric heads (RMSEh) at observation points for an unconditional
simulation (’unconditioned’, no update of piezometric heads and leakage coefficients),
an update of piezometric heads every 10 days (’update h’) and for a joint update of

piezometric heads and leakage coefficients every 10 days (’update h+L’).

ensemble simulation (i.e., neither h nor L are updated) and with a simulation run where

only h was updated every 10 days. For the unconditional run the error rises by a factor

of about 2 during the simulation period compared to the initial error whereas RMSEh

for the simulation where h and L are updated simultaneously reaches a value of about

5 cm by the end of the simulation. The error for the solely update of h remains approx-

imately at the same magnitude as the initial error but shows rather high fluctuations

between the times when the ensemble is updated. These fluctuations are related to the

higher spread of the ensemble of L compared to the simulation where also L was up-

dated. After the flooding event these fluctuations increase in magnitude caused by the

fact that also systematic errors are introduced due to the increase of L in the reference

run which cannot be captured when only h is updated. This also leads to relatively high

errors around day 550 where pumping rates were temporally increased. In contrast,

errors for a joint update of h and L did not increase for this event which is related to

the adaptation of L and its decreased ensemble variance.

Figure 3.4 gives an overview over the fluxes between river and aquifer. The diagram

for the unconditional simulation shows that the variability of positive and negative
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fluxes is very high for the utilized initial ensemble of L. For unconditional simulations

the mean fluxes for both directions (gaining and losing conditions of the river) are

rather constant throughout the simulation period with the exception of two periods of

increased pumping activities around day 120 and day 550. The fluxes for the reference

run are markedly increased after the change in L at day 155. When only h is updated

especially the ensemble mean for fluxes from river to aquifer are slightly corrected after

each assimilation cycle but it is not possible for EnKF to adjust the fluxes solely by

correcting h. For a joint update of h and L the ensemble mean of both flux directions is

consecutively adjusted to the reference values which are approximated very closely after

day 450.

Figure 3.5 additionally shows the spatial distribution of averaged exchange fluxes for

different time steps along the x-axis of the model domain (in the Swiss coordinate sys-

tem). For time step 100 the distribution of fluxes is very similar for all different updating

scenarios and also closely corresponds to the one in the reference run. Shortly after the

change of river bed properties (time step 200) the spatial distributions for the different

scenarios all deviate from the reference run. An update of states and parameters corrects

this deviation as the assimilation proceeds (see time step 500). However, an update of

states alone does not correct for the biased exchange fluxes.

3.5.2 Decrease of L (sedimentation event)

In a next step a sedimentation event was emulated in order to verify whether EnKF

also adapts to slowly decreasing L values. A reference run was generated where L was

decreased by one log unit over a period of 200 days (starting from day 200 until day

400) for all five leakage zones (scenario B). The updating strategy was the same as for

the scouring test case (scenario A). The evolution of L in the reference run together

with the updated L values are shown in Figure 3.6. Again the ensemble means for the

different zones remain fairly constant before the change in L. When L starts to decrease

after day 200 zonal ensemble means of L also decrease during the EnKF update with

the exception of the most western zone in the model domain (zone I). In this part of

the aquifer the groundwater levels are rather close to the river bottom and the initial

L values are low. As a consequence, the leakage fluxes between river and aquifer are

generally low. The modification of L that was simulated in the reference run has a

limited impact on the piezometric heads close to the river and therefore piezometric

head measurements will not be so effective (compared to other zones) for adapting the

value of L. For this experiment, L generally does not adapt so well to the reference L

values because the adaptation at the end of the simulation period is worse for three of the

five zones (as compared with the scouring experiment). However, when the simulation
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Figure 3.4: Temporal evolution (period January 2004 - August 2005) of fluxes be-
tween river and aquifer for an unconditional simulation (’unconditioned’, no update of
piezometric heads and leakage coefficients), an update of piezometric heads every 10
days (’update h’) and for a joint update of piezometric heads and leakage coefficients
every 10 days (’update h+L’). Fluxes in the upper (positive) part of each diagram are
from river to aquifer and fluxes in the lower part (negative) are from aquifer to river.
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Figure 3.5: Spatial distribution of river-aquifer exchange fluxes for an unconditional
simulation (’unconditional’, no update of piezometric heads and leakage coefficients),
an update of piezometric heads every 10 days (’update h’) and for a joint update of

piezometric heads and leakage coefficients every 10 days (’update h+L’).
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Figure 3.6: Temporal evolution of zonal leakage coefficients (period January 2004 -
April 2007) for reference run and update with the Ensemble Kalman Filter for simula-

tion scenario B (Table 3.1).

time is expanded to 1200 days a similar adaptation as in scenario A was observed for all

of the five zones. The variances of the L ensembles for the different zones behave similar

to the flooding scenario, i.e., show a continuous decrease throughout the simulation

period. For four of the zones variability within the ensemble has almost vanished at the

end of the simulation period.

3.5.3 Performance of EnKF for combined flooding and sedimentation

events

The two simulations described above have shown that EnKF is principally capable of

adapting towards increases and decreases of L. However, natural sediment dynamics

often exhibit a sequence of sedimentation and scouring events (e.g. Blaschke et al., 2003).

Therefore, such a scenario was artificially constructed by appending a sedimentation

period to scenario A. In this scenario L values for all leakage zones were raised by one

log unit at day 155. L is then held constant for 45 days and then again decreased by one

log unit from day 200 until day 600 in order to simulate a long lasting sedimentation event

(scenario C). The evolution of the updated L ensembles together with the corresponding

reference values is depicted in Figure 3.7. From all five leakage zones it becomes obvious

that EnKF corrects for both changes of L within the simulation period. After the

flooding event the ensemble means of L start to increase. Approximately at day 300 this

increase reaches an apex and the ensemble means of L begin to adapt to the decreasing

values of the reference run. The zonal ensemble means of L rise between 0.2 and 0.5 log

units in the phase after the flooding event. For all five leakage zones the reference value

is approximately intersected at these maximal values of the ensemble mean of L. After

that peak the ensemble means decrease but only for one zone (which corresponds to the

lowest prior increase in L) the reference value is reached within the simulation period.

For the other four leakage zones the ensemble means adapt rather slowly towards the

reference line. This again shows that the adaptation with EnKF towards changes in L

has a rather long response time which does not optimally capture rapid changes in river

bed properties.
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Figure 3.7: Temporal evolution of zonal leakage coefficients (period January 2004
- August 2005) for reference run and update with the Ensemble Kalman Filter for

simulation scenario C (Table 3.1).

3.5.4 Temperature dependency of L

Apart from mechanically induced changes of the river bed like scouring and sedimenta-

tion the hydraulic conductivity of the river bed can also be influenced on a seasonal scale

by temperature variations of the river due to the temperature dependency of viscosity

as can be seen from Equations 3.11 and 3.12 (Muskat, 1937):

K(T ) =
kρwg

µ(T )
(3.11)

µ(T ) = 2.414 · 10−510
247.8
T−140 (3.12)

where K(T ) is temperature dependent hydraulic conductivity [LT−1], k is intrinsic per-

meability of the porous medium [L2], ρw is density of water [ML−3], g is gravitational ac-

celeration [LT−2], µ(T ) is temperature dependent dynamic viscosity of water [ML−1T−1]

and T is temperature [θ].

Within the simulation period the measured temperatures of the river Limmat varied

from 4 ◦C to 26 ◦C which translates into a variation of viscosity of up to a factor of

1.7 whereas the change of water density in this temperature range is less than 1%. It

has been shown by Engeler et al. (2011) that this temperature dependency of L can

have a profound influence on the predicted groundwater dynamics close to rivers. In

the simulation model L values are not corrected for temperature variations of the river

but usually these variations occur in natural settings. Therefore, a reference run was

created in which these natural variations of L occur and it was tested whether EnKF is

able to follow these changes. For this purpose, the L values of all leakage nodes of the

reference run were corrected with the measured temperature of the river Limmat on a

daily basis so that all leakage nodes follow the same variation pattern (scenario D). The

temporal evolution of zonal L values of the reference run is shown in Figure 3.8 together

with the updated ensemble values. The L values of the reference run follow a seasonal
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Figure 3.8: Temporal evolution of zonal leakage coefficients (period January 2004
- August 2005) for reference run and update with the Ensemble Kalman Filter for

simulation scenario D (Table 3.1).

cycle with higher values during the summer months and lower values during winter. The

maximal change of L values for the reference run within the simulation period was 0.23

log units and thus is lower than for the previous scenarios. For zones I and II the update

of L with EnKF shows some temporal changes but they do not correspond very well

with the temporal dynamics of the reference run. For the zones III to V the temporal

evolution of updated L values is more close to the reference run especially for zone III.

Again a certain time lag is observed between the reference and the updated L values

which seems to be a bit higher for zones IV and V than for zone III. The rather high

sensitivity of zone III towards the temperature-dependent changes of L may be related

to the fact that the highest exchange fluxes between river and aquifer occur in this part

of the model domain. As a result, the ensemble of L values for this zone responds well

to the low changes of L that are induced by the temperature dependency. For leakage

zones I and II the groundwater table is very close to the river bottom and thus the

fluxes between river and aquifer are rather low what might be a cause for the rather

low sensitivity of these two zones. For leakage zones IV and V the groundwater table

is significantly lower than the river bottom but also the L values are low for these two

zones what results in lower exchange fluxes compared to leakage zone III and may be a

cause for the lower sensitivity towards the relatively small changes in L that are induced

by river temperature fluctuations.

3.5.5 Influence of spatial patterns

For the previous simulations the change in L was always realized in a spatial homoge-

neous fashion, i.e., L was changed for all five zones with the same magnitude. In natural

systems changes in L due to sedimentation or scouring are expected to happen in a more

spatially inhomogeneous fashion. This may happen for example due to meandering of

the river which provides spatial sequences of sedimentation and scouring zones which

may proceed downstream over time. Also storm events may cause scouring of the river

bed preferentially at certain zones where flow velocities and thus shear stress is higher.

Therefore, it was also investigated how EnKF reacts towards changes in L that occur
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Figure 3.9: Temporal evolution of zonal leakage coefficients (period January 2004 -
August 2005) for reference run and update with the Ensemble Kalman Filter when the
zonal leakage coefficient of zone III in the reference run is increased by one log unit at

day 155.

only at a part of the river reach. For this setup the value of L was only increased for

leakage zone III while for the other zones L remained constant throughout the simulation

period. Results for this setup are shown in Figure 3.9. The ensemble means for the four

zones which are not subjected to any changes in L remain almost constant throughout

the simulation period. For zone III EnKF adapts the ensemble mean closely to the refer-

ence value by the end of the simulation and the course of the adaptation curve is similar

to the ones observed when the L values for all zones are increased (see Figure 3.2). This

means that EnKF captures the spatially separated evolution of L for the different zones

which is possibly due to the fact that correlations between the piezometric heads at

the observation points and the L ensemble at the four other leakage zones are rather

weak. Beforehand it was expected that at least the two neighboring leakage zones would

also be affected by the update with EnKF because the filter might give some weight to

them in the updating procedure. However, this was not the case in this scenario. One

possible reason could be that the leakage zone is close to the managed site (Hardhof

area) where the groundwater pumping and artificial recharge takes place. Therefore,

the groundwater levels at the observation points in this area which comprise the major

part of all observation points are especially affected by changes of the increasing leakage

zone.

3.5.6 Influence of uncertain hydraulic conductivities

In previous simulations L was the only uncertain parameter and hydraulic conductivities

of the aquifer were assumed to be known exactly. This assumption was introduced in

order to isolate the effect of uncertain L values in the update with EnKF. This simpli-

fication is rarely justified for real world examples because the uncertainty regarding K

very often governs the uncertainty of model output. Furthermore, it was shown (e.g.

Kalbus et al., 2009) that heterogeneity of the underlying aquifer plays a major role for

exchange fluxes between river and aquifer and thus should ideally not be neglected for
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Figure 3.10: Temporal evolution of zonal leakage coefficients (period January 2004
- August 2005) for reference run and an update of either leakage coefficients alone
(’ensemble mean L’) or a joint update of leakage coefficients and hydraulic conductivities

of the aquifer (’ensemble mean L+K’) for simulation scenario A (Table 3.1).

the simulations. For these reasons simulations were performed in which also the ensem-

ble members of K are different among each other. The ensemble of K was generated by

Sequential Gaussian Simulation (SGS) (Gómez-Hernández and Journel, 1993) on a very

fine grid which was then upscaled to the simulation grid through simplified renormaliza-

tion (Renard et al., 2000). For details of the ensemble generation see Hendricks Franssen

et al. (2011). For these realizations the variance in ln(K) was 2.7.

The setup of this experiment was similar to scenario A with the only difference that the

ensemble of K showed the described uncertainty and values of K and L were jointly

updated together with piezometric heads via EnKF. When comparing the temporal

evolution of zonal ensemble means of L (Figure 3.10) only small differences are observable

between the runs with and without uncertain K values. The RMSE of piezometric heads

at observation points during the first 100 days was higher for the ensemble with uncertain

K values compared to the one with deterministic K values which is due to the additional

uncertainty for this parameter. In later steps RMSE for both simulations is very similar

which is mainly caused by the adaptation of K values with EnKF which decreases the

variance of K in the assimilation process. A comparison of the initial and updated mean

fields of log(K) is given in Figure 3.11. It can be seen that the initial mean field of log(K)

is relatively smooth. During assimilation the spatial structure of log(K) generally gets

more patchy because every finite element of the model is allowed to update separately.

However, the major distribution of log(K) values (increasing values from east to west)

is preserved.

3.5.7 Influence of ensemble bias

Besides the uncertainty regarding hydraulic conductivities mentioned in the previous

section the updating of L with EnKF may also be affected by a bias of the initial

ensemble of L. In the previous simulations the zonal mean values of the initial ensemble

of L were equal to the true values of the reference run. However, in real-world situations

information on river bed conductivities within the model domain often is scarce and
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Figure 3.11: Ensemble mean of log(K) for initial ensemble (left) and at time step
600 (right) for model layer 4 when hydraulic conductivities and leakage coefficients are

jointly updated every 10 days.
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Figure 3.12: Temporal evolution of zonal leakage coefficients (period January 2004
- August 2005) for reference run and update with the Ensemble Kalman Filter for
scenario A when the initial ensemble mean of leakage coefficients was biased compared

to the initial values of the reference run.

the generation of the initial ensemble of L may thus only rely on a few or even no

measurement data. Therefore, an initial ensemble of L was created where the ensemble

means of all five leakage zones were the same and corresponded to the arithmetic mean of

log(L) values of the reference run (averaged over all five leakage zones). The ensemble

variances of the different zones were similar to the ones in the previous simulations.

Results for this biased initial ensemble are shown in Figure 3.12. Because all zonal

ensemble means of L started with the same value the bias between the initial ensemble

mean and the reference value is different among the five leakage zones. During the period

before the increase of L in the reference run (up to day 155) the ensemble means of all

zones more or less tend to move towards their corresponding reference value. After the

jump of L values in the reference run ensemble means of all zones start to increase no

matter whether their tendency was to increase or decrease before the flooding event. The

evolution of zonal L values looks rather similar to the ones shown before, i.e., a steeper

increase at the beginning which flattens after about 100 days. Also the variance of the

ensembles behaves similar to the previous examples. Due to the initial bias the absolute

performance of EnKF is not as good as for a case where the initial zonal ensemble means

are closer to the true values. However, a distinct reaction of EnKF towards the true

values is clearly visible.
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Table 3.2: Different updating scenarios for zonal leakage coefficients.

scenario update frequency Nreal Nobs α
[d]

base 10 100 100 0.1
fupd 1, 2, 5, 10 100 100 0.1
ens 10 100, 200 100 0.1

nobs 10 100 5, 10, 20, 50, 100, 200 0.1
damp 10 100 100 0.1, 0.2, 0.5, 1.0

3.5.8 Sensitivity on updating strategy

The performance of EnKF in part depends on the amount of available observation data

and on filter specific settings like the number of ensemble members, the updating interval

or the damping factor α. Compared to the base scenarios (100 ensemble members,

update frequency of h and L: 10 days, α=0.1, 100 head observations) each of these meta

parameters was changed in order to see whether they significantly affect the performance

of EnKF for the given setup. The different parameters for each of these scenarios are

summarized in Table 3.2 where scenario ’base’ serves as a reference for all other scenarios.

An increase of the ensemble size to 200 ensemble members (scenario ’ens 200’) did not

significantly improve L compared to the ’base’ scenario as the performance for one of

the leakage zones slightly decreases.

The effect of updating frequency on the evolution of L (scenario ’fupd’) can be seen in

Figure 3.13 for four different updating frequencies (1, 2, 5 and 10 days). In general, an

increase of the updating frequency for h and L did not lead to an improvement of L

updates. For an updating frequency of 5 days the adaptation of L was slightly faster for

zone III but the performance for the other zones was equal or slightly worse compared to

the ’base’ scenario. An updating frequency of 1 or 2 days did not increase performance

in any of the five leakage zones. Especially for zones II and IV the performance degrades

when h and L are updated very frequently. A reason for this behavior may again lie in

the fast decrease of ensemble variance in the updating procedure. In Figure 3.13 also the

ensemble standard deviation is compared for the different updating frequencies. With

decreasing updating intervals the ensemble variance also decreases very rapidly for all

leakage zones. For updating frequencies of 1 or 2 days the ensemble variance is almost

zero before the change in L at day 155 whereas for lower updating frequencies more

variability is maintained in the ensemble.

For a sensitivity analysis on the number of observations points (scenario ’nobs’) six

different configurations were compared where the number of observation points ranged

from 5 to 200. The observation points for the scenarios ’nobs 5’ to ’nobs 50’ always
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Figure 3.13: Temporal evolution (period January 2004 - August 2005) of ensemble
mean (upper row) and ensemble standard deviation (lower row) of zonal leakage coef-
ficients for different updating frequencies of piezometric heads and leakage coefficients

(simulation scenario A).

were a subset of the scenario ’nobs 100’ which is the configuration used in the previous

simulations (equal to ’base’). For these scenarios the observation points were coincident,

e.g., the observation points for scenario ’nobs 5’ were contained in all other scenarios.

One exception is the comparability between scenario ’nobs 20’ and ’nobs 50’ where both

scenarios only shared 10 observation points. For the scenario ’nobs 200’ 100 additional

observation points were added to ’nobs 100’ and these were spread over the whole model

domain. In Figure 3.14 the temporal evolution of RMSEL is compared for the different

number of observation points. It is clearly visible that the errors in L are inversely

correlated to the number of observation points. For the pre-event period the differences

among the scenarios are mostly related to the different decrease in ensemble variance

which means that the ensemble variance in case of few observation points does not

decrease as fast as for a larger amount of observation points. In the post-event period

also the different updating behavior towards L contributes to the differences among the

scenarios. At the end of the simulation period the errors in L follow an exponential

decrease with the number of observation points. However, it can be observed that even

as little as 10 observation points result in a reduction of RMSEL of 70% as compared to

the open loop simulations. Nevertheless, RMSEL is roughly twice as large at the end of

the simulation period for 10 observation points compared to 100 observation points. A

closer look at the temporal evolution of the zonal ensemble means of L for the different

scenarios (data not shown) reveals that the updating capability of EnKF for the two

zones close to the Hardhof area (zones II and III) and for the Sihl (zone V) is rather

similar among the scenarios whereas for the two other zones the updating capability

is more strongly dependent on the number of observation points. This might be an

indicator that the observation points which were used for the simulations with a lower

number of observation points generally had a lower sensitivity towards these two leakage
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Figure 3.14: Temporal evolution (period January 2004 - August 2005) of root mean
square error of leakage coefficients for different numbers of observation points (simula-

tion scenario A).

zones. This also means that in order to be able to adapt the L values for all leakage

zones a sufficient number and spatial distribution of observation points is needed.

Furthermore, it was tested whether the damping factor α could be raised for the update

of L (scenario ’damp’) what could possibly lead to a faster adaptation of zonal ensemble

means towards reference values. This option was tested for four values of α (0.1, 0.2,

0.5 and 1.0). Results for the different values of the damping factor (data not shown)

revealed that higher values than 0.1 (the ’base’ updating scenario) generally lead to a

worse performance of EnKF in updating the zonal ensemble means towards the reference

values which is possibly related to the more rapid decrease in ensemble variance for higher

α values which is in accordance with the findings of Hendricks Franssen and Kinzelbach

(2008).

3.5.9 Use of covariance inflation to improve filtering results of EnKF

In all different scenarios it became obvious that the response time of EnKF to adapt for

changing L values is rather long which is to some part related to the fast decrease in

ensemble variance. In order to compensate for this loss of variance which is related to

filter inbreeding, covariance inflation was applied. This method could possibly improve

the response time of EnKF and is a common approach in atmospheric data assimilation

(e.g., Hamill et al., 2001; Anderson, 2007, 2009). For covariance inflation an inflation

factor λ is used to spread the ensemble around its mean value before every assimilation

step.
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Ψij = λ(Ψij −Ψi) + Ψi (3.13)

Before each assimilation cycle every element i of the state-parameter vector Ψij for the

jth realization is inflated around the ensemble mean Ψi with the inflation factor λ. This

means that the ensemble mean Ψi for every element is preserved and only the spread

of the ensemble is slightly increased. In atmospheric sciences it was especially in the

past common to set the inflation factor λ to a constant value (e.g., Hamill et al., 2001).

Recently, it has also been proposed to make λ temporally and spatially variable (e.g.,

Anderson, 2007, 2009). We used the inflation method proposed in Anderson (2007) in

which λ is temporally variable. In this method a Bayesian update is performed on λ

every assimilation cycle and the new value of λ is mainly a function of ensemble variance,

measurement errors, deviations between observations and simulations and the variance

of λ itself (which is kept constant in this case). This approach allows to correct for

deficiencies in the assimilation process (i.e., filter divergence) by inflating the ensemble

based on the residuals at observation points and the ensemble variance. An outline of the

used algorithm is given in Appendix A. For a more detailed insight into the methodology

it is referred to Anderson (2007).

Figure 3.15 compares the evolution of L for scenario A without and with adaptive covari-

ance inflation. For the simulations with adaptive inflation L values for all zones reach

the reference values more closely than for simulations without inflation. Furthermore,

the adaptation time to reach a certain L value is slightly decreased when covariance

inflation is used. The evolution of ensemble variance for covariance inflation also shows

the expected behavior. Before the flooding event the decrease in variance is comparable

to the simulations without inflation. When L is increased in the reference run λ values

increase due to the higher residuals at the observation points which also leads to an

increasing ensemble variance which allows to update L more closely (and faster) to the

reference values.

It was already mentioned that an increase of α in the simulations without inflation leads

to a worse performance of EnKF. This effect can be seen in the upper row of Figure 3.16

where α was set to a value of 0.2. In this case the adaptation time for zones III and V

is decreased but the absolute adaptation for zones II and IV were worse compared to

α=0.1. However, when covariance inflation is used for this example L is adapted faster

and more accurate compared to the base scenario (i.e., no inflation, α=0.1).

Additionally, the simulations for the other three base scenarios (scenario B, C and D)

were repeated with covariance inflation for α=0.2 (see Figure 3.17). For scenarios B

and C the adaptation time generally decreases and also the accuracy at the end of the
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Figure 3.15: Comparison of temporal evolution of zonal leakage coefficients without
(upper row) and with (lower row) adaptive covariance inflation for scenario A (damping

factor α = 0.1).
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Figure 3.16: Comparison of temporal evolution of zonal leakage coefficients without
(upper row) and with (lower row) adaptive covariance inflation for scenario A (damping

factor α = 0.2).

assimilation period is improved although for one zone (zone I in scenario B) some slight

instability occurs which again is possibly related to the low sensitivity of this zone for

that scenario which was also obvious from the corresponding base scenario. For the

variability of L due to temperature changes (scenario D) a positive effect of covariance

inflation was not significant which is most likely related to the small changes of L in this

scenario.

It has already been mentioned that an increase of updating frequency did not improve

the adaptation of L for the base scenario. However, when covariance inflation is used

(see Figure 3.18) the adaptation time can generally be decreased with a higher updat-

ing frequency. This can be observed for all of the five leakage zones where updating

frequencies of 2 or 5 days consistently performed better than an updating frequency of

10 days. The ensemble standard deviation (lower row in Figure 3.18) increases after the
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Figure 3.17: Temporal evolution of zonal leakage coefficients with adaptive covariance
inflation for scenario B (upper row), C (middle row) and D (lower row) (damping factor

α = 0.2).

change in L at day 155 due to covariance inflation. Especially for an updating frequency

of 2 days this increase in ensemble variance is already rather high for certain leakage

zones. For an updating frequency of 1 day (data not shown) this increase in ensemble

variance is even higher which leads to numerical problems in the groundwater model due

to rather extreme L values. Hence, a simulation with an updating frequency of one day

could not be performed successfully. Nevertheless, updating frequencies of 2 or 5 days

together with covariance inflation improved the adaptation of L considerably in terms

of response time.

3.6 Discussion

The update of L with EnKF showed some general characteristics among all scenarios.

In almost every case all zonal mean values of L were updated by EnKF in order to follow

the trend of the reference run. For the scenario with either an increase or decrease of L

the updated zonal ensemble means were quite close to the reference values at the end of

the simulation period. However, the adaptation time to achieve this improvement was

somewhat high within all scenarios. This also became obvious in the scenario where a

flooding and a sedimentation event were combined within the simulation period. Here,

the slow adaptation led to the effect that the changes in zonal ensemble means were

within a smaller margin and the extreme values of the reference run were never reached.
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Figure 3.18: Temporal evolution (period January 2004 - August 2005) of ensemble
mean (upper row) and ensemble standard deviation (lower row) of zonal leakage coef-
ficients for different updating frequencies of piezometric heads and leakage coefficients

with covariance inflation (simulation scenario A).

A reason for the slow adaptation may lie in the rather rapid decrease of ensemble spread

during the simulations. The decrease of variance is already obvious in the time before

a change happens in the L values of the reference run and proceeds as the L values are

adapted by EnKF. The lowering of the ensemble spread before a change in L occurs in

the reference run is a native feature of EnKF. In this case the zonal ensemble means are

close to the reference values and because of this the errors in piezometric heads are rather

small. Therefore, the filter ’trusts’ the ensemble means and adapts the extreme values

of the ensemble towards the ensemble mean what consecutively lowers the ensemble

spread. However, this decrease of variance during the period of constant L values then

possibly hampers the adaptation by EnKF towards the changed L values. Directly after

the sudden change of L, differences between simulated and measured piezometric heads

become larger, but the limited ensemble variance implies that the model predictions

have a relatively large weight in the EnKF updating step, limiting the influence of the

observations and slowing down the adaptation of L. The use of adaptive inflation leads

to a faster adaptation of L towards the reference values and at the same time to a more

precise determination of L at the end of the simulation period compared to the use of

EnKF without inflation. In general, the adaptive inflation method seems to be robust

to time-variant model parameters and it also honors changes in the prediction capability

of the forward model by increasing the variance for a larger prediction error.

In the experiments it was also found that increasing the updating frequency is not nec-

essarily a straightforward solution to achieve a shorter response time of EnKF because

increasing the updating frequency leads to a faster decrease of ensemble variance es-

pecially in periods where the river bed is stable. This leads to some overconfidence of

model parameters which influences the update of parameters negatively when there is
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a change in river bed conditions. On the contrary, when covariance inflation is used in

the EnKF updating scheme a positive effect of updating frequency on the adaptation

time of L could be found due to the regulation of ensemble variance by this method.

However, even with a higher updating frequency of L together with covariance inflation

there is a certain time lag until EnKF responds to instantaneous changes of the river

bed. Such instantaneous changes are likely to occur in reality, e.g., as a consequence of

flooding events within a typical time period from hours to days. When such changes in

the river bed are persistent over a certain time period EnKF will be able to adapt model

parameters gradually within several assimilation cycles (depending on the settings for

meta parameters such as updating frequency or damping factor). This means that also

predictions of states will improve step by step until EnKF adapts to the new parameter

values. However, when there are very frequent fluctuations in river bed properties that

are faster than the assimilation frequency or even the time step of the model, EnKF will

only capture the effective changes of the river bed and smooth them temporally. For

such changes one would have to increase the temporal resolution of the forward model in

order to reduce the effective response time of EnKF but this would probably also require

a higher temporal resolution of measurements which is not possible in many cases.

The performance of EnKF with respect to seasonal variation of L caused by temperature

changes of the river showed that the ensemble means of L for three of the five leakage

zones principally followed the trend of the reference run although the whole magnitude

of the change was not reached through updates with EnKF. For the other two zones

changes of the ensemble mean of L were observable but did not correspond well to the

evolution of L values of the reference run. The absolute changes of L were far lower

for this scenario compared to the flooding and sedimentation cases. As a consequence,

the errors at observation points as well as the correlations between the piezometric head

data at the observation points and the zonal leakage coefficients were lower what might

have led to a lower adaptation for two of the zones. Nevertheless, the results showed

that even for small changes of L a correction with EnKF is principally possible.

The results for the influence of spatial patterns on the update with EnKF showed that

EnKF is also able to detect changes in L that only occur at a certain location of the river

reach. This might be relevant when the flow regime and thus the sedimentation/scouring

regime is not homogeneous within the river, e.g., due to dams or weirs or due to a

meandering of the river. However, a prerequisite that allows an optimal spatial update

of L with EnKF in a real-world case is that the position of leakage zones corresponds to

the sediment dynamics in the river bed. Certainly, alternative parameterization methods

like pilot points laid out over stochastic fields of L are an interesting alternative which

was not investigated in the context of this study.
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EnKF was also able to correct for a bias in the initial ensemble which is important for

a real-world scenario because it is often difficult to achieve a good initial guess of L

values that provide a good agreement between simulated and measured states due to

their high variability in natural settings. However, a correction of ensemble bias will

require a sufficient initial ensemble spread of L.

Several different other tests were performed for evaluating the performance of EnKF for

updating L. The ensemble size was found not to be too small, because results for an

ensemble twice as large were not better. The used damping parameter was according

to the suggestions of Hendricks Franssen and Kinzelbach (2008) and increasing it gave

worse results except for the simulations where adaptive covariance inflation was used.

The sensitivity towards the amount of observation points showed that the ability of

EnKF to correct for the time-varying L values generally increased with an increasing

number of observation points. However, the results also showed that even with a low

number of observation points (e.g., 5 or 10) the time-varying L values of EnKF could be

reproduced quite well (150 days after the leakage jump the RMSE for L was reduced 50%

for 10 observations and 20% for 5 observations compared to unconditional simulations).

This may also be important for real-world applications because usually the amount of

available time series of head data for a particular site is rather limited. For the study site

the utilization of 100 observation points for the base scenarios was reasonable because

for the real world case 87 piezometer data are available for this site on a daily basis.

A doubling of the number of observation points from 100 to 200 did not significantly

increase the performance of EnKF. This might be related to the fact that the simulations

with 100 observation points already had a relatively high information content which was

sufficient for the observed adaptations. Thus, the additional 100 observations points

possibly only contained redundant information.

In general, the calibration of time-dependent L with EnKF using a limited number of

piezometers is possible, with the limitations indicated before. This is probably the first

work where a systematic approach to calibrate time-dependent L was proposed, carefully

tested and shown to be feasible. A point of criticism could be that this approach only

adapts L with help of indirect observations, without trying to predict the changes of

L directly. However, both direct observations of modifications of L and deterministic

prediction of changes of L are difficult and not possible at large scales. If indirect

methods can reliably detect changes of L, this will provide new information at larger

scales that can be used to better understand the mechanisms behind the changes of L.

An additional limitation of the methodology followed in this study is that L is updated,

and not the two parameters which constitute L, the river bed thickness and river bed
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hydraulic conductivity. Although it would have been desirable to distinguish between

the two parameters, this was beyond the scope of this study:

1. Measurement data most probably do not allow for differentiating between changes

in river bed thickness and river bed hydraulic conductivity.

2. A very high resolution modeling of the river bed (on the cm scale) would be needed

and many more grid cells would have to be included (now the model already has

nearly 100,000 nodes and 173,599 elements).

3. In order to truly represent the dynamics of the river bed, the modeling grid should

be adaptive and allowed to change over time. Such an approach is challenging in

the context of forward model runs, but in the context of inverse modeling/data

assimilation not yet feasible.

It is of course always a question whether the results found in this study are related to

specific conditions at this site. It is possible that the groundwater management activities

(pumping, artificial recharge) provide additional information which helps to constrain

the estimation of L. Some of the simulation scenarios were also repeated without these

management activities, but results were very similar.

3.7 Conclusions

In this chapter it was investigated to what extend the Ensemble Kalman Filter is able

to correct states and parameters of a groundwater model for temporal changes in the

hydraulic properties of a river bed. For this purpose, different synthetic scenarios were

created in which the river bed conductivities followed certain temporal patterns that

should imitate natural river bed dynamics. Calculations were based on a 3D model

of the Limmat aquifer (Zurich) and the updating procedure for the model states and

parameters with the Ensemble Kalman Filter was done with piezometric head data of

the corresponding synthetic reference simulations.

Results for the different scenarios indicate the principal capability of EnKF to account

for changes in river bed conductivity. This was shown for different types of major changes

of the river bed (i.e., erosion of the river bed due to a flooding event, sedimentation and a

combined scenario) in which EnKF correctly adjusted L values of the ensemble towards

the reference values with a good overall performance at the end of the simulations. Also

seasonal changes with smaller fluctuations of L related to the temperature dependency

of L could in part be compensated by EnKF. Furthermore, EnKF was able to handle and



Chapter 3 Identification of time-variant river bed properties 45

correct for different types of uncertainty in the assimilation process (uncertain hydraulic

conductivities of the aquifer, biased initial ensemble). One drawback is the relatively long

adaptation time that is needed by EnKF to adjust to new L values. In the simulations it

took about 150 days until EnKF corrected the ensemble for an instantaneous change in

L of one log unit. For modifications of L with a longer time duration like a sedimentation

event the delayed response of EnKF also was observed. For real-world applications it

will depend on the time scale of river bed dynamics whether EnKF reasonably catches

changes in L. Frequent changes in river bed characteristics will only in part be captured

by data assimilation if L is not updated very frequently which means that EnKF just

adjusts L for effective changes within a given time period. However, experiments with

an adaptive covariance inflation approach suggest that the performance of EnKF to

capture time-variant model parameters can be generally improved by this method as it

reduced the total adaptation time and increased the overall accuracy of the parameter

update.

In summary, from a practical point of view the use of data assimilation with EnKF

seems to be a promising way to account for changes of river sediments in real time

models because of its capability to account for different changes of the river bed even

if they have a low magnitude and because it is also able to handle different sources of

uncertainty within the modeling process. Also the sensitivity analysis with respect to

the numbers of observation points underpins the usability of EnKF for real time models

because it showed that even with a low number of observations, an often encountered

situation in practice, it is possible to capture changes in river bed conductivities.





Chapter 4

Characterization of heterogeneous

river bed properties∗

4.1 Introduction

It is now well known that rivers and streams closely interact with the adjacent ground-

water body (Bouwer and Maddock, 1997; Winter, 1999; Sophocleous, 2002). These

interactions have a number of consequences on the hydrological, chemical and biological

environment around streams. For example, the resulting exchange fluxes between these

two compartments influence the regional water balance and groundwater flow (Woess-

ner, 2000) and thus also affect management activities close to streams, such as river

bank filtration (Zhang et al., 2011; Schubert, 2002). Additionally, the different chemi-

cal composition of river water and groundwater also has implications on chemical and

ecological processes around streams (Brunke and Gonser, 1997; Sophocleous, 2002).

The mechanisms of exchange between river systems and aquifers are complex and mainly

depend on the piezometric head difference between stream and aquifer, the form of the

river bed, hydraulic properties of the river bed and the adjacent aquifer and the state

of hydraulic connection between river and groundwater (Cardenas et al., 2004; Boano

et al., 2006; Genereux et al., 2008; Brunner et al., 2009). Exchange fluxes can exhibit a

high degree of spatial and temporal variability what makes the prediction of exchange

fluxes challenging. This variability of exchange fluxes is often related to the spatial het-

erogeneity of hydraulic conductivities in the river bed and the adjacent aquifer (Conant,

2004; Rosenberry and Pitlick, 2009b; Genereux et al., 2008). Calver (2001) compared

∗adapted from: Kurtz, W., Hendricks Franssen, H.-J., Brunner, P., and Vereecken, H. (2013a). Is in-
version based high resolution characterization of spatially heterogeneous river bed hydraulic conductivity
needed and possible? Hydrol. Earth Syst. Sci. Discuss., 10(5):5831–5873
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literature data on river bed permeabilities which ranged from 10−9 to 10−2 ms−1 with

a concentration of values in the range of 10−7 to 10−3 ms−1. A striking feature in this

data compilation is that estimated river bed permeabilities can also vary considerably

for a single measurement site. This variability of hydraulic river bed properties can be

found at different scales along a river reach. Genereux et al. (2008) determined river bed

conductivities with permeameter tests for 46 locations of a 262 m long river reach. They

observed a spatial variation in hydraulic conductivity of nearly four orders of magnitude

ranging from approximately 1×10−7 to 7.5×10−4 ms−1. They also found that measured

river bed conductivities had a bimodal distribution and tended to be higher in the mid-

dle of the stream. Hatch et al. (2010) estimated river bed conductivities along a 11 km

long river reach of Pajaro River and determined values ranging from 10−6 to 10−4 ms−1.

Springer et al. (1999) determined hydraulic conductivities for five reattachment bars of

Colorado river over a range of 200 miles. Measured hydraulic conductivities varied over

2 orders of magnitude within the reattachment bars and differences between the medians

of the five reattachment bars were up to one order of magnitude.

Different modeling studies have already tried to assess the effect of river bed and aquifer

heterogeneity on the prediction of exchange fluxes between streams and groundwater.

For example, Bruen and Osman (2004) investigated the impact of the heterogeneity

of aquifer hydraulic conductivity on river-aquifer exchange fluxes with a synthetic 2D

stream-aquifer model. They compared Monte Carlo (MC) simulations using heteroge-

neous fields of hydraulic conductivity with simulations using homogeneous fields. This

comparison was made for different geostatistical parameters and connection regimes

between river and aquifer. They found that the uncertainty in fluxes increases with

an increasing degree of heterogeneity. They also found that a homogeneous model of

hydraulic conductivities gave similar results as their MC simulations under connected

conditions whereas it gave different predictions when river and aquifer were discon-

nected and unsaturated conditions were present below the river bed. Fleckenstein et al.

(2006) investigated the effect of large scale aquifer heterogeneity on seepage fluxes. They

compared simulation results for six realizations of geostatistically simulated facies distri-

butions with a homogeneous aquifer model and found comparable net seepage fluxes for

the different models. However, they also identified that the different facies distributions

show considerable variability with respect to the spatial distribution of seepage fluxes

and the state of connection between river and aquifer. Kalbus et al. (2009) investi-

gated the effect of heterogeneous conductivities within the streambed and the adjacent

aquifer by simulating 2D groundwater flow and heat transport using the leakage con-

cept. They found that the heterogeneity of the aquifer conductivity has more impact

on the fluxes than the one of the streambed. However, they also mention that homo-

geneous streambeds lead to an unrealistic homogenization of water fluxes between river
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and aquifer. Frei et al. (2009) simulated the spatio-temporal distribution of seepage

fluxes for a losing river reach in a MC framework. They applied a hydrofacies model

for the distribution of hydraulic conductivities and found that highly permeable parts

of the river reach (∼50% of total length) make up 98% of total seepage within their

simulations. They argue that heterogeneity at the hydrofacies scale dominates the spa-

tial pattern of river-aquifer interactions and that within-facies heterogeneity is of minor

importance.

These different studies emphasize that the incorporation of heterogeneity in models for

river-aquifer exchange can be important for a reliable prediction of exchange fluxes. In

practical applications river bed conductivities are mostly estimated through calibration

but heterogeneity is often neglected in the calibration procedure. One reason is that

measurements of river bed conductivities are usually scarce and an estimation of the

corresponding heterogeneity would require intensive field measurements. Especially for

larger streams in-situ measurements are difficult to perform because of the higher dis-

charge. As a consequence, in most cases there is only limited prior information about the

spatial variability of hydraulic parameters for a specific site. Another reason is that the

computational demand for inversions with gradient-based methods and also the com-

plexity of the inversion increases with a higher resolution representation of heterogeneity

in the model. Due to a lack of prior knowledge on the magnitude and variability of river

bed properties and in order to ease the inversion procedure, leakage parameters are often

lumped together, i.e., the underlying heterogeneity of river bed properties is reduced to

a few different leakage zones which are used in the inversion. Irvine et al. (2012) carried

out a systematic analysis on the simplification of heterogeneity to quantify its implica-

tions on the prediction of infiltration fluxes. They simulated infiltration curves (i.e., the

relationship between water table depth and infiltration flux) for a variety of heteroge-

neous distributions of river bed conductivities. Different data points from these synthetic

infiltration curves were then used to calibrate models with a homogeneous distribution

of river bed conductivities. Forward simulations with the derived homogeneous values

of river bed conductivities were subsequently used to compare the simulated infiltration

curves with the equivalent ones for the fully heterogeneous medium. They found that

the calibrated homogeneous models reproduced exchange fluxes well when the state of

connection between river and aquifer was equal for calibration and prediction of the

homogeneous models. However, when the state of connection was transitional or dif-

fered between calibration and prediction, the homogeneous models could not adequately

reproduce the infiltration fluxes of the corresponding heterogeneous references.

One way to account for the underlying heterogeneity of river-aquifer systems in the

calibration of groundwater models in a stochastic framework are data assimilation tech-

niques, like Ensemble Kalman Filter (EnKF) (Evensen, 1994). EnKF and its variants
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have already been applied successfully for the characterization of heterogeneous subsur-

face properties in groundwater modeling. Examples are the work of Chen and Zhang

(2006); Hendricks Franssen and Kinzelbach (2008) and Nowak (2009) who assimilated

piezometric heads with EnKF to improve the estimation of hydraulic conductivity fields.

Sun et al. (2009) compared the performance of different deterministic ensemble filters

for subsurface characterization. Liu et al. (2008) and Li et al. (2012) used tracer data

to infer hydraulic conductivity (and porosity) fields. The studies of Jafarpour and Tar-

rahi (2011) and Huber et al. (2011) addressed the influence of variogram uncertainty

and prior information in the initial parameter ensemble on the estimation of hydraulic

conductivity fields with EnKF. Zhou et al. (2011) and Schöniger et al. (2012) inves-

tigated techniques to account for non-Gaussianity in the assimilation with EnKF and

Camporese et al. (2009b) jointly assimilated piezometric heads and discharge data for

subsurface characterization. A general advantage of ensemble based data assimilation

with EnKF and its variants is that they are able to calibrate model parameters based

on the forward propagation of an ensemble of different parameter fields and therefore

explicitly account for the high variability of hydraulic parameters in natural settings.

Therefore, this methodology should also be well suited for the characterization of highly

variable river bed properties. In this chapter it is focused on the question whether the

estimation of a few effective values for river bed hydraulic conductivity can reproduce

spatially and temporally strongly variable exchange fluxes between river and aquifer with

the use of data assimilation. For this purpose, different ensembles of leakage parameters

are compared that either resemble the full heterogeneity of a synthetic reference field or

where three different degrees of zonation are used. The specific research questions are:

• To what degree does a zonation of river bed properties change predicted exchange

fluxes between river and aquifer compared to a full representation of river bed

heterogeneity?

• Is EnKF able to identify the main structural features of a fully heterogeneous field

of river bed conductivities through assimilation of piezometric head measurements?

• How does EnKF perform for different parameterization approaches (i.e., detailed

representation of heterogeneity versus few zones) under conditions with different

amount of observation data?
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4.2 Data assimilation with the Ensemble Kalman Filter

4.2.1 General description of the data assimilation algorithm

EnKF is a sequential data assimilation approach which can be utilized to improve the

prediction capability of a particular model in a MC framework. The methodology

was originally applied for atmospheric and oceanographic models (e.g., Evensen, 1994;

Houtekamer and Mitchell, 1998) and later used in modified variants, which include pa-

rameter estimation in surface hydrology (e.g., Moradkhani et al., 2005) and subsurface

hydrology (e.g., Chen and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008; Liu

et al., 2008; Nowak, 2009). The basic idea of EnKF is that an ensemble of different

model realizations (with different forcings and/or parameters) is propagated forward in

time until measurements of state variables become available. The prediction of state

variables is improved by optimally combining the ensemble of model predictions and

measurement data where measurement errors and the uncertainty of model predictions

are optimally weighted. EnKF can also be used to estimate model states and model

parameters simultaneously. In this case an augmented state vector approach (e.g., Chen

and Zhang, 2006; Hendricks Franssen and Kinzelbach, 2008) can be utilized in which

the model states ψ and the model parameters φ are combined in the state-parameter

vector Ψ:

Ψ =

(
ψ

φ

)
(4.1)

For each assimilation cycle (i.e., at times when measurements become available) EnKF

then performs a Bayesian update on the ensemble of the state-parameter vector Ψ:

p(Ψ | y0) ∝ p(y0 | Ψ)p(Ψ) (4.2)

where p(Ψ | y0) is the posterior (updated) distribution of the state-parameter vector Ψ

given the observations y0, p(y0 | Ψ) is the likelihood of measurements y0 given Ψ and

p(Ψ) is the prior distribution of Ψ. The prior of the states ψ (as part of Ψ) is usually

obtained by advancing each realization i of the ensemble with a model M

ψti = M(ψt−1i ,φi, ζi) (4.3)
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where ψti is the state vector for the current time step (i.e., the forecast), ψt−1i is the state

vector for the previous time step, φi are model parameters and ζi are model forcings

for realization i.

The posterior distribution of Ψ in Equation 4.2 is then calculated with the EnKF anal-

ysis scheme which consists of the following steps: First, the forecasted values of ψ at

observation points have to be extracted from the ensemble:

ψ̂ti = HΨt
i (4.4)

where ψ̂ti is the forecasted state vector at observation points for realization i and H is

a matrix that extracts or interpolates ψ̂ti from the state-parameter vector Ψt
i.

Next, the measured states y0 have to be perturbed for an optimal functioning of the

data assimilation algorithm in order to achieve the correct posterior variance (Burgers

et al., 1998). This is done with the perturbation vector ε̃ which is composed of values

drawn from a normal distribution N (0, ε) with a mean of zero and a standard deviation

that corresponds to the measurement error ε of the assimilated state variable:

ỹi = y0 + ε̃i (4.5)

where ỹi is the perturbed measurement vector for realization i, ε̃i is the corresponding

perturbation vector and y0 is the measurement vector.

Finally, the posterior distribution of Ψ is found by applying the following equation on

each ensemble member i:

Ψa
i = Ψt

i + αG(ỹi − ψ̂ti) (4.6)

where Ψa
i is the analysed (updated) state-parameter vector for realization i, Ψt

i is the

forecasted state-parameter vector (with forecasted states from Equation 4.3), ỹi is the

perturbed measurement vector, ψ̂ti is the forecasted state vector at observation points,

α is a damping factor which is only used for parameter updates in order to decrease the

effect of filter inbreeding (see Hendricks Franssen and Kinzelbach, 2008) and G is the

Kalman gain matrix which is calculated as:

G = CH>(HCH> + R)−1 (4.7)
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where C is the full covariance matrix of Ψt and R is the covariance matrix of observation

data y0. The Kalman gain G is calculated once for all ensemble members and weights the

uncertainties in the prediction of Ψ from the forward simulations with the measurement

error of y0. In the analysis step (Equation 4.6) the weighting factors of G are used to

correct each member of Ψt with the residuals at observation points (bracketed term in

Equation 4.6). In order to derive G it is not necessary to calculate the full covariance

matrix of Ψt but it is sufficient to calculate the covariances between Ψt and ψ̂t:

CH> =

(
Cψtψ̂t

Cφψ̂t

)
(4.8)

4.2.2 Specific usage of EnKF for river-aquifer interactions

In this study the focus is on the investigation of river-aquifer exchange fluxes. Thus, the

model states of interest are piezometric heads h and the most relevant model parameters

are river bed hydraulic conductivities which are expressed as leakage coefficients L.

Therefore, the state-parameter vector Ψ which was introduced in the previous section

is composed of h and log(L). The model M(ψi
t−1,φi, ζi) that is used to advance h

in time is a groundwater model that is capable of simulating variably saturated flow

and that includes a parameterization to simulate river-aquifer exchange fluxes. The

observation data y0 consist of measurements of piezometric heads in the aquifer. The

covariance matrix R includes the measurement errors of observation data on the diagonal

but covariances between observation points are assumed to be zero (i.e., measurement

errors are assumed to be independent).

4.3 Model description

In order to test the role of zonation of river bed properties synthetic numerical exper-

iments were performed with a three-dimensional finite element model that mimics a

real-world case of the Limmat aquifer in Zurich (Switzerland). A schematic represen-

tation of the study site is shown in Figure 4.1. In this model the aquifer is discretized

into 92015 nodes, 173599 elements and 25 layers. The variably saturated flow equa-

tion was solved numerically with the groundwater modeling software SPRING (Delta h

Ingenieurgesellschaft mbH, 2006).

The boundary conditions for this model are given schematically in Figure 4.1. Ground-

water recharge is imposed as a flux boundary condition (forcing) on the first model layer.
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Figure 4.1: Schematic representation of model domain and boundary conditions.

Lateral inflows on the south face of the model were also treated as flux boundary con-

ditions. Within the model domain also management activities take place: Groundwater

is withdrawn close to the river through several bank filtration and drinking water wells.

The pumped water from the bank filtration wells is redistributed to the aquifer through

three recharge basins and several recharge wells which are located south of the drinking

water wells. On the western face of the model a constant head boundary condition is

imposed. The two rivers in the model (Sihl and Limmat) are located at the eastern and

northern boundary of the model domain respectively and river stages are imposed on

each river node of the model. River-aquifer exchange fluxes are calculated in SPRING

according to the leakage principle:

Qleak = AleakL(hriver − hgw) (4.9)

where Qleak is the leakage flux between river and aquifer [L3T−1], Aleak is the area

through which the flux occurs [L2], hriver is river stage [L], hgw is groundwater level

underneath the river [L] and L is leakage coefficient [T−1] which is a lumped parameter

for the hydraulic conductivity and the thickness of the river bed.

All model forcings (recharge, lateral inflows, river stages, pumping rates) are transient

and based on real-world data and details on the calculation of these forcing data can
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Figure 4.2: Forcing data for synthetic experiments. Represented are total amounts of
artificial recharge, extraction from bank filtration and extracted drinking water (left),
as well as river discharges (middle) and total recharge amount over the model domain

(right), for a period of 609 days (January 2004 - August 2005).

be found in Hendricks Franssen et al. (2011). Figure 4.2 summarizes the corresponding

values.

4.4 Synthetic experiments

The general setup of the synthetic experiments consists of the following steps:

1. Generation of ten spatially heterogeneous distributions of log(L) with Sequential

Gaussian Simulation (SGS).

2. Finite elements solution of the transient variably saturated flow equation (for 609

days) using SPRING. A solution is calculated for each of the ten generated log(L)-

fields of step 1. The calculated piezometric heads and river-aquifer exchange fluxes

for these ten simulations serve as the ten ”true” reference solutions.

3. Generation of log(L) ensembles (100 realizations) for a fully heterogeneous case

and three different zonations (5, 3 and 2 leakage zones)

4. For each of the ten references (step 1 and 2): assimilation of hydraulic head data

from step 2 with EnKF for the four log(L) ensembles of step 3.

This procedure is used for three scenarios which differ in the degree of heterogeneity of

log(L) reference fields and in the information content of the initial ensemble:

A strongly heterogeneous log(L)-field for reference and initial ensemble

B moderately heterogeneous log(L)-field for reference and initial ensemble

C strongly heterogeneous log(L)-field with prior information in the initial ensemble
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Figure 4.3: Reference fields of leakage coefficients for scenario A. The x-axis shows
the x-coordinate according to the Swiss coordinate system. In the eastern part of the
model domain the rivers Limmat and Sihl have overlapping x-coordinates and therefore

for this part two leakage values are given.

Scenario A serves as a base scenario for which the relevant results of the simulation

experiments are presented in detail. The results for scenarios B and C are then discussed

with respect to deviations from scenario A. In this sense, Scenario B is utilized to assess

the performance of data assimilation for different degrees of heterogeneity and scenario

C should give insight into the value of prior information for the data assimilation with

EnKF.

4.4.1 Reference fields

The reference fields of leakage coefficients for scenario A were generated by adding per-

turbation fields to a predefined mean value of -2.78 log(ms−1). The perturbation fields

were generated by SGS with the code GCOSIM3D (Gómez-Hernández and Journel,

1993) for rivers Sihl and Limmat. These perturbation fields have a grid size of 50 m.

A spherical variogram was chosen for geostatistical simulations of the ten perturbation

fields. The nugget was set to 0 log(ms−1) for all simulations. The range of the variograms

was sampled from a uniform distribution with values ranging from 1000 to 2000 m for

each reference field. Values for the sill were also sampled from a uniform distribution

ranging from 1 to 2 log(m2s−2). The simulated fields were directed onto the main axis

of the rivers and the leakage coefficient for each river node log(L) was determined by the

overlying grid block of the geostatistically simulated perturbation field plus the prede-

fined mean value of -2.78 log(ms−1). The different reference fields of leakage coefficients

are shown in Figure 4.3 along the x-axis of the model domain.

For the creation of reference fields for scenario B a similar methodology as for scenario

A was applied. The only difference between these two scenarios is that for scenario B a

sill between 0.1 and 0.5 log(m2s−2) was used what results in a lower degree of variability

for these references.
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Table 4.1: Predefined zonal leakage values for generation of reference fields for scenario
C. Leakage zones are numbered from west to east.

leakage zone log(L∗)
[log(ms−1)]

I -5.51
II -1.96
III -3.88
IV -5.37
V -6.44

For scenario C the reference fields of log(L) have a predefined zonation with five leakage

zones whose spatial location corresponds to the one of ensemble Z5 (see below). The

predefined zonal values for log(L) are summarized in Table 4.1. Similar to scenario A,

perturbation fields were added to these predefined zonal values. These perturbation

fields were created in a similar way as scenario A with a nugget of 0 log(ms−1), a sill

of 1 log(m2s−2) and a range of 600 m. Compared to scenario A these reference fields

include a higher contrast between different parts of the river reach (realized through

the predefined zonation) and an additional component of interzonal variability (realized

through the perturbation fields).

4.4.2 Zonation

For the assimilation experiments four ensembles of leakage coefficients were generated

which differed in their spatial representation of heterogeneity. The first ensemble Zhet

represents the full heterogeneity of the reference fields and the number of zones is equal

to the number of river nodes (i.e., 457). The second ensemble Z5 only represents 5

leakage zones which were positioned according to the main hydrological features of the

river reach (i.e., position of two weirs, confluence of rivers Sihl and Limmat, management

activities) which results in four leakage zones for river Limmat and one leakage zone for

river Sihl. For the third ensemble Z3 river Limmat is divided into two leakage zones

and river Sihl is the third leakage zone. For the fourth ensemble Z2 river Limmat is

aggregated to one leakage zone and again river Sihl serves as a separate leakage zone.

The spatial arrangement of leakage parameters for the fully heterogeneous case (Zhet)

and the three zonation approaches (Z5, Z3 and Z2)is depicted in Figure 4.4.

4.4.3 Ensemble generation

The generation of the ensembles for Zhet for the three scenarios corresponded closely to

the generation of the respective reference fields. However, a higher degree of uncertainty
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Figure 4.4: Spatial representation of heterogeneity for four parameter ensembles. In
the fully heterogeneous case (Zhet) an individual leakage coefficient is assigned to each
river node. For the zonated ensembles (Z5, Z3 and Z2) each color corresponds to a
separate leakage zone. The river nodes within a leakage zone share the same leakage

coefficient.

Table 4.2: Default settings for data assimilation with EnKF.

parameter value unit

Nreal 100
Nobs 100 (10)
α 0.1
update frequency 10 d
ε(h) 0.05 m

with respect to geostatistical parameter was used for the ensembles. For scenario A the

range parameter varied between 50 and 5000 m and the sill value between 0.1 and 3.0

log(m2s−2). For scenario B the sill for Zhet has values between 0.1 and 1.5 log(m2s−2) and

the range between 50 and 5000 m. For scenario C the ensemble for Zhet was generated

with the same geostatistical parameters as for scenario A.

The ensembles for Z5, Z3 and Z2 for each scenario were generated on the basis of the

respective ensemble for Zhet by calculating the arithmetic average of log(L) values for

each realization of Zhet according to the respective zonation scheme. For example, the

value of log(L) for one of the five leakage zones of Z5 for a single realization is calculated

from the corresponding realization of Zhet by averaging the log(L) of Zhet that are within

the respective zone of Z5. This procedure is then repeated for all leakage zones and all

realizations of Z5. In Figure 4.5 the generated ensembles for scenario A are compared

to reference field I.

4.4.4 Settings for data assimilation with EnKF

The meta parameters for data assimilation experiments for scenario A, B and C with

EnKF are summarized in Table 4.2. For all three scenarios 100 observation points were

used as input data for EnKF. Scenario A was additionally simulated with a lower amount

of observations (10 measurements). The other settings for assimilation with EnKF were

held constant for all scenarios.



Chapter 4 Characterization of heterogeneous river bed properties 59

Figure 4.5: Initial ensembles of leakage coefficients (colored) and reference field I
(black) for scenario A for all river nodes (rivers Limmat and Sihl) along x-axis of model

domain.

4.4.5 Performance assessment of simulations

The performance of the data assimilation experiments is assessed by the prediction

error of piezometric heads throughout the model domain, the prediction error of fluxes

between river and aquifer and the correction of leakage coefficients during the update.

For the prediction error of piezometric heads the Root Mean Square Error between the

predicted mean piezometric head and the piezometric head of the reference (RMSEh) is

calculated using:

RMSEh(t) =

√√√√ 1

Nnodes

Nnodes∑
i

(
hi(t)− hrefi (t)

)2
(4.10)

where hi is the mean piezometric head for model node i [L], hrefi is the piezometric head

of the reference simulation for node i [L], Nnodes is the total number of model nodes and

t is time step [T].

For the evaluation of river-aquifer exchange, either the evolution of the leakage fluxes

over time Q(t) or statistics for the total volume of water that was exchanged between

river and aquifer during the whole simulation period ∆Vtot are presented:

Q(t) =

Nleak∑
i

Qi(t) (4.11)

∆Vtot =

ttot∑
j

Nleak∑
i

Qij∆tj (4.12)

where Q(t) is the river-aquifer exchange flux over time [L3T−1], Qi(t) is the leakage flux

for river node i over time, Nleak is total number of leakage nodes, ∆Vtot is the volume

of water that is exchanged between river and aquifer over the whole simulation period
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Figure 4.6: RMSEh of conditional simulations with EnKF for ten reference fields of
leakage coefficients (scenario A). Four different ensembles are compared. EnKF jointly
updated hydraulics heads and leakage coefficients with measurement data from 100

observation points.

[L3], Qij is the volumetric flux between river and aquifer for the ith leakage node and

the jth time step [L3T−1], ∆tj is time step [T] and ttot is total number of time steps.

Q(t) was calculated direction dependent, i.e., fluxes from river to aquifer (positive) and

fluxes from aquifer to river (negative) were summed up separately.

4.5 Results

4.5.1 Strongly heterogeneous case (scenario A)

Figure 4.6 compares RMSEh of the four log(L)-ensembles for ten highly heterogeneous

reference fields (scenario A). The highest improvement is observed for Zhet where RMSEh

is consistently reduced to about 0.1 m among all references. For the other ensembles

the performance in terms of RMSEh is more dependent on the specific reference. For

example, RMSEh of Z5 is similar to the one of Zhet for some references (e.g., IV, VIII

and X) but is worse for other references (e.g., II and IX). A similar behavior can be

observed for Z3 and Z2.

The updated net fluxes between river and aquifer are shown in Figure 4.7 for reference

field I. For this reference field the updating with EnKF led to an improvement of the

prediction of fluxes from river to aquifer for all four ensembles. Fluxes from aquifer

to river were well reproduced by Zhet and Z5 whereas for Z3 and Z2 a larger deviation

between ensemble mean and true values was found. The ensemble variance of leakage

fluxes decreases very fast where most of the decrease happens in the first 100 simulation

days. One exception is the flux from aquifer to river for Zhet. The general decrease of
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Figure 4.7: Cumulative directional fluxes between river and aquifer for conditional
simulations with EnKF for four representations of spatial heterogeneity (scenario A).

Results are shown for reference I. Fluxes from river to aquifer have a positive sign.

variance within the first 100 days is observable for all ten references whereas the higher

variability for Zhet was a special feature of reference I.

An overview of the net exchange between river and aquifer for all ten references is given

in Figure 4.8. Here the total amount of exchanged water summed over the complete

simulation period (∆Vtot) is displayed for each of the reference fields and for each of the

zonation approaches. The net exchange for Zhet is very close to the net exchange of the

respective reference and thus shows the best performance among the four ensembles.

Z5 is usually also very close to the net exchange of the references except for reference

III where the net flux is greatly underestimated by this ensemble. Z3 and Z2 show a

good fit for some references (e.g., reference IV) but the fluxes are significantly over- or

underestimated for other references.

Figure 4.9 gives an example of the spatial distribution of exchange fluxes for time step

300 and reference IV. For Zhet the spatial distribution of exchange fluxes of the reference

run is principally captured by the ensemble and the exchange fluxes of the reference run

are within the uncertainty bounds of the ensemble. For Z5, Z3 and Z2 some of the

principal features of the reference run, i.e., the river parts with the highest positive
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Figure 4.8: Total amount of water exchanged between river and aquifer over the
whole simulation period (609 days) for scenario A. Red lines mark the water exchange
for the different reference runs. On the right hand side the description of the boxplots

is illustrated.

exchange fluxes, are also present although the reference fluxes are not any more within

the uncertainty bounds of the zonated ensembles. In other parts of the river the exchange

fluxes of the reference run are not present in the ensemble calculations of Z5, Z3 and Z2,

e.g., the negative fluxes in the western part of the model.

Figure 4.10 compares the initial ensembles of leakage coefficients with the updated ones

at day 600 for reference I. In general, the updated ensembles at time step 600 have a

smaller variance than the initial ensembles. For Zhet the ensemble at the end of the

simulation period mostly covers the spatial pattern of the reference field. In some parts

of the river Zhet still has a relatively high variance while in other parts variance is low

and the spatial pattern of the ensemble is close to the pattern of the reference field.

For Z5 the mean values for the different zones remain more or less constant during the

updates while the ensemble variance for the different zones strongly decreases for four of

the five zones. For Z3 and Z2 also a very strong decrease in ensemble variance is visible.

4.5.2 Strongly heterogeneous case with lower observation density

In order to investigate how a lower density of observation points affects the results for

the different zonation approaches the assimilation experiments for the first five reference

fields of scenario A were repeated with piezometric head time series measured at only

10 points instead of 100. The overall error in terms of RMSEh for Z5, Z3 and Z2 was

comparable to the ones in the assimilation experiments with 100 observation points. For

Zhet the overall deviations to the reference were slightly higher when only 10 observation
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Figure 4.9: Fluxes between river and aquifer along x-axis of model domain for condi-
tional simulations with EnKF at simulation day 300 (scenario A, reference IV). Fluxes

from river to aquifer have a positive sign.

points were used but predictions were still slightly better than for the zonated ensem-

bles. For Zhet the predicted mean fluxes in both directions (i.e., fluxes to river or to

aquifer) were underestimated in most cases whereas there were no major differences for

the other ensembles. Flux predictions for Zhet were also associated with a higher degree

of uncertainty compared to the assimilation of 100 observations. Despite an underes-

timation of both fluxes from river to aquifer and fluxes from aquifer to river for Zhet

the predicted net fluxes between river and aquifer were comparable to the simulations

with 100 observation points, i.e., Zhet gave good results for all references. Net fluxes

for the other ensembles were also similar to the assimilation of 100 measurements and

especially for Z3 and Z2 higher deviations occurred for some references. The update of

leakage coefficients for Zhet was not as good as for the assimilation of 100 observations.

The main structural features of the reference fields were captured during the assimilation

but the variability of the ensemble at the end of the simulation period was significantly

higher when only 10 observations were assimilated (see Figure 4.11). From Figure 4.11

it becomes obvious that there are more extreme values than for the assimilation of 100

observations. This can be seen as a reason for the higher variability of fluxes for Zhet.

The variability of log(L) for the other ensembles increased only marginally and also the
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Figure 4.10: Ensembles of leakage coefficients (colored) and reference field (black)
along x-axis of model domain at day 1 (upper row) and at day 600 (lower row) for

scenario A.

Figure 4.11: Ensembles of leakage coefficients (colored) and reference field (black)
along x-axis of model domain at day 600 (lower row) for scenario A when only 10

observation points are available.

mean values for Z3 and Z2 were similar to the assimilation of 100 measurements.

4.5.3 Mildly heterogeneous case (scenario B)

For scenario B the variability of log(L)-fields for the references and the initial ensembles

was reduced. Results for this case show that RMSEh for Z5, Z3 and Z2 correspond

more closely to RMSEh of Zhet. Nevertheless, Zhet still shows the best performance in

terms of RMSEh for all ten references. The temporal evolution of leakage fluxes for

the ten references is captured well by all four ensembles. Compared to scenario A the

systematic differences that occurred between reference fluxes and simulated fluxes were

reduced (especially for Z3 and Z2). This is also reflected in the cumulative net exchange

over the simulation period (Figure 4.12).
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Figure 4.12: Total amount of water exchanged between river and aquifer over the
whole simulation period (609 days) for conditional simulations with EnKF (scenario

B). Red lines mark the water exchange for the different reference runs.

It can be seen that ensembles are generally closer to the reference values and this is

especially pronounced for Z3 and Z2. But still there are some references where the

uncertainty bounds of Z2 do not cover the reference flux. Although the prediction of

cumulative net fluxes for scenario B is better for ensembles with a lower number of

leakage zones the spatial representation of fluxes is still worse for Z2, Z3 and Z5 than for

Zhet where the spatial distribution of leakage fluxes closely corresponds to the reference

fluxes.

4.5.4 Strongly heterogeneous case with a predefined zonation (scenario

C)

In scenario C the references include a predefined zonation with a relatively high contrast

of log(L) between the individual zones. A second important feature of this scenario

is that the location of leakage zones for Z5 is similar to the ones of the references

which means that the initial ensemble of Z5 includes prior information on the spatial

distribution of log(L).

RMSEh of Zhet and Z5 are very similar for this scenario with slightly lower errors for

Zhet. In contrast, Z3 and Z2 perform worse in terms of RMSEh compared to scenario A.

For the net fluxes between river and aquifer a similar relation is found. Again Zhet and

Z5 show relatively similar values which are very close to the reference values whereas

Z3 and Z2 consistently underestimate the net exchange what leads to a higher error

compared to scenario A (Figure 4.13).
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Figure 4.13: Total amount of water exchanged between river and aquifer over the
whole simulation period (609 days) for conditional simulations with EnKF (scenario

C). Red lines mark the water exchange for the different reference runs.

The general worse performance for Z3 and Z2 in terms of head and flux predictions is

a consequence of the spatial averaging of log(L). For the ensembles used for scenario

C the spatial contrasts for log(L) are higher due to the predefined zonation in the

references and initial ensembles. Therefore, the leakage zones of Z3 and Z2 cover parts

of the reference fields that have very different log(L)-values. This can be seen in Figure

4.14 where the initial log(L) ensemble is compared with the updated one at the end of

the simulation period. Because Z3 and Z2 are not flexible enough to account for the

variability of the references due to their limited number of leakage zones the simulated

piezometric heads and leakage fluxes deviate more strongly from the reference values

than Zhet and Z5.

4.6 Discussion

Simulations with EnKF generally led to an improvement for all four ensembles in terms

of RMSEh. It was found that a stochastic field approach (i.e., each discretization point

of the model grid has a different leakage value, which results in 457 values in this study)

gave the best results. Data assimilation with EnKF made it possible to correct the

cumulative fluxes between river and aquifer almost completely. For Zhet also the spatial

distribution of log(L) gets quite close to the reference fields during data assimilation and

this is also reflected in the spatial distribution of exchange fluxes which closely coincides

with those of the reference runs. Data assimilation results in a decrease of the variability

of log(L) especially in regions with high exchange fluxes between river and aquifer. In
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Figure 4.14: Ensembles of leakage coefficients (colored) and reference field (black)
along x-axis of model domain at day 1 (upper row) and at day 600 (lower row) for

scenario C.

other river regions where exchange fluxes are not so high the uncertainty regarding

log(L) was reduced compared to the initial ensemble but not to the same extent as for

regions with a higher net flux. The lower adaptation of log(L) in regions of low exchange

fluxes is probably a consequence of the lower sensitivity of the parameter update on head

measurements, i.e., for low exchange fluxes the correlation between piezometric heads

and log(L) is low what leads to a lower degree of adaptation for log(L). The opposite

applies for regions with higher fluxes where the adaptation of model parameters is better

constrained what leads to a lower variability of model parameters in the end of the

simulation period.

For the three zonated ensembles the overall performance was usually slightly worse than

for the ensemble with full heterogeneity. Especially the net fluxes showed significant

deviations from the true values for Z3 and Z2 for several references. This is reflected in

the spatial distribution of fluxes along the river where regions with higher fluxes in the

reference runs were not adequately represented by the ensembles Z3 and Z2. EnKF was

only partly able to correct for the systematic errors that arose from the wrong spatial

distribution of exchange fluxes and as a result of this the prediction of net fluxes was not

as good as for Zhet. For Z5 the predicted net fluxes were often similar to the ones of Zhet

but the spatial distribution of fluxes was not as good as for Zhet. This was also the case

when Z5 closely matched the spatial distribution of log(L) of the reference runs (scenario

C). Even with this prior information only the net fluxes were estimated correctly but

not their spatial distribution. This also applies for references with a lower degree of

heterogeneity (scenario B). Even in this case the predicted spatial distribution of leakage

fluxes was better with Zhet than with the different zonation approaches. However, a
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precise estimation of high local leakage fluxes is highly relevant for transport calculations

in order to determine source regions of contaminants or regions of high biogeochemical

turnover. For these applications the usage of effective parameters thus will only lead to

averaged concentration levels that are derived from the net exchange between river and

aquifer.

For a lower observation density (10 measurement locations) the results were not very

different from the ones for 100 observation points. However, for Zhet the uncertainty in

the log(L) ensemble was larger than for the case with 100 measurement data. As a result

of this also the uncertainty regarding the exchange fluxes was higher. Nevertheless, the

error in head and flux predictions was still equal or better than for the zonated ensembles.

Generally, a lower information content did not significantly affect the identification of

the leakage parameters and the prediction of fluxes and states.

The results from these synthetic studies suggest that the high-resolution characterization

of river bed properties is feasible, because even with a limited number of measurements,

the high-resolution reconstruction led to better results than an approach where the spa-

tial variability of the river bed was represented with a few effective parameters only. It

is expected that in case only very few measurements are available, high-resolution and

zonation approaches might give predictions of similar quality, and that in case of more

measurements the high-resolution approach will increasingly outperform the approaches

where only a few effective parameters are estimated. It can be important to condition

multiple equally likely stochastic high-resolution realizations of river bed properties,

because the quality of the estimated net exchange fluxes between aquifer and stream

are better with this approach than with a zonation approach. Replacing the heteroge-

neous streambed with few effective parameters results in biased predictions of exchange

fluxes. Over long streams such a systematic bias might result in an important under-

or overestimation of the groundwater infiltration in the river, as well as an under- or

overestimation of the loss of river water to the aquifer under flood conditions. There-

fore, the calibration of equally likely stochastic realizations of river bed properties using

EnKF together with an augmented state vector approach is recommended for a better

characterization of river-aquifer exchange fluxes. This approach is especially needed in

case of very heterogeneous streambeds and in case enough conditioning measurements

(piezometric head data) are available.

Of course, these findings were derived on the basis of a simplified model which only

accounts for uncertainties regarding leakage parameters. In real-world applications un-

certainties also arise from the poorly known distribution of aquifer properties, model

structural errors and uncertainties in the determination of forcing terms for the model.

Thus, the calibration of log(L)-distributions with EnKF in real-world cases will probably



Chapter 4 Characterization of heterogeneous river bed properties 69

not be as confident as in the presented synthetic simulations due to the higher overall

uncertainties. Nevertheless, the principal differences between a heterogeneous ensemble

and an ensemble of effective parameters will remain because of the higher flexibility of

the heterogeneous approach.

4.7 Conclusions

In this chapter, data assimilation experiments including parameter estimation on the ba-

sis of an augmented state-vector approach with EnKF were performed. This approach

was used for a synthetic river-groundwater interaction problem to update piezometric

heads and river bed properties. In this context, different parametrizations of river bed

heterogeneity (full heterogeneity versus different amounts of effective parameters) were

tested for its effect on the prediction of groundwater levels and river-aquifer exchange

fluxes. Results showed that data assimilation with EnKF in river-aquifer systems bene-

fits from a high spatial resolution of river bed conductivities. When the heterogeneity of

the true field of river bed conductivities was represented in the ensemble, EnKF was able

to correct the parameter ensemble towards the reference values what led to a correct

prediction of the spatial distribution of exchange fluxes. When the river was divided

in a relatively limited number of leakage zones (2, 3 or 5) the net exchange between

river and aquifer was still predicted accurately for some references but in general the

errors increased with a decreasing representation of heterogeneity. Also the spatial dis-

tribution of fluxes was less well captured when a zonation was imposed on the river

bed conductivities. The observation density mostly affected the prediction for the fully

heterogeneous ensemble for which the prediction uncertainty increased when less obser-

vations were available for the update with EnKF. However, the errors in head and flux

predictions were still lower in this case than for simulations with a zonation of the river

bed properties.

In summary, it is concluded that a zonation of river bed conductivities should be avoided

because small regions with high exchange fluxes might be averaged out by zonation what

affects the local water balance. The simulations performed in this chapter showed that

parameter updates with EnKF are able to adapt an ensemble of different fields of river

bed conductivity towards the true reference field. Furthermore, the CPU demand for

parameter adaptation with EnKF is not dependent on the number of defined leakage

zones as opposed to other calibration techniques. Thus, parameter updates with EnKF

might be an efficient way to calibrate model parameters for heterogeneous river beds.





Chapter 5

Assimilation of groundwater

temperatures∗

5.1 Introduction

A special feature of river-aquifer systems is that there can be a distinct cyclic heat

exchange between the river and the aquifer. Depending on the climatological conditions,

surface water temperatures are subjected to diurnal and seasonal variations whereas

groundwater is characterized by relatively constant temperatures. The temperature

distribution around streams is therefore governed by the temperature difference and the

exchange pattern between river and aquifer. For example, seepage from the river to

the aquifer will result in a temperature signal that propagates into the aquifer given a

certain temperature difference between both compartments. Vice versa, an aquifer that

discharges into the river will also generate a distinct thermal profile within the river

bed. This heat exchange between river and aquifer can be deployed to characterize the

exchange fluxes as well as relevant material properties of the river bed and the adjacent

aquifer (Anderson, 2005; Constantz, 2008). As a tracer, groundwater temperatures

are more sensitive to the connectivity patterns within an aquifer and can thus provide

additional information on aquifer structure compared to hydraulic data alone. Another

feature that makes the utilization of heat as a tracer very attractive is that temperature

data can be measured very easily at a low cost.

This technique has for example been used to derive a detailed spatial picture of river-

aquifer exchange fluxes under field conditions (e.g., Conant, 2004; Schmidt et al., 2006;

∗adapted from: Kurtz, W., Hendricks Franssen, H. J., Kaiser, H.-P., and Vereecken, H. (2013b). Joint
assimilation of piezometric heads and groundwater temperatures for improved assessment of river-aquifer
interactions. under preparation for: Water Resour. Res.
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Hatch et al., 2010). A common approach for such small scale applications is to mea-

sure vertical temperature profiles in the river bed and to apply an analytical solution to

the measured temperature profiles to infer the exchange fluxes between river and aquifer

(Schornberg et al., 2010). In most cases, only a limited number of point measurements of

temperatures are available for the estimation of exchange fluxes. Recently, also tempera-

ture measurements with fibre-optic sensors, also called Distributed Temperature Sensing

(DTS), has gained interest for the derivation of spatially highly resolved temperature

distributions (Vogt et al., 2012).

Thermal data have also been used as an additional information source for different

inversion techniques to constrain the estimation of subsurface parameters. For example,

Woodbury and Smith (1988) investigated the worth of thermal data for the calibration

of steady-state groundwater models. They argue that thermal data can better constrain

the calibration of hydraulic conductivities especially for highly permeable aquifers when

heat advection is the dominant process. Doussan et al. (1994) calibrated a managed

river-aquifer system which included bank filtration with hydraulic and thermal data and

found an improved estimation of river bed parameters compared to hydraulic data alone.

Bravo et al. (2002) also used hydraulic and thermal data for the inversion of a wetland-

aquifer system to derive hydraulic conductivities and wetland inflows. They showed that

the inversion gets more stable and accurate when thermal data are used compared to

hydraulic data alone. In Jiang and Woodbury (2006), a Bayesian inversion technique

was applied to an aquifer model which was conditioned on different combinations of

piezometric heads, transmissivities and temperature measurements. They found that

the characterization of hydraulic conductivities was improved with temperature data for

different inversion scenarios.

For modeling purposes, an important implication of the temperature contrast between

rivers and aquifers and the resulting heat transfer is that these temperature changes in

the sediment induce a cyclic variation of water density and viscosity which also affects

the hydraulic conductivity of the river bed sediments (see Equations 3.11 and 3.12).

Changes in water density can usually be neglected for the temperature range that occurs

in river-aquifer systems but water viscosity could change up to a factor of 1.7 given a

typical temperature range between 5 and 25 ◦C . For example, Constantz et al. (1994)

argue that their measured diurnal variation of river-aquifer exchange fluxes is largely

attributed to the temperature-dependency of hydraulic properties of the streambed.

Engeler et al. (2011) have shown that considering the temperature dependency of water

viscosity in the simulation of river-aquifer exchange can reduce the predictions errors of

piezometric heads at individual measurement locations up to 30 %. Ma and Zheng (2010)

investigated the effect of regarding temperature-dependent hydraulic parameters for the

modeling of heat transport in river-aquifer systems. They concluded that temperature
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contrasts up to 15 ◦C lead to an average error in temperature predictions of about 3%

calculated over their whole model domain. However, they did not compare the effects

on individual measurement locations.

Apart from river-aquifer systems, heat transfer calculations can also be relevant to other

systems of surface water-groundwater exchange. One example is artificial recharge be-

cause for such systems also a temperature contrast between surface water and ground-

water is given. Vandenbohede and Van Houtte (2012) give an example of such an

application were heat transport calculations were made for an artificial recharge system

to characterize the transport behavior underneath a recharge basin. Racz et al. (2012)

used measured temperature profiles underneath an artificial recharge basin to determine

local infiltration fluxes.

An excellent example of a managed groundwater system that includes the effects of

river-aquifer exchange and artificial recharge is the Limmat aquifer in Zurich (Switzer-

land). For the groundwater management at this site, water is pumped from several bank

filtration wells close to the river Limmat and this water is then artificially recharged to

the aquifer through several recharge basins and wells. This measure is taken to protect

drinking water wells from a diffuse contamination that is present close to the well field.

These management activities heavily influence the hydraulic and thermal situation in

this aquifer. Recently, a real-time modeling system was set up for the management of this

site (Hendricks Franssen et al., 2011). In this framework, the Ensemble Kalman Filter

(EnKF) is applied to correct the piezometric head predictions and the hydraulic param-

eters of a 3D groundwater model for this site with data from a dense online-monitoring

network for groundwater levels on a daily basis. The updated predictions of this model

can then be used to optimize the operation of the well field through a real-time control

system (Bauser et al., 2010). In 2005, the monitoring network was additionally equipped

with several online-sensors for groundwater temperature which allow a continuous mon-

itoring of the thermal situation within the well field. As already pointed out before,

groundwater temperatures are well suited as a tracer for exchange processes between

surface water and groundwater which also have a large influence on the operation of the

well field in the Limmat aquifer. Thus, the additional online-monitoring of groundwater

temperatures can provide important information on the subsurface structure for this

site which is until now not utilized in the EnKF data assimilation framework. Another

aspect concerning the operation of the well field and the temperature distribution in

the aquifer is that groundwater managers usually want to avoid the pumping of drink-

ing water that is too warm because this can negatively influence drinking water quality

through bacterial contamination and increases the effort for disinfection measures. As a

consequence, also predictions of groundwater temperatures are desired for this well field
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and groundwater managers also plan to include measured groundwater temperatures in

the real-time control of the well field.

The aim of the following study is to extend the existing EnKF data assimilation frame-

work for the Limmat aquifer, so that also temperature measurements can be used to

update the predictions of groundwater states and model parameters. The joint assim-

ilation of piezometric head and temperature data will first be tested with a synthetic

river-aquifer model in order to access the worth of the additional temperature assimila-

tion on the estimation of hydraulic parameters under controlled conditions. Afterwards,

the extended data assimilation framework will also be applied to the real-world data of

the Limmat aquifer and it will be explored how the assimilation of measured groundwa-

ter temperatures affects the prediction of heat transport in the model and also how the

joint assimilation of hydraulic and thermal data influences the estimation of hydraulic

parameters under real-world conditions.

5.2 Materials and Methods

5.2.1 Joint assimilation of piezometric head and temperature data

For the joint assimilation of piezometric heads and groundwater temperatures the data

assimilation scheme described in Sections 2.2 and 3.2 was extended so that also mea-

surements of groundwater temperatures are used in the assimilation process. The model

states ψ are piezometric heads h and groundwater temperatures T and the relevant

parameters φ for the system under investigation are hydraulic conductivities K and

leakage coefficients L:

ψ =

(
h

T

)
(5.1)

φ =

(
log(K)

log(L)

)
(5.2)

The model M(ψt−1i ,φi, ζi) that describes the forward propagation of the model states

(h and T ) for each realization i of model parameters (K and L) is a groundwater model

that solves the coupled equations for variably saturated flow (Equations 2.2 to 2.6b),

heat transport (Equations 2.7 to 2.10c) and river-aquifer exchange (Equation 2.11).

The state-parameter vector in the updating scheme of EnKF is given as:
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Ψ =


h

T

log(K)

log(L)

 (5.3)

For the update of Ψ measurement data of piezometric heads yh and groundwater tem-

peratures yT are used which are combined in the measurement vector y0:

y0 =

(
yh

yT

)
(5.4)

For the assimilation of these measurement data with EnKF, y0 is perturbed with the

expected measurement errors of h and T (ε(h) and ε(T )). For each realization i a

separate perturbation vector ε̃ for y0 is drawn from a normal distribution N (0, ε) with a

mean of zero and a variance that is derived from the expected measurement errors ε(h)

and ε(T ). This yields a separate perturbed measurement vector ỹ for each realization:

ỹi =

(
yh

yT

)
+

(
ε̃i(h)

ε̃i(T )

)
(5.5)

The updating equation for the joint assimilation of piezometric heads and groundwater

temperatures and the derivation of the Kalman gain are the same as in Sections 2.2 and

3.2 and are repeated here for convenience:

Ψa
i = Ψt

i + αG(ỹi −HΨt
i) (5.6)

G = CH>(HCH> + R)−1 (5.7)

where Ψt
i and Ψa

i are the forecasted and updated state-parameter vectors (see Equation

5.3), ỹi is the perturbed measurement vector of piezometric heads and groundwater

temperatures (see Equation 5.5), G is the Kalman gain, H is a matrix that maps/

interpolates the simulated states to the observation points, C is the covariance matrix

of the model states and uncertain model parameters, R is the covariance matrix of

measurement errors and α is a damping factor for the parameter update that takes values

between 0 and 1 and is used to reduce the effect of filter inbreeding (Hendricks Franssen

and Kinzelbach, 2008).
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The following covariance matrix is used in the calculation of the Kalman gain for the

joint update of h, T and the parameters:

CH> =


Chĥ CT T̂

Clog(K)ĥ Clog(K)T̂

Clog(L)ĥ Clog(L)T̂

 (5.8)

where ĥ are the simulated piezometric heads at observation points and T̂ are the simu-

lated groundwater temperatures at observation points. Note that the cross-covariances

between h and T are neglected in this assimilation scheme, i.e., neither h is used to

update T nor T is used to update h.

5.2.2 Parallelization of the assimilation code EnKF3d-SPRING

The program EnKF3d-SPRING was already applied in Chapters 3 and 4 for the con-

duction of the data assimilation experiments. EnKF3d-SPRING is a C program that

manages the forward calculations of the ensemble and calculates the EnKF updating step

for each assimilation cycle. The actual solution of the flow and transport equations is cal-

culated by the groundwater modeling software SPRING (Delta h Ingenieurgesellschaft

mbH, 2006) which is called from within EnKF3d-SPRING as a library function for each

realization and time step. In order to perform the joint assimilation of hydraulic and

thermal data, the data assimilation scheme implemented in EnKF3d-SPRING was ex-

tended with the updating equations given above. However, as the computational burden

for the calculation of a large number of realizations with a coupled flow and heat trans-

port model is tremendously higher than the calculation of pure groundwater flow, it was

necessary to parallelize EnKF3d-SPRING in order to retrieve results in an acceptable

computation time. Principally, the parallelization of data assimilation codes can be

performed at three levels:

I parallelizing the call of the forward runs

II parallelizing the forward model

III parallelizing the updating step.

As there was no parallel version available for the forward model, only parallelization at

the levels I and III could be implemented in EnKF3d-SPRING. Low-order performance

tests on the supercomputing platform JUROPA at Forschungszentrum Jülich showed

that the parallel version of EnKF3d-SPRING scales well up to 128 processors with an
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efficiency of about 70%. More recent changes and optimizations in the code probably

increased the efficiency and scalability of the code but further performance tests were

not conducted for this version of the program.

5.2.3 Localization

For some of the simulations the effect of distance-dependent localization (Hamill et al.,

2001) was tested in the EnKF updating scheme. The rationale behind localization is

to restrict the influence of observation points in space because each observation point

only has a certain area of influence around itself (which is defined by the length scale

variable η). Model variables beyond this area are then not updated with measurements

from this observation point. For this purpose, the Schur product (i.e., an element wise

multiplication of two matrices) of the covariance matrix CH> and a localization matrix

Ω is calculated at each assimilation cycle and the so derived localized covariance matrix

is then used in the calculation of the Kalman gain:

(
CH>

)new
ij

= (CH>)ij · (Ω)ij (5.9)

where i and j are the matrix indices. The elements of Ω were calculated with the

following localization function γ(d, η) (Equation 5.10) (Hamill et al., 2001; Gaspari and

Cohn, 1999):

γ(d, η) =
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(5.10)

where d is the euclidean distance between the locations of observation points and of the

elements of the state-parameter vector Ψ [L] and η is a certain length scale which has

to be defined for the problem [L]. Figure 5.1 illustrates the shape of γ for a length scale

η of 500 meters.

This function has a shape similar to a Gaussian bell curve with the major difference that

values beyond a fixed value (η) for this function are zero whereas values for a Gaussian

distribution are always greater than zero.
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Figure 5.1: Localization function γ(d, η) for a length scale η of 500 m.

5.2.4 Synthetic aquifer model

Assimilation experiments were first performed with a simplified synthetic model of a

river-aquifer system. A sketch of the model setup is given in Figure 5.2. The model

has a dimension of 500 × 250 × 10 m and is discretized into 50 × 25 × 10 cells. A

river was placed in the middle of the model domain and was represented through two

rows of leakage nodes. Three extraction wells were placed south of the river and a

regular grid of observation wells was lain out over the whole model domain. Hydraulic

forcing data for the model are transient discharge of the river (expressed as river stages),

transient pumping rates for the three wells and a constant small lateral inflow/ outflow

at the eastern /western face of the model (assigned to the three lowest layers). Thermal

forcing data are transient river temperatures.

The entire input data were based on real-world measurements for the Limmat aquifer.

River stages were calculated from measured discharge data of river Sihl for the year

2006 assuming simple open channel flow. Pumping rates were taken from three bank

filtration wells of the Limmat aquifer but withdrawal rates were halved in order to

achieve a reasonable mass balance for the small synthetic model. River temperatures

were taken from measurements of the river Sihl in 2006. A summary of the forcing data

for the synthetic model is given in Figure 5.3.

For the synthetic experiments a reference run with a specific K and L field was integrated

for a one year period with the model described above. h and T data sampled from this

reference run (at the observation points) were then taken as input data for assimilation

experiments with EnKF.

The reference log(K) field was generated with Sequential Gaussian Simulation (SGS)

with a mean of -2 log(ms−1), a range of 100 m and a sill of 0.5 log(m2s−2). The initial

ensemble of K values was created in a similar way but with a mean value of -1 instead of
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Figure 5.2: Model setup for synthetic experiments.
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Figure 5.3: Forcing data for synthetic experiments.

-2 log(ms−1) (range and sill were the same as for the creation of the reference field). The

reference field for leakage coefficients L was created by reducing the K values underneath

the river by one log unit and dividing this value by the discharge area of the respective

leakage node. The initial ensemble of L was created in a similar way by taking the initial

K values underneath the river, multiplying them with 0.5 and also dividing them by the

discharge area of the respective leakage node. Note that K and L fields for reference

and initial ensemble are slightly biased for this setup. Table 5.1 gives an overview of the

settings used for heat transport simulations and for the data assimilation with EnKF.

Table 5.2 summarizes the different updating scenarios for the synthetic case.

5.2.5 Model and input data for real-world case

Simulations for the real-world case were performed with the same 3D-model of the Lim-

mat aquifer that was already used in Chapters 3 and 4. Again, transient boundary

conditions of the flow model include recharge flux at the top of the model domain, small
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Table 5.1: Parameters for heat transport simulations and for data assimilation with
EnKF for synthetic experiments.

parameter value unit

Parameters for heat
transport calculations

δ 25 m
ρs 2600 kgm−3

ρw 1000 kgm−3

κs 3.5 Js−1m−1K−1

κw 0.587 Js−1m−1K−1

cs 800 Jkg−1K−1

cw 4192 Jkg−1K−1

Settings for EnKF

Nreal 128
Nobs(h) 36
Nobs(T ) 36

α 0.1
update frequency 10 d

ε(h) 0.05 m
ε(T ) 0.1 K

Table 5.2: Simulation scenarios for synthetic case. Multiple column entries indicate
that the scenario was simulated with varying values for this variable.

scenario name update of: Nobs(h) Nobs(T ) η
h T K L [m]

SYuc 0 0 -
SYhT

√ √
36 36 -

SYhKL
√ √ √

36 36 -
SYTKL

√ √ √
36 36 -

SYhTKL
√ √ √ √

36 36 -/100/200/350/500

lateral inflows from surrounding hills on the south and north face of the model, fixed

head boundary conditions on the western face, river stages of the rivers Limmat and

Sihl as well as infiltration and withdrawal rates of the management wells. Details on

the calculation of transient boundary conditions for the flow model can be found in

Hendricks Franssen et al. (2011). Transient boundary conditions for the heat transport

simulations include river temperatures, the temperature of injected water in infiltra-

tion wells/ recharge basins and the temperature of the first model layer which is set

equal to the 20 cm soil temperature measured at the meteorological station Reckenholz

(MeteoSwiss).

Simulations were performed with 128 different realizations of hydraulic conductivity

fields and leakage coefficients. The initial ensemble of hydraulic conductivities was gen-

erated on the basis of a pre-calibration of the flow model with 87 piezometric head

data for the time periods June 2004 and July 2005 with the pilot point method with

a regularization terms (Alcolea et al., 2006). The ensemble of K was generated by

perturbing the calibrated log(K)-field with perturbation fields that were generated by
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Table 5.3: Parameters for heat transport calculations and data assimilation with
EnKF for real-world case.

parameter value unit

Parameters for heat
transport calculations

δ 25 m
ρs 2600 kgm−3

ρw 1000 kgm−3

κs 3.5 Js−1m−1K−1

κw 0.587 Js−1m−1K−1

cs 800 Jkg−1K−1

cw 4192 Jkg−1K−1

Settings for EnKF

Nreal 128
Nobs(h) 87
Nobs(T ) 22

α 0.1
update frequency 10 d

ε(h) 0.05 m
ε(T ) 0.1 K

SGS (Gómez-Hernández and Journel, 1993) on a very fine grid which was then upscaled

to the simulation grid through simplified renormalization (Renard et al., 2000). The

geostatistical parameters for the creation of these perturbation fields were estimated

from about 857 small scale log(K) measurements that were conducted for this area (see

Hendricks Franssen et al., 2011). The ensemble of leakage coefficients was generated in

a similar way as the Zhet ensemble in Chapter 4, i.e., the log(L)-values were spatially

distributed along the river reach. Geostatistical parameters for the generation of these

log(L)-fields were a range sampled from a uniform distribution between 50 and 5000 m

and a sill sampled from a uniform distribution between 0.1 and 2 log(m2s−2).

Within the model area 87 observation points for piezometric heads and 22 observation

points for groundwater temperatures are available. The spatial position of these obser-

vation points is shown in Figure 5.4. Hydraulic head observations are distributed over

the whole model domain with the highest density in the Hardhof area where most of the

management activities take place. The observation points for groundwater temperatures

are only clusters in the Hardhof area mostly between the recharge basins and the river

in different depths.

Data assimilation experiments were conducted for different settings of EnKF which

include the update of states only, the joint update of states and parameters and the use

of localization. Tables 5.3 and 5.4 give an overview of the standard settings for EnKF,

heat transport calculations and the performed simulation scenarios.

Online-sensors for measuring groundwater temperature were available since autumn

2005. Therefore, heat transport simulation were performed with data ranging from
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Figure 5.4: Position of observation points for piezometric heads and groundwater
temperatures. The upper plot shows the distribution of observation points over the
whole Limmat aquifer model and the lower plot illustrates the distribution of observa-

tion points in the Hardhof area.
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Table 5.4: Simulation scenarios for real-world case. Multiple column entries indicate
that the scenario was simulated with varying values for this variable.

scenario update of: Nobs(h) Nobs(T ) η ε(h) ε(T )
h T K L [m] [m] [◦C]

RWuc 0 0 - 0.05 0.1
RWhT

√ √
87/40 22/11 -/2000 0.05 0.1

RWhKL
√ √ √

87 22 - 0.05 0.1
RWhTKL

√ √ √ √
87/40 22/11 -/2000/

3000
0.05/0.25/
0.5

0.1/0.5/
1.0

2006 to 2012. Four simulation periods have to be distinguished: The year 2006 was

used as a warm-up period for the model in order to have a more realistic estimate of the

temperature distribution within the aquifer. This spinup was conducted with the initial

parameter ensembles of K and L without data assimilation. The initial h- and T -fields

were generated with steady state calculations of the average parameter fields where the

initial groundwater temperature were set to 13 ◦C for the entire aquifer which is roughly

the mean groundwater temperature measured further away from the rivers. The final

h- and T -fields from this warm-up period for each ensemble member were then used as

initial conditions for the different assimilation experiments that were conducted for the

year 2007. The updated parameter ensembles for this assimilation period were then used

in a subsequent validation period to additionally access the performance of the different

assimilation experiments. From January 2008 to October 2010 some major reconstruc-

tions were performed in the Hardhof area. These activities included the utilization of

additional pumping wells and non-standard management activities. Therefore, this time

period was excluded for further heat transport simulations and the validation simula-

tions were done for the hydrological year 2011 (November 2010 - October 2011). The

initial conditions for this validation period were estimated by a second spinup of the

model that lasted from January 2010 to October 2010. This additional spinup was per-

formed with the initial parameter ensembles (which were also used for the spinup period

2006) and with the final h- and T -fields of unconditional simulations for the assimilation

period. The ensemble averages of h and T at the end of this second warm-up period

were then used as initial conditions for the validation period. Table 5.5 summarizes the

different time periods for the heat transport calculations and Figures 5.5 and 5.6 give

an overview on the forcing data that were used for the initial spinup, the assimilation

period and the verification period.
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Table 5.5: Time periods for heat transport simulations.

period purpose initial h/ T initial K/ L

(I) 01.01.2006 -
31.12.2006

initial spinup steady state initial ensemble

(II) 01.01.2007 -
31.12.2007

assimilation period from unconditional
simulation (I)

initial ensemble

(III) 01.01.2010 -
31.10.2010

spinup for verifica-
tion period

from unconditional
simulations (II)

initial ensemble

(IV) 01.11.2010 -
31.10.2011

verification period mean fields of (III) updated ensem-
bles from (II)
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Figure 5.5: Forcing data of the model for the years 2006 and 2007 (initial model
spinup and assimilation period).
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Figure 5.6: Forcing data of the model for the hydrological year 2011 (verification
period).

5.3 Results

5.3.1 Synthetic experiments

The different updating scenarios of Table 5.2 are first compared with respect to the

deviation of state variables from the reference values. Figure 5.7 shows the Root Mean

Square Error (RMSE) of piezometric heads and groundwater temperatures for the differ-

ent scenarios. If only states are updated, there is only a minor improvement compared

to unconditional simulations. This is related to the bias in the parameter values of the

initial K and L ensembles. When piezometric heads are jointly updated with parame-

ters (scenarios SYhKL and SYhTKL) errors are significantly reduced. For these scenarios
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Figure 5.7: Root mean square error of piezometric heads (left) and groundwater
temperatures (right) for scenarios in Table 5.2.

the joint update of piezometric heads and groundwater temperatures did not lead to a

further improvement in the prediction of h.

RMSE(T ) shows a seasonal variation for all scenarios as opposed to RMSE(h). The

highest values for RMSE(T ) are observable during the summer months where the higher

temperatures of the river propagate into the aquifer. The temperature contrast between

river water and groundwater then leads to the higher deviations between reference and

ensemble prediction. The lowest deviation to the reference for T is found for scenario

SYhTKL where all states and uncertain parameters are jointly updated. RMSE(T ) for

scenarios SYhT and SYTKL were very similar and both lower than for the unconditional

simulation. This similarity suggests that the parameter update in scenario SYTKL did

not have a significant influence on the prediction of T . For the scenario without an

update of T (scenario SYhKL) temperature predictions are similar to unconditional sim-

ulation and partly also show a higher RMSE(T ). Thus, a parameter update which is only

based on hydraulic data can in fact lead to a worse prediction of transport processes.

Figure 5.8 exemplifies the spatial distribution of mean groundwater temperatures for the

different scenarios for time step 200. Compared to the reference field the temperature

distributions of scenarios SYhT, SYTKL and the unconditional simulation show a very

dispersed heat plume moving from the river into the aquifer whereas the temperature

distribution of the reference shows a relatively distinct spatial pattern. In contrast, for

scenarios SYhKL and SYhTKL the mean temperature field is much closer to the reference

field and the dispersion of the heat plume is less pronounced. The dispersion for the

scenarios without a parameter update (SYuc, SYhT and SYTKL) is related to the high

uncertainty within the governing parameter fields of K and L. When h data are used to

condition the parameter fields the variability in the parameter fields decreases and also

the ensemble mean values for the parameter fields are closer to the reference.
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Figure 5.8: Average T fields at time step 200 for updating scenarios in Table 5.2.
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Figure 5.9: Root mean square error for updated hydraulic conductivities (left) and
updated leakage coefficients (right) for scenarios SYhKL, SYhTKL and SYTKL (Table

5.2).

This can be seen in Figure 5.9 which shows RMSE of K and L for scenarios SYhKL,

SYhTKL and SYTKL. When piezometric head data are used to update parameters there

is a fast decrease of RMSE within the first assimilation cycles. This decrease is mainly

caused by a correction of the bias between the reference fields and the initial ensembles.

When only temperature data are used to condition the parameter fields (scenario SYTKL)

there is almost no correction of parameter values which explains the similarity between

scenario SYhT and SYTKL in terms of temperature distribution and RMSE(T ). From

Figure 5.9 it can also be seen that the joint assimilation of h and T gives slightly better

parameter estimates for K and L than for the scenario where only h data are used.

Figure 5.10 compares the final ensemble means of K for scenarios SYhKL, SYhTKL and
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SYTKL with the reference field. For scenario SYTKL there are only minor updates

compared to the initial ensemble which do not correspond very well with the distribution

of K in the reference field which is the reason for the high RMSE values for this scenario.

This means that temperature data alone seem not to be very sensitive on the distribution

of K values for this synthetic model setup. When piezometric head data are assimilated

with EnKF (scenarios SYhKL and SYhTKL) the structure of the K ensembles is much

closer to the reference field. K values are mainly updated along the river reach. So the

highest sensitivity of the model seems to be related to river stage fluctuations. Scenario

SYhKL tends to assign lower K values along the river reach than scenario SYhTKL which

is probably the main reason for the slightly higher RMSE values for scenario SYhKL. The

different magnitude of K values along the river reach for scenarios SYhKL and SYhTKL

is probably related to their different updating behavior with respect to L (Figure 5.11).

Here it can be seen that the uncertainty in the final L ensemble is higher for SYhKL

than for SYhTKL, i.e., with assimilation of h data alone the distribution of L could not

be constrained as well as with a joint assimilation of h and T . As a result also the

residuals for K were higher for scenario SYhKL compared to SYhTKL. From Figure 5.11

it also becomes obvious that the assimilation of h mostly led to a correction of the

bias between the initial L ensemble and the reference values whereas an assimilation of

temperature data (scenarios SYTKL and SYhTKL) led to a more precise determination

of the spatial structure of leakage coefficients. The main advantage of using a joint

assimilation of h and T for the synthetic experiments is that both state variables have a

different information content which allows a better estimation of leakage parameters. h

data provide information on the net exchange between river and groundwater and thus

are sensitive to the bias between initial ensemble and the reference values. T data give

additional information on the spatial location of exchange fluxes and therefore constrain

the spatial structure of leakage parameters.

In addition to the comparison of different updating strategies, the effect of localization

on parameter updates was tested with several simulation runs. For this purpose, scenario

SYhTKL was rerun with different η values of the localization function (Equation 5.10)

ranging from 100 m to 500 m (note that the range parameter for the initial ensemble

was 100 m). RMSE of temperature predictions and K values for these simulation runs

are shown in Figure 5.12. The simulation with a localization limit of 100 m consistently

performed worse compared to the simulation without any localization. In this case the

region of influences for the observations is too restricted and only the model cells adjacent

to the grid cell of observation points are updated at all. When the localization limit is

increased there is no observable effect on simulated groundwater temperatures but the

estimation of K values is improved compared to the simulation without localization. It

also can be seen from Figure 5.12 that the estimation of K gets slightly worse again
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Figure 5.10: Updated fields of hydraulic conductivities (end of simulation period) for
scenarios SYhKL, SYhTKL and SYTKL (Table 5.2).
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Figure 5.11: Updated fields of leakage coefficients (end of simulation period) for
scenarios SYhKL, SYhTKL and SYTKL (Table 5.2).
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Figure 5.12: Root mean square error of groundwater temperatures (left) and hy-
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Table 5.2).
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Figure 5.13: Updated fields of hydraulic conductivities (end of simulation period) for
different localization distances (scenario SYhTKL in Table 5.2).

when the localization limit is increased from 350 to 500 m. The updated K fields for

the different localization factors after the last assimilation cycle are compared in Figure

5.13. For the simulation without localization there are some parts where K values

were highly increased during the update (e.g., at the most right corner of the model

domain). However, these zones with high K values are not present in the reference field

and are possibly a cause of spurious correlations related to the limited ensemble size

of 128 ensemble members. When localization is used these zones of elevated K values

are eliminated or at least reduced during the updating procedure whereby the general

structure of updated K values (i.e., reduced values along the river reach) is preserved.

This finally leads to lower RMSE values for K for simulations with localization.
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5.3.2 Assimilation of groundwater temperature data for real-world

case

In this section the results for the assimilation of temperature data for the real-world case

are presented. Compared to the synthetic simulations of the previous section the mis-

match between ensemble prediction and the reference values of state variables cannot be

evaluated for the whole model domain because only data for the measurement locations

are available. Additionally, for these simulations the true parameter distribution for K

and L is largely unknown and the evaluation of updated parameter values is restricted

to visual inspection of the updated parameter fields. Therefore, the errors of h and T

are monitored separately for the assimilation period and an additional validation period

in which the quality of the updated parameter fields is compared.

5.3.2.1 Assimilation period

Figure 5.14 compares the basic updating scenarios of Table 5.4 in terms of the temporal

evolution of RMSE values for h and T at observation points (left panels) and the statis-

tics of residuals at observation points for the whole assimilation period (right panels).

For all scenarios and both state variables the assimilation with EnKF improves the pre-

diction of state variables compared to unconditional simulations. Piezometric heads at

measurement locations show high fluctuations when only state variables are updated.

An additional parameter update leads to relatively constant values of RMSE(h) and

there is no observable effect of temperature assimilation on RMSE(h). Similar to re-

sults from synthetic experiments, RMSE(T ) for unconditional simulations and scenario

RWhKL shows a seasonal cycle. However, for the real-world case this cycle is much less

pronounced than for the synthetic case. Also, for RMSE(T ) the effect of parameter

update is much less pronounced as for RMSE(h) because the mean values of scenario

RWhT are very similar to the mean values of scenario RWhTKL with respect to RMSE(T ).

These two scenarios differ mostly with respect to the different magnitude of fluctuations

which are higher for scenario RWhT. The different effect of parameter updates for h

and T can also be seen in the global error statistics (right panels in Figure 5.14). For

piezometric heads there is a significant discrepancy between the median of absolute er-

rors for scenarios RWhT and RWhKL/RWhTKL. Also the variability of absolute errors is

higher when only states are updated. In contrast, for groundwater temperatures there is

not so much difference in the error distribution between scenarios RWhT and RWhTKL.

However, the parameter update becomes important also for T when there are gaps in

the time series of measurement data for T . This is exemplified in Figure 5.15 which

shows the temperature evolution for an observation point with partly missing measure-

ment data. Here, it can be seen that the missing reduction of parameter uncertainty
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Figure 5.14: Temporal evolution of RMSE (left panels) and statistics of residuals for
the whole assimilation period (right panels) of h and T for different updating scenarios.
The red line in the right panels shows the median of residuals for scenario RWhTKL.
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Figure 5.15: Evolution of groundwater temperatures during the assimilation period
for one observation point with partly missing data. Red lines display measured ground-

water temperatures and gray lines display different realizations of the ensemble.

in scenario RWhT can lead to very biased predictions when no measurement data are

available.

Concerning the parameter updates without (RWhKL) and with temperature data (RWhTKL)

there are not so much differences in the final fields for hydraulic conductivity (data not

shown) but an effect is visible for the final parameter distribution for leakage coeffi-

cients (Figure 5.16). Here an additional assimilation of groundwater temperatures led

to an overall reduction of uncertainty of the L-ensemble. However, the basic structure

of updated L-fields is still very similar to the scenarios without T -assimilation.

In a next step, the effects of observation density and measurement errors on the update

of groundwater temperatures and piezometric heads is explored in further detail. The

assigned values of measurement errors for h and T that were used for the previous

simulations can be seen as optimal values for the measurement devices for that site.
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Figure 5.16: Initial (left) and updated fields of leakage coefficients after the last as-
similation cycle. Updated leakage coefficients are shown for a scenario without (middle)

and with (right) assimilation of groundwater temperatures.

However, the accuracy of online-sensors may also decrease over time due to alteration

of the measurement device or drifts in the calibration function. Also the flow conditions

within the bore hole and the support volume of the measurement device may have an

effect on the accuracy of the measurements which are hard to quantify and were not

regarded in the previous used values of measurement error. Therefore, the measurement

errors for h and T were multiplied with a factor of 5 and 10 and results for the different

measurement errors were compared for scenario RWhTKL (Figure 5.17). Generally, the

increase of measurement errors led to higher errors for the estimation of h and T . This

is visible from the temporal evolution of RMSE and also from the higher spread of

the residuals. This occurs because increasing measurement uncertainty leads to lower

weights in the Kalman gain matrix and thus to a decreasing adaptation towards the

measurements. However, the effect of measurement errors is slightly different for h and

T . For piezometric heads the differences for the three magnitudes of measurement error

are not so pronounced as for groundwater temperatures where measurement errors have a

higher impact on the assimilation. This discrepancy is related to the different prediction

uncertainty for h and T . After the first few assimilation cycles the ensemble spread

for groundwater temperatures is very low for most of the observation points and EnKF

therefore assigns a high confidence to temperature predictions. Forecasts for piezometric

heads show more variability what also leads to higher values in the Kalman gain matrix.

The effect of observation density was investigated for scenarios RWhT and RWhTKL by

reducing the number observation points for h and T to about half of the values that

are principally available for that site. The results for these scenarios are compared in

Figure 5.18. For piezometric heads there is not much difference for the scenarios with low

and high observation density. Only when parameters are included in the assimilation

with EnKF there is some tendency for a higher spread in the error statistics when a

lower amount of measurements is used. For groundwater temperatures the situation is

very different compared to piezometric heads. In this case the errors rise significantly

when only half of the observation points are available for conditioning with EnKF. This

relationship can be found for both updating scenarios (states-only and state-parameter
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Figure 5.17: Temporal evolution of RMSE (left panels) and statistics of residuals
for the whole assimilation period (right panels) of h and T for different measurement
errors. ε× 5 and ε× 10 means a five or ten times higher measurement error compared
to the settings give in Table 5.3. The red line in the right panels shows the median of

residuals for scenario RWhTKL.

update) with a slight tendency towards higher errors for the states-only scenario. The

relatively low sensitivity towards observation density for piezometric heads is probably

an effect of the higher abundance of piezometric head measurements for this site, i.e.,

there are four times more piezometric head measurements available than measurements

of groundwater temperature. Using only 40 piezometric head measurements instead of 87

thus still gives enough information on the system dynamics and there is a certain amount

of redundant information for the 87 piezometers. An additional reason for the different

error statistics of h and T with respect to observation density could be the different

correlation length of both variables. Groundwater levels for that site are relatively

smooth due to the high permeability of the unconfined aquifer whereas groundwater

temperature is mainly driven by river-aquifer exchange due to pumping and by the

artificial recharge which leads to a small scale variability of the temperature distribution

within the model domain. As a consequence, a single measurement of piezometric head

gives more information on the surrounding area than a measurement of groundwater

temperature which affects the critical amount of data that are necessary to constrain

the system states with EnKF.

In a next step it was tried to identify the effect of localization on the state-parameter

updates with EnKF. Localization with two different η values (2000 m and 3000 m)

was compared with the standard assimilation scheme for scenario RWhTKL. Results

for the different localization scenarios (Figure 5.19) show that the errors of piezometric
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Figure 5.18: Temporal evolution of RMSE (left panels) and statistics of residuals for
the whole assimilation period (right panels) of h and T for different observation density
with and without parameter update. The red line in the right panels shows the median

of residuals for scenario RWhTKL.

heads slightly increase when localization is used. In contrast, the observed errors for

groundwater temperature are not so sensitive to localization. For a localization length

scale η of 2000 m there is a slight decrease in error variance but the median value

is approximately the same as for the simulation without localization. The different

behavior of h and T with respect to localization could again be related to the different

correlation length of both variables. Figure 5.20 shows examples of covariance structures

for representative observation points of h and T that were derived from scenario RWuc

for time step 200. It can be seen that the covariances for h have a much longer range

than for T . When such a covariance function is then tapered with a localization function

that has a smaller spatial extent, information may be lost in the assimilation with EnKF.

For groundwater temperatures the spatial correlation is much lower and therefore fits

better within the range of the utilized localization function.

The effect of localization on the parameter updates with EnKF can be seen in Figures

5.21 to 5.23. Figure 5.21 shows the final updated fields for L for the different scenarios

with localization. Without localization the variability in the L-ensemble decreased for

the whole river reach and a distinct spatial pattern is visible in the final ensemble. When

localization is used only the part of the river that is close to the management activities

shows a significant reduction in ensemble variance because here the highest density of

observation points can be found. In addition, the observation points are also much closer

to the river in this area than in other parts of the model.
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Figure 5.19: Temporal evolution of RMSE (left panels) and statistics of residuals
for the whole assimilation period (right panels) of h and T for different values of the
localization length scale η. The red line in the right panels shows the median of residuals

for scenario RWhTKL.

Figure 5.20: Examples for the spatial distribution of covariances for piezometric
heads (left) and groundwater temperatures (right). Covariances were derived from
data of scenario RWuc for time step 200 of the assimilation period. Data are shown for
one observation point of piezometric heads and groundwater temperatures respectively.
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Figure 5.21: Updated fields of leakage coefficients after the last assimilation cycle.
Data are shown for a scenario without localization and two scenarios with localization

with a different localization length scale η (2000 and 3000 m).

The spatial distribution of hydraulic conductivities at the end of the assimilation period

is visualized in Figures 5.22 and 5.23. Figure 5.22 displays an overview of the spatial

distribution of K-values and Figure 5.23 is a cross-section that is centered in the drinking

water well most close to the river which should give additional insight into the vertical

distribution of updated K-values close to the river. From both Figures it is obvious that

the parameter update for K with unlocalized EnKF leads to a relatively patchy structure

and a high degree of spatial variability where neighboring cells can exhibit considerable

contrasts in terms of K-values. On the one hand, this is related to the high amount

of degrees of freedom for the parameter update with EnKF, i.e., observation data are

used to update the parameters of each grid cell separately to reduce the misfit between

observations and forecasted state variables. On the other hand, spurious correlations

due to the limited ensemble size may also play a role in this context and could emphasize

a certain randomness in the assimilation procedure. Localization generally leads to a

smoothing of the updated K-fields. From the cross-section of Figure 5.23 it can be seen

that the scenarios with and without localization yield approximately the same spatial

structure of K-fields at the end of the assimilation period. However, localization reduces

the amount of more extreme K-values and the transition between neighboring cells is

much more gentle than for the update with unlocalized EnKF.

5.3.2.2 Validation period

In this section the quality of the updated parameter ensembles from the assimilation

period is accessed with validation runs for the hydrological year 2011. Figure 5.24 shows

the errors for h and T for different updating scenarios (with and without update of

groundwater temperatures and unconditional) and a variation of observation density

(87/22 versus 40/11 observation points for h and T ). Compared to the unconditional

simulations the scenarios with updated parameter ensembles show a significant reduction

in RMSE(h). Differences between the scenarios with updated parameters are relatively

low in terms of RMSE(h) and the range of residuals. For groundwater temperatures
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Figure 5.22: Mean fields of hydraulic conductivity after the last assimilation cycle
for parameter update without localization and with localization with two localization
length scales η (2000 and 3000 m). As a comparison the average initial field of hydraulic

conductivities is shown.

the updated parameter ensembles do not perform as well as for piezometric heads. An

improvement is clearly visible but it is lower in magnitude compared to piezometric head

data. From the temporal evolution of RMSE(T ) it cannot clearly be distinguished which

of the updating scenarios performs better throughout the validation period. In the first

phase the scenarios with a T -update in the assimilation period have lower errors than

the ensemble without T -update. However, in the last phase of the validation period this

relationship reverses and the ensemble for RWhKL gives better results than the one for

RWhTKL. The global error statistics also suggest that there is not a big difference for

the ensemble with and without update of groundwater temperatures.

When the measurement error is increased during the assimilation period (Figure 5.25)

RMSE(h) increases for an event of increased groundwater withdrawal around time step

100 but is very similar to the ensemble with lower measurement error for the rest of the

validation period. RMSE(T ) behaves very similar to the ensemble with lower observation

density (Figure 5.24), i.e., RMSE(T ) is very similar to the scenario with standard values

for most of the validation period and is slightly decreased in the last phase of the

validation period.

Figure 5.26 additionally compares the performance of the ensemble with and without

localization. For groundwater temperatures there is a small positive effect of localization

in terms of RMSE(T ) but the spread of residuals is also a bit higher for the scenarios

with localization. A stronger effect of localization can be seen for RMSE(h) where the
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Figure 5.23: Cross-sections (y-z plane) of the ensemble mean of hydraulic conduc-
tivities for the drinking water well most close to river Limmat. Coordinates of the
subfigures are given relative to this drinking water well. Data are shown for one sce-
nario without localization, two scenarios with different localization length scales η (2000

and 3000 m) and the initial ensemble mean.

ensemble with localization show a significant increase compared to the scenario with-

out localization. The relatively constant bias between the scenarios with and without

localization suggests that there is a systematic misinterpretation in the groundwater

dynamics for the localized ensembles. This systematic bias could be related to the ef-

fect of localization on the estimation of L-fields that was already shown in Figure 5.21.

When localization is used the parameter fields for L are not constrained as well as for

the unlocalized ensemble and a much higher variability is present in the localized ensem-

bles. This can then lead to a systematic overestimation of leakage fluxes which directly

affects the mass balance in the aquifer and leads to a bias in the predicted groundwater

levels. Figure 5.27 shows the temporal evolution of exchange fluxes and statistics for
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Figure 5.24: Temporal evolution of RMSE (left panels) and statistics of residuals for
the whole validation period (right panels) of h and T for different updating scenarios.
The red line in the right panels shows the median of residuals for scenario RWhTKL.
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Figure 5.25: Temporal evolution of RMSE (left panels) and statistics of residuals for
the whole validation period (right panels) of h and T for different updating scenarios
and measurement errors. The red line in the right panels shows the median of residuals

for scenario RWhTKL.
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Figure 5.26: Temporal evolution of RMSE (left panels) and statistics of residuals for
the whole validation period (right panels) of h and T for different values of localization
length scale η. The red line in the right panels shows the median of residuals for scenario

RWhTKL.

Figure 5.27: Exchange fluxes between river and aquifer for the validation period of
different localization scenarios. The right hand diagram additionally shows statistics

for the total amount of exchanged water for the whole validation period.

the net exchange between river and groundwater. It is obvious that the scenario with

localization show a higher degree of uncertainty for the exchange fluxes and that the net

exchange is higher for these scenarios compared to the run without localization.

5.3.2.3 Zonation of leakage coefficients for heat transport simulations

The results from Chapter 4 suggested that a higher spatial resolution of leakage pa-

rameters leads to a better estimation of river-aquifer exchange fluxes and groundwater

levels. Therefore, in this section it is also tested whether this relationship can also be

observed for the real-world data of the Limmat aquifer. The setup for these simulations

was similar as for scenario RWhTKL with the only difference that the four ensembles

for leakage parameters of Chapter 4 (Zhet, Z5, Z3 and Z2) were used instead of the
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L-ensemble of RWhTKL (see Section 5.2.5). Figure 5.28 shows the updated ensembles

of leakage coefficients at the end of the assimilation period. It can be seen that the

ensemble variance for the zonated ensembles decreases very much also for the real-world

data. The errors for h and T (data not shown) are very similar for the four ensembles

during the assimilation period. Also the exchange fluxes between river and aquifer and

the associated uncertainty did not show significant differences for the four ensembles.

Figure 5.28: Initial (upper diagram) and updated (lower diagram) ensembles of leak-
age coefficients for four different zonation approaches. Values are shown along the
x-axis of the model domain. Note that in the eastern part of the model domain there

is an overlap of river Sihl and Limmat with respect to x-coordinates.

In Figure 5.29 the errors of piezometric heads and groundwater temperatures are com-

pared for the validation period. As for the assimilation period the differences between

the four ensembles are relatively low. For ensemble Zhet there is a tendency towards

lower values of RMSE(h) throughout most of the validation period. However, for the

phase of intensive pumping at around time step 100 there are higher deviations for Zhet

compared to the other three ensembles. Also for groundwater temperatures there is no

clear distinction with respect to the performance of the four ensembles of leakage pa-

rameters. Zhet shows slightly better RMSE(T ) values for the two-thirds of the validation

period but errors increase in the last third of the validation period.

5.4 Discussion

Results for the synthetic experiments suggest that a joint assimilation of piezometric

heads and groundwater temperatures with EnKF principally can lead to an improvement

in the estimation of subsurface parameters compared to an assimilation of piezometric
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head data alone. Assimilated temperatures mainly gave additional information on the

spatial distribution of river-aquifer exchange and the corresponding leakage parameters

whereas assimilated piezometric head data gave information on the overall magnitude

of exchanged water. This relationship was not so clear for the real-world data of the

Limmat aquifer. In this case, the additional assimilation of groundwater temperatures

also led to a certain reduction of the uncertainty for the spatial distribution of leakage

coefficients compared to an assimilation of piezometric head data alone. However, this

additional restriction of parameter values did obviously not have a persistent effect on

the state predictions. This could be seen from the validation runs with updated pa-

rameter fields with and without assimilation of groundwater temperatures which gave

very similar results in terms of temperature and piezometric head predictions. Gen-

erally, the model for the real-world case seems to already capture the most important

system dynamics with respect to heat transport. This becomes obvious from the rela-

tively low errors for the unconditional simulations and also from the simulated values at

the observation points which already capture the seasonal temperature dynamics that

were measured for several observation points. Additionally, the results for simulations

with different representations of river bed heterogeneity (Section 5.3.2.3) suggest that

the real-world model is not so sensitive to the spatial resolution of river bed properties

because results for the assimilation as well as the validation period were very similar

for the different spatial representations of the river. Of course, the river bed properties

and their spatio-temporal variations for the real-world case are largely unknown as there
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are no direct measurements of this variable available. However, if the river bed in the

real-world case really does not show major spatial variations then this would explain

why an additional assimilation of groundwater temperatures does not significantly im-

prove parameter estimation because the synthetic experiments already showed that the

most important effect of temperature assimilation is related to the identification of the

spatial structure of leakage parameters. So, if the river bed is relatively homogeneous

for the real-world case, groundwater temperatures do not provide much additional in-

formation for river-groundwater exchange and the most important information comes

from groundwater levels which constrain the net exchange and thus the mass balance

between river and aquifer.

From the assimilation experiments for the real-world case it also became obvious that

the model dynamics for some parts of the model could not be well corrected with EnKF.

This observation especially refers to the temperature dynamics monitored at two multi-

level piezometers south of the recharge basins and recharge wells. At these locations

the model indicated as small seasonal temperature variation during the assimilation

and validation period but the measured groundwater temperatures are very constant for

both periods. In the simulations these piezometers seem to be influenced by the artificial

recharge which causes the seasonal temperature variation but this does not reflect the

true conditions in that area. EnKF was obviously not able to adapt model parameters

to adjust model dynamics for this area towards the true conditions. From geological

surveys for the Hardhof area it is known that there are some channel structures within

the Hardhof area which facilitate preferential flow conditions for a part of the managed

site. These geological structures are not included in the initial ensemble of K-values

that was used for data assimilation what could be a reason for the poor adaptation

of model parameters with EnKF for the area south of the artificial recharge. Another

reason could lie in an erroneous definition of boundary conditions for that area. In

the model all recharge wells are assumed to operate with the same injection rate which

is often not fulfilled in real-world conditions. Thus, there is also the possibility that

there are structural errors present in the model which cannot be corrected by parameter

estimation with EnKF. Both possibilities (lack of certain geological structures in the

initial ensemble and errors in the model forcings) emphasize that the application of

EnKF for real-world data is accompanied by a higher degree of uncertainty which could

reduce the effectiveness of the method.

Localization had a relatively clear effect on the estimation of states and parameters for

the synthetic experiments. Here, localization could reduce the effect of spurious corre-

lation during the assimilation with EnKF. For the real-world case this relationship is

not so clear as for the synthetic case. In the real-world application the model dynamics

are more complicated and also the spatial distribution of observation points is not as
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regular as for the synthetic model setup. The comparison of covariance structures for

piezometric heads and groundwater temperatures already showed that there are large

differences concerning the spatial correlation for the two variables. It was also found that

localization can greatly affect the prediction of exchange fluxes between river and aquifer

when it is applied for the estimation of leakage parameters. For the model setup of the

real-world case the initial ensemble of leakage coefficients was highly variable and the

observation points were not distributed evenly along the river reach. When localization

is used for such conditions it is not possible to constrain the parameters that are very

distant from the observations which could then lead to a significant misinterpretation

of exchange fluxes. Therefore, the localization scheme that was used for the different

assimilation experiments is probably too generalized for the application in the real-world

case because only one length scale is used for the distant-dependent localization. For

the different state variables it seems desirable to introduce a separate localization length

scale η for piezometric heads and for groundwater temperatures because their covari-

ance structures vary considerably. Additionally, the relationship between the ensemble

variance of model parameters and the localization scheme should be considered carefully

before localization is applied in data assimilation with EnKF. One goal of localization

beneath the reduction of spurious correlations is to maintain a certain ensemble variance

throughout the assimilation process. However, the results for applying localization to

river bed properties showed that when the initial ensemble spread is very high this can

lead to a systematic bias between model predictions and measurement data because the

highly variable parameters in some parts of the model cannot be updated any more when

localization is used. The application of localization on the update of hydraulic conduc-

tivities seemed to have a more positive effect because the tendency towards relatively

extreme values for hydraulic conductivities with high spatial variations was reduced

during the updating procedure. For this parameter observation points were distributed

more evenly over the model domain and also the initial ensemble was better constrained

compared to the initial ensemble of leakage coefficients. Thus, it is concluded that the

application of distance-depend localization requires a careful tuning and adaption to-

wards the specific conditions of a model. This adaption should consider the estimation

of the variability of model parameters, the specific covariance structures of the model

states and parameters as well as the availability and spatial distribution of observations.

5.5 Conclusions

In this chapter a simplified model of a river-aquifer system and data from the real-

world case of the Limmat aquifer in Zurich were used to identify the usefulness of a
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joint assimilation of piezometric head and groundwater temperature data for the pre-

diction of aquifer states and the identification of hydraulic subsurface parameters. For

the synthetic river-aquifer model the joint assimilation of piezometric heads and ground-

water temperatures resulted in the best estimate of hydraulic properties (i.e., hydraulic

conductivities and leakage coefficients). However, the additional assimilation of tem-

peratures only led to an improvement of about 5 % in terms of RMSE for each of

the parameters where the overall reduction in RMSE in the best case was about 37 %

for hydraulic conductivities and 78 % for leakage coefficients. With respect to leakage

parameters the assimilated piezometric head data mainly gave information on the mag-

nitude of river-aquifer exchange fluxes and assimilated temperature data led to a better

characterization of the spatial distribution of leakage parameters. Results for the real-

world case indicate that a good prediction of groundwater temperatures can be achieved

through data assimilation with EnKF under real-world conditions where the best results

were obtained with a simultaneous update of model parameters. However, validation

experiments revealed that for the real-world case most of the improvement of model

parameters is dedicated to the information coming from assimilated piezometric heads

and that the additional assimilation of temperature data did not lead to a significantly

better prediction capability of the updated parameters. The effect of distance-dependent

localization was relatively straightforward for the synthetic river-aquifer system because

it could easily be identified from the updated parameter fields that non-physical param-

eters updates were suppressed through the tapering with the localization function. For

the real-world case, localization also seemed to have a significant impact on the updated

parameter fields. This was mainly observed for the fields of aquifer hydraulic conduc-

tivities where localization lead to a relatively strong smoothing effect compared to the

updating scheme without localization. This smoothing also prevented the buildup of

extremer parameter values which was observed for the standard EnKF. However, it also

became clear that the localization limit should to be carefully chosen in order to honor

the different physical relationships of model variables. A further issue related to the use

of localization is that the effective range of the localization function and the variance in

the initial parameter ensemble have to be balanced very carefully. For example, when

the initial variability of a parameter which is important for the system dynamics is set

too high this can lead to a bias in the prediction capability of the model when local-

ization is used. This is because the high variability of the model parameter cannot be

reduced through subsequent updates with EnKF in certain parts of the model due to lo-

calization. Further research is required to find an optimal strategy for the simultaneous

localization of different model variables under complex system dynamics.





Chapter 6

Summary and outlook

In this work, different data assimilation experiments were performed with a 3D ground-

water model of the Limmat aquifer in Zurich. For this study site a real-time modeling

system has recently been put into practice which aims to enhance the management of

a well field. In this modeling system, data from a dense monitoring network are used

to improve the predictions of groundwater levels and model parameters through data

assimilation with the Ensemble Kalman Filter (EnKF). An important aspect for the

real-time modeling system at this site is that the groundwater management is highly

influenced by river-aquifer exchange fluxes. Therefore, this study specifically aims to

investigate the relation between the spatio-temporal variability of river bed hydraulic

parameters and the application of EnKF for such systems. Another focus of this work is

to include the assimilation of groundwater temperatures in the data assimilation frame-

work of EnKF for this site. In the well field of the Limmat aquifer, also a monitoring

network of groundwater temperatures is available and there is a growing interest to also

get reliable predictions for the temperature distribution of the well field for management

purposes. Furthermore, these data can be used as an additional source of information

for the determination of hydraulic aquifer and river properties with EnKF. In order to

investigate the effects of spatio-temporal pattern of river bed properties and the addi-

tional assimilation of groundwater temperatures on the performance of EnKF different

data assimilation experiments were performed: In two sets of experiments a synthetic

model that mimics the Limmat aquifer was used. In these sets of experiments most of

the model parameters and model forcings where taken from real-world data and only the

spatio-temporal patterns of leakage parameters were generated artificially. In a further

step also the assimilation of groundwater temperature data was included in the EnKF

analysis scheme. The worth of this additional source of information was assessed for a

simple synthetic model of river-aquifer exchange and also for the Limmat aquifer model

with real-world data.

107



108 Chapter 6 Summary and outlook

The synthetic experiments on spatio-temporal patterns of river bed hydraulic conduc-

tivities revealed that EnKF is well suited for the detection of temporal changes in the

river bed. Although there was a certain time-lag in the adaptation of leakage parame-

ters, EnKF was able to adjust parameters under various proposed sedimentation/erosion

regimes and the overall accuracy of adapted parameters was very promising. This is im-

portant in the light of real-time-prediction for the operation of well fields close to rivers

because temporal changes of river bed properties can have a significant effect on model

predictions as has been shown for example by Doppler et al. (2007).

An important aspect in this sense is also that EnKF was able to retrieve the basic

structure of unknown heterogeneous fields of river bed permeabilities. In terms of com-

putational efficiency, the introduction of heterogeneity in the initial ensemble hardly

influences the required computation time. At the same time, predictions with fully

heterogeneous fields of leakage parameters provided a better assessment of river-aquifer

exchange fluxes and model parameters than similar simulations with effective parame-

ters.

In order to perform data assimilation experiments on the joint assimilation of piezo-

metric heads and groundwater temperatures, a first step was to parallelize the data

assimilation algorithm for EnKF. This step was necessary to accomplish a reasonable

computation time for the data assimilation experiments because the coupled simulation

of flow and heat transport for a large number of model realizations constitutes a signif-

icant computational burden. The parallelized assimilation code scaled up well to 128

processors with an estimated efficiency of about 70 %. The synthetic experiments on the

joint assimilation of hydraulic and thermal data highlighted that the information content

of both measurements can contribute to the improvement of the estimation of uncertain

subsurface parameters. In these experiments temperature data were especially useful for

a more detailed characterization of the spatial structure of river bed permeabilities. For

the real data of the Limmat aquifer such a clear relationship regarding the improvement

of model parameters was not observed. The assimilation of temperature data during

the calibration period led to a reduction in the variability of leakage parameters. How-

ever, during the verification period there was no indication from the simulated data

that this leads to a better prediction capability of the model. For these experiments the

errors in temperature prediction were already rather low for unconditional simulations

without state-parameter updates and the question remains whether this low discrepancy

between modeled and measured data was sufficient to allow for an improved parameter

estimation.

Adaptive covariance inflation and localization showed to be interesting and important

amendments for subsurface characterization with EnKF because they allow to correct
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for some deficiencies in the EnKF updating scheme, like filter inbreeding and the effect of

a limited sampling of uncertainty due to the finite ensemble size. Although localization

has already been used in different studies on the estimation of subsurface parameters,

there are still some open questions regarding the optimal choice of range parameters

for different variables. Another open questions concerns the relation of localization

parameters to ensemble variance. Adaptive covariance inflation was used for the first

time in conjunction with subsurface characterization and first results suggest that this

methodology is also well suited for groundwater modeling. Thus, this subject should be

investigated in more detail in further studies.

From these first detailed experiments on the use of EnKF in river-aquifer systems it

is concluded that data assimilation with EnKF is an interesting and promising tool to

improve the prediction capability of river-aquifer models. Of course, some of the results

were derived on the basis of idealized and simplified conditions. This holds, for example,

for the synthetic experiments on spatio-temporal variations of river bed properties. The

dynamics of sediment transport in natural river systems are usually very complex and

lead to distinct patterns of heterogeneity in the river bed (e.g., riffle-pool sequences).

Also the temporal variation of river sediments depends on many factors like the sediment

load of the river, morphological aspects of the river course and discharge characteris-

tics. This can, of course, lead to very complex spatio-temporal patterns of river bed

properties. Such patterns are only partly captured by the utilized reference scenarios

of this study and they also do not link the relationship between temporal and spatial

changes in the river bed. For further investigations on this topic it would therefore be

desirable to also generate the spatio-temporal patterns of river bed sediments on the

basis of hydrodynamic sedimentation models that could provide patterns which closer

resemble natural sediment dynamics. A further improvement towards more realistic

conditions of river-aquifer systems concern the generation of the hydraulic conductivity

fields. In this study, the ensembles of hydraulic conductivity were generated under a

Gaussian assumption which often does not reflect the true sedimentological structure

of alluvial systems which are often characterized by distinct geological structures such

as paleo-channels. Object-based generation algorithms for geological structures which

also account for the spatial arrangement of hydrofacies are becoming more and more

available. Such models offer the chance to reduce the model structural error during the

assimilation with EnKF what could lead to a better characterization of river-aquifer

systems. Of course, this would require further modifications to the EnKF assimilation

algorithm as has already been shown by Zhou et al. (2011) and Schöniger et al. (2012).

Another aspect that should deserve more attention in upcoming investigations is the

coupling between surface water and groundwater that is used in the forward model of

EnKF. In this study, the commonly applied leakage principle is used for the calculation
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of exchange fluxes between river and aquifer. However, more sophisticated methods

for the coupling of surface water and groundwater have been proposed and parameter

estimation with EnKF could also benefit from these more physically based approaches.

However, these approaches usually require a very detailed representation of the satu-

ration conditions underneath the river. This raises questions about the computational

effort of such approaches in a data assimilation framework and also about the stability

of such solutions when the unsaturated zone is represented in more detail because this

can also introduce more non-linearities in the forward model. Comparisons between

such approaches and the leakage principle with respect to data assimilation with EnKF

could clarify the merits and drawbacks of both methodologies. The joint assimilation of

hydraulic and thermal data that was applied in this study has already highlighted the

benefits of using multiple sources of information for the application of EnKF in river-

aquifer systems. Especially in this field, new measurement techniques are emerging and

one promising tool for the characterization of river-aquifer exchange is Distributed Tem-

perature Sensing (DTS). This techniques allows to retrieve temperature distributions

around streams with a high spatial and temporal resolution and is therefore well suited

as an additional information source in EnKF especially for river-aquifer models with a

high spatial resolution.



Appendix A

Algorithm for adaptive covariance

inflation

In accordance with Anderson (2007) a Bayesian updating scheme is used to calculate

the inflation factor λ for each assimilation step. In this updating scheme the simulated

ensemble estimate at observation points ψ̂, the measurement at observation points y0

and their respective variances σ2
ψ̂

and σ2y0 are used to estimate a new value of λ in

order to correct the model ensemble for effects of filter divergence. The basic updating

equation for the assimilation time step ta,i can be stated as:

p(λ, ta,i) ∼ p(y0 | λ) p(λ, ta,i−1) (A.1)

where p(λ, ta,i) is the posterior probability distribution of λ, p(λ, ta,i−1) is the prior

probability distribution and p(y0 | λ) is a likelihood term that describes the probability

that y0 is observed given a certain λ.

The prior distribution in Equation A.1 is assumed to follow a normal distribution:

p(λ, ta,i−1) = N (λ̄p, σ
2
λ,p) (A.2)

where the index p refers to the previous value of λ and σ2λ is the variance of λ.

It is also assumed that the prior of λ is identical to the posterior from the last assimilation

cycle. The likelihood term in Equation A.1 is also expressed as a normal distribution:

p(y0 | λ) = (
√

2πχ)−1 exp(−Dy
2/2χ2) (A.3)
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where Dy is the absolute distance between the simulated ensemble mean at observation

points ψ̂m and the measured value y0:

Dy =| ψ̂m − y0 | (A.4)

and χ is a measure for the variability of this distance for a certain value of λ:

χ =
√
λσ2

ψ̂
+ σ2

y0
(A.5)

Inserting the equations of the prior and the likelihood function into Equation A.1 gives:

p(λ, ta,i) ∼ (
√

2πχ)−1 exp(−Dy
2/2χ2) N (λ̄p, σ

2
λ,p) (A.6)

For the determination of the inflation factor λ̄ for the current assimilation cycle λ̄ is set

equal to the mode of Equation A.6 which is found by differentiating the right hand side

of A.6 and setting it to zero. This results in a cubic equation of the form:

x3 − (σ2y0 + λ̄ σ2
ψ̂

)x2 +
1

2
σ2λ σ

4
ψ̂
x − 1

2
σ2λ σ

4
ψ̂
Dy

2 = 0 (A.7)

where x = χ2. Solving this equation with the cubic formula and substituting the results

into Equation A.5 gives the value of λ for the respective observation.

The utilized algorithm for covariance inflation in this study can be summarized as follows:

1 Propagate the ensemble forward until the next observations y0 are available

2 Determine ψ̂m and σ2
ψ̂

from the ensemble

3 For each observation of y0 do the following steps:

(a) Determine Dy with Equation A.4

(b) Solve Equation A.7 for x and insert the result in Equation A.5 to determine

λ

4 From the distribution of λ calculate λ̄ and update the state-parameter vector Ψ

according to Equation 3.13

In the implementation of this algorithm the variance of the inflation factor σ2λ was set

to a constant value of 0.25 instead of using a model for the evolution of this parameter

as it was done in Anderson (2007). This was also suggested as an algorithmic variant by
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Anderson (2009). Additionally, a constraint was put on the values of λ̄ by setting values

of lower than 1 which could occur when the filter is very confident (i.e., low residuals)

to a value of 1.
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