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Abstract 
The aim of this study was to gain more profound knowledge on the transport and 

deposition of functionalized multi-walled carbon nanotubes (MWCNTs) in porous media. 

The use of 14C-labeled MWCNTs allowed investigations into very low concentrations and 

the determination of retention profiles. Transmission electron micrographs revealed that 

the MWCNTs exhibited average outer diameters of 10–50 nm and average lengths of up to 

several µm. The functionalization of the MWCNTs with nitric acid induced oxygen 

containing functional groups and reduced the amount of metal catalysts on the nanotubes. 

Since nanoparticles do not behave like solutes but rather like colloids, the applicability of 

the available experimental setups and procedures was evaluated for carbon nanotubes. The 

nanoparticles could not be injected using a sample loop or an irrigation head. Therefore, 

the MWCNTs were applied to the columns directly by a pump or a pipette, respectively. 

The effect of the input concentration (Co) and sand grain size on the transport and 

retention of MWCNTs was investigated in water-saturated sand columns at conditions 

unfavorable for attachment (repulsive electrostatic forces). These experiments were 

performed at very low Co (0.005–1 mg L-1), low ionic strength (1 mM KCl), and high flow 

rate (0.64 cm min-1). The breakthrough curves (BTCs) for MWCNTs typically did not 

reach a plateau, but exhibited an asymmetric shape that slowly increased during 

breakthrough. The retention profiles (RPs) exhibited a hyper-exponential shape with 

greater retention near the column inlet. The collected BTCs and RPs were simulated using 

a numerical model within the HYDRUS-1D code that accounted for both time- and depth-

dependent blocking functions on the retention coefficient. For a given Co, the depth-

dependent retention coefficient and the maximum solid phase concentration of MWCNTs 

were both found to increase with decreasing grain size. These trends reflect greater 

MWCNTs retention rates and a greater number of retention locations in the finer textured 

sand. The normalized concentration of MWCNTs in the effluent increased and the RPs 

became less hyper-exponential with higher Co due to enhanced blocking/filling of retention 

locations. This concentration dependency of MWCNT transport increased with smaller 

grain size because of the effect of pore structure and the shape of MWCNTs on their 

retention. In particular, MWCNTs have a high aspect ratio, and it was hypothesized that 

MWCNTs may create a porous network with an enhanced ability to retain further 

MWCNTs, especially in smaller grain-sized sand and at higher Co. Results demonstrate 

that model simulations should accurately account for observed behavior of both BTCs and 

RPs to make reliable predictions on MWCNT transport.  
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Investigations with more environmentally relevant conditions were conducted in 

water-unsaturated soil columns with undisturbed and repacked samples from two natural 

soils (loamy sand and silty loam) using low flow rates (0.008 cm min-1). Additionally, a 

field lysimeter experiment was performed to provide long-term information on a larger 

scale. In all experiments, no breakthrough of MWCNTs was detectable and more than 85% 

of the applied radioactivity was recovered in the soil profiles. No significant differences 

were found between the determined particle concentrations and the shape of the RPs of a 

repacked and an undisturbed column and two different soil types. The retention profiles 

exhibited a hyper-exponential shape with greater retention near the column or lysimeter 

inlet. They were successfully simulated using a numerical model that accounted for depth-

dependent retention. The high retention of MWCNTs in the soils was likely caused by the 

physical and chemical heterogeneity of the soils including a non-uniform pore size 

distribution, the low flow rate, and the water saturation degree.  

In conclusion, the results of the experiments under environmentally relevant 

conditions (unsaturated flow, low Co, undisturbed soil) indicated that soils may act as a 

strong sink for MWCNTs. Therefore, little transport of MWCNTs is likely to occur in the 

vadose zone, which implies a limited potential for groundwater contamination in the 

investigated soils. The effect of MWCNTs on the transport of environmental pollutants is 

an interesting topic for further research. Preliminary adsorption experiments with the 

organic pollutant chlordecone (CLD) on the loamy sand soil and the MWCNTs showed 

that CLD strongly adsorbed to both soil and MWCNTs. Thus, transport experiments 

should be performed to clarify the influence of MWCNTs on CLD transport.  
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Zusammenfassung 
Das Ziel dieser Arbeit war es, fundierte Kenntnisse über den Transport und die 

Deposition funktionalisierter mehrwandiger Kohlenstoffnanoröhren (MWCNTs) in 

porösen Medien zu gewinnen. Die Verwendung radioaktiv-markierter (14C) MWCNTs 

ermöglichte die Untersuchung sehr niedriger Konzentrationen und die Erfassung von 

Tiefenprofilen. Transmissionselektronenmikroskopische Aufnahmen zeigten, dass die 

MWCNTs äußere Durchmesser von durchschnittlich 10–50 nm und Längen von bis zu 

mehreren µm aufweisen. Die Funktionalisierung der MWCNTs mit konzentrierter 

Salpetersäure erzeugte sauerstoffhaltige funktionelle Gruppen und reduzierte den Gehalt an 

Metallkatalysatoren an den Nanoröhren. Da Nanopartikel sich nicht wie gelöste Stoffe 

sondern wie Kolloide verhalten, war es notwendig die Anwendbarkeit der vorhandenen 

Versuchsaufbauten für den MWCNT-Transport zu überprüfen. Der Eintrag der Partikel in 

die Säule mittels Probenschleife oder Beregnungskopf stellte sich als ungeeignet heraus. 

Aus diesem Grund wurden die MWCNTs mittels Pumpe bzw. Pipette direkt auf die Säule 

gegeben. 

Der Einfluss der Ausgangskonzentration (Co) und der Sand-Korngröße auf den 

Transport und die Deposition der MWCNTs wurde in wassergesättigten Sandsäulen 

untersucht. Dabei herrschten, aufgrund elektrostatischer Abstoßung, ungünstige 

Bedingungen für die Anlagerung der MWCNTs an die Sandoberfläche (attachment). Die 

Versuche wurden bei sehr niedrigen Ausgangskonzentrationen (0,005–1 mg L-1), niedrigen 

Ionenstärken (1 mM KCl) und hohen Fließraten (0.64 cm min-1) durchgeführt. Die 

Durchbruchskurven (BTCs) für die MWCNTs erreichten dabei kein Plateau sondern hatten 

eine asymmetrische Form mit einem langsamen Anstieg über die Zeit. Die Tiefenprofile 

(RPs) hatten eine hyper-exponentielle Form mit höherer Retention nahe dem 

Säuleneinlass. Die ermittelten BTCs und RPs wurden mit einem numerischen Modell 

innerhalb des HYDRUS-1D Codes simuliert. Dieses Modell berücksichtigte sowohl zeit- 

als auch tiefenabhängige „Blocking“-Funktionen des Retentionskoeffizienten. Bei 

gleichbleibender Co nahmen der tiefenabhängige Retentionskoeffizient und die maximale 

MWCNT-Konzentration in der festen Phase mit abnehmender Korngröße zu. Dies ist die 

Folge von höheren Retentionsraten und einer größeren Anzahl an Retentionsplätzen in 

feinerem Sand. Zunehmende Co führten zu einem Anstieg der MWCNT-Konzentration im 

Eluat und weniger hyper-exponentiellen Tiefenprofilen. Dieser Effekt ist auf erhöhtes 

„Blocking“/Auffüllen von Retentionsplätzen bei höheren Partikelkonzentrationen zurück 

zu führen. Diese Konzentrationsabhängigkeit des MWCNT-Transports nimmt aufgrund 
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des Einflusses der Porenstruktur und der Form der MWCNTs mit abnehmender Korngröße 

des Sandes zu. Insbesondere sind die MWCNTs in Längsrichtung deutlich größer als im 

Durchmesser, weshalb die Hypothese aufgestellt wurde, dass die MWCNTs ein 

zusätzliches poröses Netzwerk im Sand kreieren in dem weitere MWCNTs zurück 

gehalten werden können. Dabei wird erwartet, dass dieser Effekt in feinkörnigem Sand und 

bei hoher Co besonders ausgeprägt ist. Die Ergebnisse zeigen, dass Modellsimulationen 

sowohl das beobachtete Verhalten der Durchbruchskurven als auch der Tiefenprofile 

berücksichtigen müssen, um den MWCNT-Transport verlässlich vorherzusagen. 

Untersuchungen unter umweltrelevanteren Bedingungen wurden unter wasser-

ungesättigten Bedingungen in ungestörten und gepackten Proben zweier natürlicher Böden 

(lehmiger Sand und schluffiger Lehm) bei niedrigen Fließraten (0,008 cm min-1) 

durchgeführt. Zusätzlich sollte ein Feldlysimeterversuch Informationen über das 

Langzeitverhalten der MWCNTs auf einer größeren Skala liefern. In keinem der Versuche 

waren MWCNTs im Eluat messbar und mehr als 85% der Radioaktivität wurden im 

Tiefenprofil nachgewiesen. Dabei wurden keine signifikanten Unterschiede in den 

gemessenen Partikelkonzentrationen und den Tiefenprofilen zwischen gestörtem und 

ungestörtem Boden sowie den beiden Bodentypen gefunden. Die Tiefenprofile waren 

hyper-exponentiell mit höherer Retention nahe des Säulen- bzw. Lysimetereinlasses und 

wurden erfolgreich mit einem numerischen Model simuliert das tiefenabhängige Retention 

annimmt. Die hohe Retention der MWCNTs in den Böden war vermutlich bedingt durch 

die physikalische und chemische Heterogenität der Böden (z.B. ungleichmäßige 

Porengrößenverteilung), die niedrige Fließrate und den Wassersättigungsgrad. 

Insgesamt lassen die Resultate der umweltrelevanten Versuche (ungesättigter Fluss, 

niedrige Co, ungestörter Boden) vermuten, dass Böden als starke Senke für MWCNTs 

fungieren. Daher wird nur ein geringer Transport der MWCNTs in der vadosen Zone und 

damit eine geringe Gefahr der Grundwasserkontamination in den untersuchten Böden 

erwartet. Überdies ist der Einfluss der MWCNTs auf den Transport von 

Umweltschadstoffen ein interessantes Thema für weitere Untersuchungen. Erste 

Adsorptionsversuche mit dem organischen Schadstoff Chlordecon (CLD) an lehmigen 

Sandboden und MWCNTs zeigten eine starke Adsorption von CLD an beide 

Adsorbenzien. Basierend darauf sind Transportversuche notwendig um den Einfluss der 

MWCNTs auf den CLD-Transport zu klären. 
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1. Introduction 
Nanotechnology is a relatively new and rapidly developing area of industrial 

production and scientific research (Farré et al., 2009). Within this field of interest, 

nanoparticles (NPs) have gained more and more attention because of the increasing ability 

to synthesize, modify, and use these materials (Nowack and Bucheli, 2007). In addition, 

concerns about their potential health effects have risen. Nanoparticles exhibit special 

physico-chemical properties caused by their small size and the fact that 40–50% of the 

atoms reside on the NP’s surface (Farré et al., 2009; Nel et al., 2006). The term 

nanoparticle is not strictly defined, but among researchers there is a consensus that 

particles with at least one dimension smaller than 100 nm are called nanoparticles 

regardless of their chemical composition (Klaine et al., 2008; Nowack and Bucheli, 2007; 

Wiesner et al., 2006). In general, there are various types of nanoparticles with differences 

in their chemical compositions and structures, e.g., silver NPs, titanium dioxide NPs, nano 

zerovalent iron, fullerenes, and carbon nanotubes. Considering the increasing use of 

synthetic NPs in industrial and household applications, there is no doubt that they can be 

released into the environment (Boxall, 2007; Lecoanet et al., 2004). Thus, besides studies 

on ecotoxicity, profound information on the environmental fate of engineered NPs is 

needed. This thesis is focusing on the transport and deposition of carbon nanotubes 

because they are one of the most commonly used engineered nanoparticles (Tian et al., 

2012) and their production and commercial use are rising continuously (Zhang et al., 

2011).  

 

1.1 Carbon nanotubes 
Carbon nanotubes (CNTs) are a relatively new class of nanoparticles. The first 

public description of their synthesis was in 1991 (Iijima, 1991). Later, CNTs were found in 

the melt water of a 10,000 year old Greenland ice core indicating that they are airborne 

materials of natural origin and also present in the contemporary air (Murr et al., 2004). 

Nevertheless, especially engineered CNTs are of interest because their annual global 

production is above several thousand tons (De Volder et al., 2013). 

 

Properties 

Two types of CNTs (Figure 1) are most commonly distinguished and produced: 

single-walled carbon nanotubes (SWCNTs, Figure 1a) are individual graphene tubes and 
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multi-walled carbon nanotubes (MWCNTs, Figure 1b) are tubes within tubes consisting of 

more than two carbon walls (Sinnott, 2002). In the following, the abbreviation CNTs 

includes both SWCNTs and MWCNTs.  

 

 
 
Figure 1. Schematic illustrations of a single-walled carbon nanotube (a) and a multi-
walled carbon nanotube (b). Reprinted from Pillay (2012).  
 

 

In contrast to the majority of known nanoparticles, CNTs are not spherical, but 

needle-shaped particles (Iijima, 1991; Mauter and Elimelech, 2008). With diameters 

between 10 and 50 nm and lengths of up to several µm, CNTs exhibit a high aspect ratio 

(Jaisi et al., 2008; Petersen et al., 2011) and a high strength-to-weight ratio (Maynard, 

2007). In principle, CNTs are rolled up graphene sheets composed of sp² carbon atoms 

arranged in fused benzene rings (Mauter and Elimelech, 2008; Petersen et al., 2011). 

Carbon nanotubes exhibit characteristic electronic, chemical, and physical properties (Liu 

et al., 2009; Mattison et al., 2011), e.g., excellent thermal and electrical conductivities 

(Maynard, 2007). They also significantly increase modulus and strength of plastics 

(Baughman et al., 2002). Furthermore, CNTs act as strong adsorbents for organic 

pollutants (Chen et al., 2007; Li et al., 2012a; Lu et al., 2005; Peng et al., 2003).  

 

Synthesis 

To date, there are several methods for CNTs synthesis available (e.g., arc-discharge 

evaporation, catalytic chemical vapor deposition, pulsed laser vaporization of graphite, and 

high-pressure CO decomposition). The most common procedure is the catalytic chemical 
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vapor deposition (De Volder et al., 2013; Jorio et al., 2008) although all of these methods 

involve high temperatures and often result in substantial metal impurities (Baughman et al., 

2002). These residual metal catalyst particles (e.g., Co, Fe, Ni) may influence the 

properties of CNTs like sorption of organic chemicals, electrical conductivity, and toxic 

potential (Hull et al., 2009; Li et al., 2012a; Pumera, 2007).  

 

Modification 

In general, carbon nanotubes are very hydrophobic and aqueous suspensions can 

only be stabilized by adding dispersing agents (e.g., surfactants or polymers) or by 

modification/functionalization of CNTs (Batley et al., 2012; Jiang et al., 2003; Tian et al., 

2010). Polymer-functionalization for example enables the embedding of CNTs into 

nanocomposites (Sun et al., 2002) and oxidation with strong acids (e.g., nitric acid) 

enhances the stability of CNTs in aqueous suspensions due to the introduction of 

functional groups (Smith et al., 2009; Sun et al., 2002). These acid treatments also remove 

metal impurities but can cause other impurities and shortening of CNTs (Baughman et al., 

2002). In addition, the application of a strong physical force, e.g., sonication, is needed to 

separate CNT agglomerates and to produce homogeneous dispersions (Mauter and 

Elimelech, 2008).  

 

Applications 

To date, CNTs are used in numerous commercial applications: as filler material in 

various nanocomposites, e.g., for sport products, antistatic coatings or aerospace and 

automotive applications (De Volder et al., 2013; Hussain et al., 2006; Sangermano et al., 

2008; Schlagenhauf et al., 2012; Sun et al., 2002), in solar cells, field emitter displays, and 

as catalysts converting endothermic reactions to exothermic which reduces the temperature 

and improves the selectivity of the reaction (Mauter and Elimelech, 2008). Additionally, 

numerous potential applications for CNTs including conductive and high-strength 

composites, energy storage and energy conversion devices, sensors, radiation sources, 

hydrogen storage media, semiconductor devices, probes, and interconnects have been 

proposed (Hussain et al., 2006). Furthermore, CNTs were considered for a variety of bio-

applications (Sun et al., 2002). Jorio et al. (2008) number the total market share of carbon-

fiber composites to nearly one billion US dollars subdivided into 70% aerospace, 18% 

sporting goods, 7% industrial equipment, 2% marine, and 3% miscellaneous. 
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Carbon nanotubes are also prospects as adsorbents in water filtration membranes 

(e.g., desalination membranes) (Mauter and Elimelech, 2008). Considering their high 

sorption capacity for metal ions, radionuclides, and organic compounds, CNTs could also 

be used for soil and groundwater remediation (Pan and Xing, 2012). Due to their high 

aspect ratio, large accessible surface area, and well developed mesopores, CNTs possess 

the potential to adsorb bacterial pathogens, natural organic matter, and cyanobacterial 

toxins from water, making CNTs interesting for drinking water purification (Upadhyayula 

et al., 2009). But this use has not yet been   considered for large scale applications because 

of its high costs and the risk of CNT release into the environment (Upadhyayula et al., 

2009). Up to now, disposal and reuse procedures for CNTs are not available but required 

(De Volder et al., 2013). 

 

Risks 

This widespread use and a lack of regulations for CNT disposal can undoubtedly 

result in their release into the environment, especially into soils and waters (Jaisi and 

Elimelech, 2009; Klaine et al., 2008; Köhler et al., 2008; Nowack and Bucheli, 2007). 

Therefore, it is essential to investigate the ecotoxicity and environmental fate of CNTs. 

Several studies provide information on the environmental risks of CNTs, but there 

is still a lack of knowledge especially concerning their ecotoxicity (Eckelman et al., 2012). 

The ecotoxicity of CNTs may depend on their concentration, size, shape, functionalization, 

the amount and location of metal impurities, and the exposure medium (e.g., soil, 

sediment, or water). Kang et al. (2008) demonstrated that SWCNTs exhibited significantly 

greater toxic effects towards bacteria than MWCNTs. Furthermore, modification of CNTs 

may also result in more reactive and thus more toxic particles (Simon-Deckers et al., 

2009). Simon-Deckers et al. (2009) also state that the toxicity of MWCNTs towards 

bacteria was independent of their purity. They found a bactericidal effect of both purified 

and iron containing MWCNTs on a specific strain of Escherichia coli due to damage of the 

cell membrane and hypothesize that the location of metal impurities (e.g., inside the tubes) 

affects their ecotoxicity (Simon-Deckers et al., 2009). Another study showed that metal 

impurities released from carbon nanomaterials exhibited toxic effects towards different 

aquatic organisms (Hull et al., 2009). 

Some studies revealed that there was no acute toxicity and negligible absorption of 

SWCNTs and MWCNTs spiked to soil or sediments into the cellular tissues of 

oligochaetes (Petersen et al., 2008b), two estuarine invertebrates (Ferguson et al., 2008; 
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Petersen et al., 2010), an earth worm (Petersen et al., 2008a), and a lugworm (Galloway et 

al., 2010). For MWCNTs dispersed in water only, Petersen et al. (2009a) found 

accumulation in the gut of a water flea but no absorption into cellular tissues. Direct 

exposure of CNTs via intratracheal instillation or subcutaneous implantation caused toxic 

effects to rats, mice, and guinea pigs (Grubek-Jaworska et al., 2006; Koyama et al., 2006; 

Lam et al., 2004; Warheit et al., 2004). Another study reported toxic effects of SWCNTs 

dispersed in water to rainbow trout (Smith et al., 2007) and an estuarine copepod 

(Templeton et al., 2006). Schäffer et al. (2011) found an incorporation of MWCNTs by 

algae, daphnia, fish, and benthic worms after exposure to contaminated medium. The 

MWCNTs were also found in the cells of the organisms and were mostly, but not 

completely, removed when the organisms were transferred to MWCNTs free medium 

(Schäffer et al., 2011). 

At high concentrations, CNTs were found to cause growth inhibition of green algae 

due to shading and agglomeration of cells with CNTs (Schwab et al., 2011). In addition, 

MWCNTs can absorb to the root surfaces of rice plants and may thus constrain uptake of 

water and nutrients (Lin et al., 2009). In contrast, another study revealed that MWCNTs 

promoted germination of tomato seeds and referred this to penetration of MWCNTs into 

the seeds leading to enhanced water uptake (Khodakovskaya et al., 2009). In conclusion, 

these studies are somehow contradictory and further information on the ecotoxicological 

effects of CNTs, especially at realistic exposure scenarios, is needed. 

 

Carbon nanotubes and the environment 

There is no doubt that MWCNTs, and engineered NPs in general, can finally be 

released to the environment through point sources (e.g., production facilities, landfills, or 

wastewater treatment plants), nonpoint sources (abrasion of materials containing 

MWCNTs), accidental release (e.g., during transport), or intentional release (e.g., for 

groundwater remediation) (Jaisi and Elimelech, 2009; Köhler et al., 2008; Nowack and 

Bucheli, 2007; Pan and Xing, 2012).  

In general, the environmental behavior of nanoparticles is highly controlled by their 

colloidal stability. Aggregation leads to larger particles that are trapped in pore spaces or 

settled through sedimentation (Nowack and Bucheli, 2007). Thus, it is more likely that 

single particles and small aggregates enter the groundwater compared to large aggregates. 

Therefore, stabilization of nanoparticles is a key factor controlling their environmental 

fate. Functionalized CNTs are of special interest because the modification does not only 
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increase their stability in aqueous suspensions but also increase their mobility in the 

environment (Mattison et al., 2011). Finally, CNTs can be released as agglomerates or as 

individual particles. Recently, the release of free-standing individual CNTs from CNT-

embedded nanocomposites was demonstrated (Schlagenhauf et al., 2012).  

 

Interaction with organic pollutants 

Since organic pollutants tend to adsorb onto CNTs (Chen et al., 2007; Li et al., 

2012a; Lu et al., 2005; Peng et al., 2003), CNTs may affect the fate and mobility of these 

chemicals in natural environments. Adsorption of organic pollutants onto CNTs may 

decrease their bioavailability (Petersen et al., 2009b) and decrease toxic effects to 

organisms. Nevertheless, a CNT-facilitated transport (co-transport) of organic pollutants 

could lead to enhanced migration of contaminants (Cheng et al., 2005) and increase the 

risk of groundwater contamination. After long periods of agricultural use, pollutants 

adsorbed to soils may be remobilized by CNTs introduced to this soil. Chlordecone (CLD), 

for example, is an organochlorine pesticide and was frequently applied from 1972 to 1993 

in large amounts to banana plantations in the French West Indies resulting in a long-term 

contamination of soils with this persistent organic pollutant (Levillain et al., 2012). 

Because of the high sorption capacity of CNTs, it is possible that the CLD might be 

remobilized or even more immobilized in these soils in the presence of CNTs. Therefore, 

simultaneous investigations of CNTs and diverse emerging organic pollutants in porous 

media are necessary in order to evaluate the co-dependencies. 

 

Transformation 

So far, CNTs were believed to be one of the most biologically non-degradable man-

made materials (Lam et al., 2004). But recently, degradation in the presence of horseradish 

peroxidase and myeloperoxidase, respectively, was proven (Som et al., 2011). Thus, a 

transformation of CNTs in the environment might also be possible and may affect their 

properties, fate, persistency, bioavailability, and ecotoxicity (Som et al., 2011). In fact, the 

CNTs were significantly shortened during the degradation process (Russier et al., 2011) 

which may influence their transport behavior. In addition, Liu et al. (2010) found that 

degradation of CNTs depends on their surface functionalization: carboxyl functionalized 

CNTs were shortened and transformed into ultrafine carbonaceous debris whereas 

unmodified, ozone-treated, and aryl-sulfonated CNTs were not degradable. 
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To assess potential risks to the environment, it is important to gain knowledge on 

the environmental fate of CNTs. However, the fate and effects of CNTs in the environment 

are still not well understood (Saleh et al., 2008). The transport of CNTs through porous 

media is therefore of considerable interest regarding potential risks to organisms and 

human health (Mattison et al., 2011). Thus, information on transport and deposition of 

(functionalized) CNTs in porous media, especially undisturbed soils, is needed.  

1.2 Transport of carbon nanotubes in porous media 
To date, there are numerous studies available reporting on CNT transport in 

different porous media and its sensitivity to a diversity of experimental conditions 

including ionic strength (IS), pore water velocity, and collector grain size (Jaisi and 

Elimelech, 2009; Jaisi et al., 2008; Liu et al., 2009; Mattison et al., 2011; Tian et al., 2010; 

Tian et al., 2012). Despite this research, transport and retention processes for CNTs are still 

not completely understood (Mattison et al., 2011). The following chapters summarize the 

most important research results and knowledge gaps. 

 

1.2.1 Transport at water-saturated conditions 

Several of the aforementioned studies were addressed to the transport of SWCNTs 

and MWCNTs in packed sand columns under water-saturated conditions. In general, the 

mobility of stabilized particles will be higher compared to non-stabilized ones and the 

stability strongly depends on the solution chemistry. Jaisi al. (2008) showed that SWCNT 

deposition due to filtration decreased with decreasing ionic strength, decreasing valence of 

the ions, and the presence of humic acid. The stabilizing effect of natural organic matter 

was reported (Hyung et al., 2006) for aqueous CNTs suspensions and Wang et al. (2008) 

also found enhanced mobility of CNTs in porous media when the particles were coated 

with humic acid. Furthermore, SWCNTs stabilized with sodium dodecylbenzenesulfonate 

(SDBS) exhibited high mobility in water-saturated quartz sand when the columns were 

flushed with SDBS (Tian et al., 2010; Tian et al., 2011). 

The effect of the flow rate on MWCNT transport was investigated by Liu et al. 

(2009). They reported that the transport of MWCNTs decreased significantly with 

decreasing flow rate and that including a blocking term into the model significantly 

improved the fit of the normalized effluent concentration which slowly increased with 

time. The importance of blocking for MWCNT retention was also stated by Mattison et al. 

(2011) together with a reduction of MWCNT transport with decreasing collector grain size. 
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The chemical composition of the porous media also affects the transport of MWCNTs. 

Tian et al. (2012) proposed a high importance of the surface charge on collector grains and 

CNTs. They state that functionalized CNTs will be strongly retained in natural porous 

media containing high amounts of positively charged metal oxihydroxides due to the 

negatively charged carboxylic groups.  

The effect of particle shape and size was also investigated for CNTs. One of the 

first publications compared the transport of needle-shaped SWCNTs and spherical fullerol 

NPs (Lecoanet et al., 2004). They found a high breakthrough of SWCNTs which occurred 

faster than for fullerol and referred this to an alignment of the SWCNTs and thus 

lengthwise transport through the pores (Lecoanet and Wiesner, 2004). In addition, Wang et 

al. (2012b) demonstrated that retention was higher for MWCNTs with lengths greater than 

8 µm compared to shorter MWCNTs. O’Carroll et al. (2013) referred lower mobility of 

MWCNTs with smaller diameter compared to those with larger diameters to enhanced 

Brownian motion and thus more collisions. 

All of the above mentioned studies determined a certain mobility of CNTs in quartz 

sand in dependence of the ambient conditions. But none of these studies considered the 

effect of CNT input concentration on their transport behavior. Furthermore, the CNT input 

concentrations investigated so far were more than nine orders of magnitude higher than it 

was estimated for most environmentally relevant scenarios (Gottschalk et al., 2009). This 

is an important aspect to consider because the input concentration has been demonstrated 

to significantly influence colloid deposition (Bradford and Bettahar, 2006; Bradford et al., 

2009) and this concentration effect was also found to depend on the grain size (Bradford 

and Bettahar, 2006). In general, transport studies at low CNT concentrations are of interest 

for fundamental research because initial model estimates predict very low CNT 

concentrations in soils in the range of several ng kg-1 (Gottschalk et al., 2009; Mueller and 

Nowack, 2008). Although one has to consider that environmental concentrations of CNTs 

will depend on their source and on hydro-geochemical conditions. However, recent studies 

only investigated input concentrations significantly higher than 1 mg L-1 (Jaisi and 

Elimelech, 2009; Jaisi et al., 2008; Liu et al., 2009; Mattison et al., 2011; Tian et al., 2010; 

Tian et al., 2012).  

In addition, most of the studies on CNT mobility did not determine retention 

profiles (RPs), but only breakthrough curves (BTCs). Thus, information on retention 

profiles for CNTs is still very scarce (Wang et al., 2012b), although retention profiles 

provide needed information on the mass balance and give useful insight on the controlling 
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mechanisms of retention (Bradford and Bettahar, 2005). Furthermore, breakthrough curves 

and retention profiles both need to be accurately simulated by numerical models in order to 

reliably predict environmental fate and risk of colloids (Bradford et al., 2003).  

Columns filled with quartz sand serve as simplified model systems for 

investigations of fate and mobility of colloids or chemicals. Nevertheless, investigations of 

natural porous media, like undisturbed soil, are necessary. To date, the transport of CNTs 

in field soils has received very limited attention (Fang et al., 2013; Jaisi and Elimelech, 

2009). One of the first studies available on SWCNTs transport in repacked soil under 

water-saturated conditions only used a part of the sand fraction (420–1000 µm) of this soil 

(Jaisi and Elimelech, 2009). They observed only little breakthrough of functionalized 

SWCNTs and concluded that straining was a major reason for the enhanced retention of 

SWCNTs in soil. 

In general, soil is expected to be a more important sink for nanoparticles than sand 

because its chemical composition and pore size distribution are more heterogeneous (Pan 

and Xing, 2012). However, preferential flow paths in soils (e.g., root or earthworm 

channels) (Camobreco et al., 1996) and natural organic matter dissolved in pore water 

(Jaisi and Elimelech, 2009) may enhance transport through the vadose zone. Undisturbed 

soil cores and lysimeter are therefore much closer to environmental conditions than packed 

sand columns. Up to now, there was no study found on the transport and retention of 

MWCNTs in undisturbed soil cores or lysimeter.  

 

1.2.2 Transport at water-unsaturated conditions 

To get closer to environmental conditions, transport processes under unsaturated 

conditions have to be considered. These are much more complex than processes in 

saturated porous media because of the presence of the air phase (Gargiulo et al., 2007b; 

Tian et al., 2011). In unsaturated porous media, higher retention is expected and retention 

mechanisms can differ to some extent compared to water-saturated conditions. More 

details on transport mechanisms operating under water-unsaturated conditions can be 

found in Chapter 2.2. Since unsaturated conditions are present in the vadose zone, it is 

important to gain knowledge on the mobility of colloids and NPs in unsaturated porous 

media in order to assess the risk of groundwater contamination. Unfortunately, information 

on CNT transport in water-unsaturated porous media is very rare (Tian et al., 2011). In line 

with the literature review for this thesis, there was only one study found on the transport of 

CNTs in unsaturated quartz sand. Tian et al. (2011) used SDBS-dispersed SWCNTs and 
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reported high mobility in three different sized sands. They also stated that no attachment to 

the air-water interface took place in the presence of surfactants and that retention only 

occurred at water contents < 0.1. Since SDBS solution is not expected to be present in 

natural environments, studies at more realistic scenarios are required. 

 

1.3 Chlordecone 
Chlordecone (CLD, Figure 2) is a very stable molecule, with low water solubility 

and a very low volatility. It is one of the most persistent organochlorine pesticides 

(Cabidoche and Lesueur-Jannoyer, 2012) and is very hydrophobic. CLD strongly adsorbs 

onto natural organic matter (high Koc) (Cabidoche and Lesueur-Jannoyer, 2012). Almost 

20 years after the prohibition of CLD, soils, fresh and coastal waters, aquatic biota, and 

crops in the French West Indies are still contaminated due to its long-term application in 

the 1970s and 80s (Cabidoche and Lesueur-Jannoyer, 2012).  

 

 
Figure 2. Molecular structure of chlordecone. Reprinted from Hammond et al. (1979). 

 

The insecticide was highly retained in soils of the area of application, though the 

persistence was found to depend on the soil type. Cabidoche et al. (2009) projected 

centuries up to a millennium for the remediation of contaminated soils through lixiviation. 

Cabidoche and Lesueur-Jannoyer (2012) showed that soil contamination resulted in an 

uptake of CLD by crops, the magnitude depending on the type of soil and crop. They state 

that accumulation in the plants was too low to consider them for phytoremediation but high 

enough to affect food production. Due to its high hydrophobicity, CLD tends to 

bioaccumulate along the food chain (Coat et al., 2006). In the French West Indies, a high 

CLD contamination of various wild and farmed aqueous species was found indicating that 

the main route of contamination for humans is food (Coat et al., 2006). As mentioned in 

Chapter 1.1, CNTs act as strong adsorbents for organic chemicals and because of its 

structure and properties, CLD is expected to highly adsorb onto CNTs. 
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1.4 Objectives and outline of the thesis 
The aim of this study was to provide new insights into the environmental behavior 

and fate of functionalized MWCNTs by investigating their transport and retention in 

saturated and unsaturated porous media. In contrast to the respective literature, this study 

investigated the transport of MWCNTs at very low, environmentally relevant 

concentrations. 

 Characterization of carbon nanotubes. Since the physico-chemical properties of 

nanoparticles influence their colloid stability and thus their mobility, the characterization 

of functionalized MWCNTs prior to transport experiments was important (Chapter 4.1) in 

order to obtain information on these parameters.  

 Transport and retention of multi-walled carbon nanotubes in saturated porous 

media. Evaluating the effect of input concentration and grain size on the transport of 

MWCNTs in water-saturated quartz sand columns was one important objective of this 

study (Chapter 4.2). In addition, this study intended to provide new essential information 

on MWCNT deposition by determining retention profiles in addition to the breakthrough 

curves. The numerical modeling of the retention profiles and the breakthrough curves 

provides information on MWCNT mass balance and retention mechanisms. Finally, this 

study highlights the importance of considering input concentration and retention profiles 

for the reliable prediction of MWCNT transport and fate. 

 Transport of carbon nanotubes in natural soils. Another goal was to work on 

scenarios that were more environmentally relevant compared to other studies, e.g., 

undisturbed soil, unsaturated conditions, and low flow rates. To date, only a few studies 

have reported on CNT transport under unsaturated conditions and in (undisturbed) soils, 

respectively. This study aimed to improve our knowledge of the transport and retention of 

MWCNTs in natural undisturbed soils, particularly under water-unsaturated conditions 

(Chapter 4.3). This includes a comparison of two soil types (silty loam and loamy sand) in 

laboratory column experiments and a field lysimeter study.  
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2. Theoretical background 
In order to understand the processes underlying MWCNT transport, some 

theoretical background knowledge is inevitable. Since nanoparticles behave basically like 

colloids, understanding of colloidal processes is also important to understand the 

environmental fate and risk of nanoparticles (Pan and Xing, 2012). The most important 

theories for the observed behavior of MWCNTs are summarized in this chapter. 

 

2.1 Stability of colloids 
The transport of colloids strongly depends on the stability of their suspensions 

because aggregation results in increased particle sizes and thus enhanced deposition 

(Grassian, 2008). In general, the aggregation/deposition of NPs is controlled by 

interactions between particles themselves as well as between particles and collector 

surfaces (Petosa et al., 2010). Normally, the surfaces of colloids in aqueous suspension are 

charged and therefore attract the counter ions of the liquid which form an electric double 

layer around the particle (Grassian, 2008). This electric double layer consists of a layer 

strongly associated with the surface, the Stern layer and a diffusive layer (Yates et al., 

1974). The Derjaguin–Landau–Verwey–Overbeek (DLVO) theory describes the stability 

of a suspension by calculating the total interaction energy (Van Eerdenbrugh et al., 2008). 

The total interaction energy is the sum of repulsive (electrostatic double-layer interactions) 

and attractive forces (van der Waals forces) impacting a nanoparticle when converging 

another particle or a collector surface (Petosa et al., 2010).  

Figure 3 shows the repulsive and attractive forces as well as the resulting total 

interaction energy as a function of distance between interacting particles or particles and 

surfaces. If repulsive forces are dominating, the interaction energy shows positive values 

and the suspension is stable. In case of dominating attractive forces, the DLVO model 

contains a primary and a secondary minimum separated by an energy barrier. The energy 

barrier controls particle aggregation by its height (Petosa et al., 2010).  
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Waychunas, 2001). Since the DLVO theory was originally developed for spherical 

particles, it has its limitations for CNTs (Tian et al., 2011) and there is, to my knowledge, 

no theory available for tubular-shaped particles. 

In summary, a NP suspension is unstable when the total free energy of the system 

decreases and the particles aggregate (Wiesner and Bottero, 2007). Because of their small 

size, NPs are expected to be less stable compared to colloids and thus, less mobile 

(Grassian, 2008). This makes the transport of nanoparticles more complex than for 

microscale particles (Lin et al., 2010).  

 

2.2 Transport of colloids 
Transport of colloids is mainly controlled by the physico-chemical processes of 

interception, Brownian diffusion, and sedimentation (Lin et al., 2010). The contact 

between colloids in the fluid streamlines and the collector grains is called interception 

(Grassian, 2008). Sedimentation occurs when the density of the colloids exceeds the 

density of the fluid and the colloids move vertically out of the streamlines and towards the 

collector grains (Grassian, 2008). Brownian motion is the thermal enhanced random 

motion of (small) particles (Grassian, 2008). In addition, NPs can be physically retained by 

pore straining which is the deposition of particles or aggregates in pores too small for them 

to pass (Lin et al., 2010). These processes are illustrated in Figure 4 for spherical particles. 
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Figure 4. Scheme of filtration mechanisms of colloids (small black spheres) in porous 
media. The dotted lines represent the fluid streamlines and the black lines the particle 
paths. Colloids can attach to the collector through gravitational sedimentation (a), 
interception (b), and Brownian diffusion (c). Large particles or aggregates may be 
physically retained by small pores (straining, d). Reprinted from Lin et al. (2010). 

 

Because of their small size, the dominant mechanism of NP transport is supposed to 

be diffusion (Lin et al., 2010). The high diffusivity of NPs increases the number of 

collisions with the collector grains and enhances aggregation (Lin et al., 2010). The 

filtration of particles by the porous medium is mainly controlled by physico-chemical 

colloidal interactions between particles and surfaces which is influenced by the solution 

chemistry (e.g., pH, ionic strength, organic carbon content), particle size, fluid velocity, 

collector grain size, and water temperature (Lin et al., 2010). Nevertheless, the shape of 

nanoparticles and colloids also strongly influences their stability and transport (Pan and 

Xing, 2012). 

 



Theoretical background 

16 
 

2.2.1 Transport processes in saturated porous media 

Since saturated porous media consist of a water phase and a solid phase, particles 

can be present in the water phase and at the solid-water interface and their mobility is 

influenced by particle-particle and particle-solid interactions (Grassian, 2008). The main 

mechanisms for colloid removal from the water phase are solid-water interface attachment 

and pore straining (Grassian, 2008). Attachment is the fixation of colloids after collision 

with collector grains (Bradford et al., 2004) and is controlled by the physico-chemical 

processes described in Chaper 2.2 and in Figure 4. In general, particles with a surface 

charge opposite to the porous media will have low mobility because they will be attracted 

by the surfaces (Grassian, 2008). At conditions unfavorable for attachment (dominating 

repulsive forces), pore straining is the major mechanism for colloid retention in porous 

media and is controlled by the particle size and the pore size distribution (Grassian, 2008). 

 

2.2.2 Transport processes in unsaturated porous media 

In unsaturated porous media, the presence of a third phase, the air phase, is 

expected to limit transport and to make transport processes more complicated compared to 

saturated conditions because additional retention mechanisms are operating (Gargiulo et 

al., 2007b). The following mechanisms of colloid retention occur in unsaturated porous 

media: attachment to the solid-water and the air-water interface, pore straining, and film-

straining (Torkzaban et al., 2008). Pore straining can be enhanced compared to saturated 

conditions because large pores are already drained in unsaturated porous media and thus 

not accessible. In partially water-saturated porous media, thin water films are formed 

around the grain surfaces and influence the particle transport. If the water film is thick 

enough compared to the particle size, the colloids will not attach to the collector grains and 

be transported to deeper layers. If the colloid size exceeds the water film thickness, 

particles are retained by the so called film-straining (Wan and Tokunaga, 1997). 

 

2.3 Colloid filtration theory 
The classical colloid filtration theory (CFT) is a very common approach to help 

understanding and predicting the transport of colloids, bacteria, and nanoparticles in 

porous media (Lin et al., 2010; Nelson and Ginn, 2005). It is based on the attachment of 

colloids to the solid-water interface of a single spherical grain collector and neglects the 

influence of pore structure (Bradford et al., 2006). The CFT includes a first-order 
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attachment coefficient to describe a spatially constant deposition and allows the numerical 

modeling of exponential retention profiles (Bradford et al., 2006). 

The CFT is based on the one-dimensional advection-dispersion equation (ADE) 

with terms for one site kinetic retention and a total mass balance defined as (Harvey and 

Garabedian, 1991): 

 

 
 

(1) 

 

where θ [-] is the volumetric water content, ρ [ML-3, where M and L denote units of 

mass and length, respectively] is the bulk density of the porous media, t [T; T denotes units 

of time] is the time, x [L] is the spatial coordinate, q [LT-1] is the flow rate, C [NcL−3, 

where Nc is the number of particles] is the particle concentration in the aqueous phase, S 

[NcM−1] is the solid phase particle concentration, D [L²T−1] is the hydrodynamic dispersion 

coefficient, and k [-] is the attachment coefficient. 

The attachment coefficient, k is given as (Bradford et al., 2006): 

 

 
(2) 

 

where dc [L] is the mean diameter of the collector grains, η is the experimentally 

determined single collector efficiency, more precisely the frequency of contact between 

particles and the solid phase, and α [-] is the sticking efficiency (the quantification of 

actual attachment of colloids on collector grains) (Nelson and Ginn, 2005). In general, the 

CFT defines the theoretical single collector efficiency as sum of the contact efficiencies 

due to interception, sedimentation, and diffusion (Liu et al., 2009). 

Unfortunately, the CFT cannot fully explain observed transport behavior of 

nanoparticles because it is basically valid for favorable attachment conditions and different 

mechanisms are operative under conditions that are unfavorable for attachment (Bradford 

et al., 2006). The CFT is specially limited for particles with a high aspect ratio because it 

assumes collectors and colloids to be spherical (Liu et al., 2009). Since the collision 

efficiency of colloids increases with increasing aspect ratio (Salerno et al., 2006), not only 

the processes covered by CFT (e.g., gravitational sedimentation, Brownian diffusion and 

interception) but additional physical processes are important (Pan and Xing, 2012) to 

understand the transport of nanoparticles. 
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2.4 Extension of colloid filtration theory 
It is known that the CFT has some limitations (Bradford et al., 2004). For example, 

it cannot describe a tailing of the breakthrough curve (Mattison et al., 2011) or a hyper-

exponential shape of the retention profile (Bradford and Bettahar, 2006). Therefore, it is 

necessary to extend the CFT by further mechanisms controlling colloid transport in porous 

media (Bradford et al., 2003). The numerical simulations are more accurate when further 

processes of colloid/nanoparticle transport and retention are included but the mathematical 

model will become more complex (Pan and Xing, 2012). Therefore, only the most 

important model assumptions for the study presented in this thesis are summarized in this 

chapter. 

The solid phase particle mass balance equation corresponding to the above 

described ADE is given as (Gargiulo et al., 2007a):  

 

 
 

(3) 

 

where k1 [T-1] is the first-order retention coefficient, k2 [T-1] is the first-order 

detachment coefficient, and ψ [-] is a dimensionless function to account for time and 

depth- dependent retention. When ψ is equal to 1, the CFT, assuming only attachment and 

detachment, applies. In general, tailing of the BTC is a hint for detachment (Mattison et al., 

2011). 

 

2.4.1 Straining  

As mentioned in Chapter 2.2, straining (Figure 4) is the retention of larger particles 

or aggregates in smaller or dead-end pores (Lin et al., 2010). It is especially important at 

unfavorable attachment conditions and can explain some of the limitations known for CFT 

(Bradford et al., 2006). Straining is an important process governing NP retention in quartz 

sand and soil under water-saturated conditions (Jaisi and Elimelech, 2009; Mattison et al., 

2011). Straining of spherical colloids increases with decreasing water content and 

decreases with increasing flow rate (Torkzaban et al., 2008).  
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To include the blocking function into the numerical model, the parameter ψ of 

Equation 3 is given as (Gargiulo et al., 2007a):  

 

 
 

 (5) 

 

where Smax [NcM−1] is the maximum solid phase particle concentration as an 

exponential function of the specific surface area of collectors grains (Mattison et al., 2011). 

The blocking function is particularly useful in describing a reduction in MWCNT 

retardation when the normalized effluent concentration of particles (C/Co) slowly increases 

with time (Mattison et al., 2011). This means, when S approaches Smax, the blocking 

function will become zero indicating that all retention locations are filled and C/Co will 

increase towards 1 (Mattison et al., 2011). 

 

2.5 Adsorption theory 
Adsorption describes the association of a dissolved compound (adsorbate) onto a 

solid phase (adsorbent) (Li, 2011). In general, the adsorption process is characterized by 

adsorption isotherms showing the ratio between the adsorbed and the dissolved amount of 

the adsorbate (Allen et al., 2004). In order to reveal the underlying sorption process, these 

sorption isotherms can be described by different models. The most important models are 

summarized below. 

 

Linear model 

The linear model is the simplest model describing adsorption and is based on 

Henry’s law. It assumes that the amount of adsorbate on the solid phase is proportional to 

its concentration in the aqueous phase. Furthermore, it implies that the adsorption is 

independent from the adsorbed concentration of the compound (Grathwohl, 1990).  

The linear model is described as: 

 

   (6) 

 

where qe [g kg-1] is the solid phase equilibrium concentration, Ce [g L-1] is the 

liquid phase equilibrium concentration, and Kd [L kg-1] is the adsorption constant (Allen et 

al., 2004).  
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Since it was found that hydrophobic organic solutes preferably adsorb to the 

organic matter, the adsorption constant (Kd) of these solutes in soil is frequently 

normalized by the organic carbon content (Li, 2011): 

 

 
 

 (7) 

 

where Koc [L kg-1] is the partition coefficient and foc [kg kg-1] is the organic carbon 

content. 

 

Freundlich model 

The empirical Freundlich model is frequently used to describe non-linear 

adsorption isotherms (McGinley et al., 1993). It assumes that adsorption occurs onto 

heterogeneous sorption sites and is mathematically described by the following equation:  

 

   (8) 

 

where KF [µg(1-1/n) L1/n g-1] is the Freundlich coefficient relating to the capacity of 

the adsorbent and n reflects the surface heterogeneity of the adsorption sites and describes 

the nonlinearity of the curve (Weber et al., 1992). The isotherm exhibits a convex shape 

when 1/n < 1 and a value of 1/n = 1 represents a linear isotherm where KF is equal to the 

adsorption constant Kd (Blume et al., 2010). 
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Langmuir model 

The Langmuir model is also an empirical model for the description of non-linear 

adsorption isotherms and was originally designed to describe the adsorption of gas 

molecules (Blume et al., 2010). It assumes equal adsorption sites, no interactions between 

adsorbed molecules, only one adsorption mechanism operating, and only one layer of 

adsorbed molecules (monolayer adsorption) (Blume et al., 2010). At equilibrium, 

saturation is achieved and no further adsorption can occur which is reflected by a plateau 

of the isotherm (Allen et al., 2004). This model is widely applied and can be described as 

follows: 

 

 
 

 (9) 

 

where Q [µg kg-1] is the limited adsorption capacity of the monolayer and KL        

[L µg-1] is the Langmuir coefficient referring to the affinity of the adsorbate to the surface 

of the adsorbent (Li, 2011).  
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3. Materials and methods1 

3.1 Carbon nanotubes 
Radioactively (14C) labeled MWCNTs were prepared by catalytic chemical vapor 

deposition (Bayer Technology Services GmbH, Leverkusen, Germany) using 14C-benzene 

as feedstock gas. The synthesis procedure was a slightly modified lab-scale setup of the 

Baytubes® production process (Bierdel et al., 2007). The specific radioactivity of the 14C-

labeled MWCNTs was approx. 3.2 MBq mg-1. After synthesis, the MWCNTs were boiled 

in 70% nitric acid (Sigma-Aldrich Chemie GmbH, Steinheim, Germany) for 4 h under 

reflux to remove residual metal catalysts and to enhance their stability in the aqueous phase 

by addition of oxygen-containing functional groups (e.g., carboxylic groups) to their 

surfaces (Nagasawa et al., 2000; Pumera, 2007; Smith et al., 2009; Xia et al., 2007). 

Afterwards, the MWCNTs were removed from the acid by filtering through a 0.45 µm 

polytetrafluoroethylene (PTFE) membrane (Sartorius AG, Göttingen, Germany) and 

washing with deionized water until a neutral pH-value was achieved in the filtrate 

(Mattison et al., 2011). Finally, the functionalized MWCNTs were dried in an oven at 45 

°C and stored at room temperature until use.  

For transport experiments, nanoparticle suspensions of different concentrations 

were prepared. For water-saturated column experiments, 1 mg of 14C-labeled 

functionalized MWCNTs were added to 1 L of 1 mM KCl solution and ultrasonicated for 

approximately 10 minutes at 65 watts using a cup horn sonicator (Branson Sonifier® W-

250, Danbury, CT, USA) until no aggregates were visible. To obtain suspensions with 

lower MWCNTs concentrations (0.01 and 0.005 mg L-1), the stock suspensions (1 mg 

MWCNTs L-1) were diluted with 1 mM KCl to achieve the desired concentrations. The 

concentration of the MWCNT suspensions was assessed by measuring the radioactivity of 

five 2.5 ml aliquots. Each aliquot was added to 5 mL of scintillation cocktail (Insta-Gel 

Plus, PerkinElmer, Rodgau, Germany), shaken, and the radioactivity was measured by a 

liquid scintillation counter (LSC, Perkin Elmer, Rodgau, Germany). A low standard 

deviation of the radioactivity measured in five replicates, indicated that the MWCNT 

suspensions were homogeneous.  

                                                 
1 Contains parts from “Water Research 47, Kasel, D., Bradford, S. A., Šimůnek, J., Heggen, M., Vereecken, 
H., Klumpp, E., Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects 
of input concentration and grain size. 933-944, 2013” and “Environmental Pollution 180, Kasel, D., 
Bradford, S. A., Šimůnek, J., Pütz, T., Vereecken, H., Klumpp, E., Limited transport of functionalized multi-
walled carbon nanotubes in two natural soils. 152-158, 2013”, with permission from Elsevier. 
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For water-unsaturated transport experiments, nanoparticle suspensions with 

concentrations of 10 mg L-1 were prepared. Therefore, 1 mg of 14C-labeled functionalized 

MWCNTs were added to 100 mL of 1 mM KCl solution and ultrasonicated for 

approximately 10 minutes at 65 watts using the previously described cup horn sonicator 

until no aggregates were visible. Afterwards, five 0.5 ml aliquots were each added to 5 mL 

of the scintillation cocktail and 2 mL of water, to obtain the correct ratio between 

scintillator and aqueous phase. Then all samples were shaken and the radioactivity was 

measured with the liquid scintillation counter.  

 

3.2 Chlordecone 
Radioactively (14C) labeled chlordecone (CLD, also known as Kepone, CAS 

number 143-50-0) with a specific radioactivity of 2.94 MBq mg-1, dissolved in acetone 

(1.46 g L-1, Moravec Biochemicals, Inc., Brea, CA, USA) was used for adsorption 

experiments. To obtain the desired CLD concentration, the 14C-labeled material was 

mixed with non-labeled chlordecone (Sigma-Aldrich Chemie GmbH, Steinheim, 

Germany), also dissolved in acetone (160 mg L-1). For sorption experiments, two stock 

solutions (0.01 and 1 mg L-1) of CLD were prepared by pipetting a specific amount of 

labeled and unlabeled material into a volumetric flask. After the acetone was evaporated, 

the flasks were filled to the required volume with 1 mM KCl. For sorption isotherms, 

these stock solutions were diluted in the correspondent ratio. The radioactivity of 2.5 mL 

of each solution was measured in 5 mL of scintillation cocktail using the LSC. 

 

3.3 Quartz sands 
Three quartz sands with different median grain sizes were applied: two high purity 

quartz sands (Quarzwerke GmbH, Frechen, Germany) with an average grain size of 350 

µm and 240 µm, and a sterile fused silica sand (Teco-Sil®, C-E Minerals, King of Prussia, 

PA, USA) with an average grain size of 607 μm. The sands were sequentially treated for 2 

h with 65% nitric acid to remove metal oxides and then with 10% hydrogen peroxide to 

eliminate organic material (Mattison et al., 2011). The sands were repeatedly rinsed with 

deionized water following both acid and peroxide treatments until a neutral pH was 

achieved in the rinse water. After the washing procedure, the organic carbon content of the 

sands was below 0.01 wt%, the total iron was below 0.02 wt%, and the total aluminum was 

below 0.05 wt%. 
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The electrophoretic mobility of milled sand samples (pH 8.5) was determined in 

1 mM KCl solution using a Zetasizer Nano (Malvern Instruments GmbH, Herrenberg, 

Germany). The electrophoretic mobility values for the sands were -3.90x10-8 (240 µm), -

4.47x10-8 (350 µm), and -3.15x10-8 m2V-1s-1 (607 µm).  

 

3.4 Soils 
Soil samples from the upper 30 cm of two well characterized agricultural field sites 

in Germany were used as natural porous media for transport experiments. In particular, a 

loamy sand soil (Gleyic Cambisol) from the test site in Kaldenkirchen-Hülst (KAL) and a 

silty loam soil (Orthic Luvisol) from the test site in Merzenhausen (MRZ) were 

investigated (Unold et al., 2009a). The electrophoretic mobility of the soils (0.1 wt%) in 1 

mM KCl solution (pH 8.5) was measured with the previously described Zetasizer Nano. 

The physico-chemical characteristics of the two soils are summarized in Table 1.  

 

Table 1. Physico-chemical properties of the soils from Kaldenkirchen-Hülst (KAL, loamy 
sand) and Merzenhausen (MRZ, silty loam). 
 

 unit KAL MRZ 
Clay (< 2µm)* % mass 4.9 15.4 
Silt (2–63 µm)* % mass 26.7 78.7 
Sand (> 2000 µm)* % mass 68.5 5.9 
pH (0.01 M CaCl2)*  5.9 6.2 
Total organic matter* % mass 1.1 1.3 
Cation exchange capacity* cmolckg−1 7.8 11.4 
Iron# % 0.8 1.5 
Electrophoretic mobility m2V-1s-1 -2.7E-8 -3.2E-8 

* data reprinted from Unold et al. (2009a) 
# data reprinted from Kasteel et al. (2010) 

 

Undisturbed soil samples were collected in columns made of polyvinyl chloride 

with a length of 10 cm and an inner diameter of 8 cm using a metal adaptor with a sharp 

front. The adaptor was mounted on the bottom of the column and placed on top of the soil. 

Afterwards, the column was straightly pushed stepwise into the plough layer of the soil 

with the help of a water-level. Between the pushing steps, the surrounding soil was 

removed and at the end, the filled column could be easily removed from the soil. Finally, 

the soil at the bottom of the column was cut with a knife to obtain an even surface. For 

repacked soil columns and sorption experiments, disturbed soil samples were taken, sieved 

to a fraction < 2 mm and air dried.  
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3.5 Characterization of carbon nanotubes  
The MWCNTs were characterized with the help of unlabeled MWCNTs derived 

from benzene and functionalized in the same way as the radioactively labeled ones. 

Morphological properties of MWCNTs were identified using a transmission electron 

microscope (TEM, Philips CM20 FEG, FEI Company, Eindhoven, The Netherlands) at the 

Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum 

Jülich GmbH, Germany. Therefore, a drop of MWCNT suspension was placed onto a 

carbon-coated copper grid, dried, and inserted into the TEM. For elemental analysis of the 

samples, the TEM was coupled with an energy-dispersive X-ray spectroscope (EDX).  

Metal catalysts in the MWCNT powder were quantified before and after the acid 

treatment with inductively coupled plasma-mass spectrometry (ICP-MS, Agilent 7500ce, 

Agilent Technologies, Inc., Böblingen, Germany). Oxygen containing functional groups on 

the MWCNTs, induced by the functionalization procedure, were identified by X-ray 

photoelectron spectroscopy (XPS, Phi 5600, Physical Electronics Inc., Chanhassen, MN, 

USA).  

In addition to the characterization of the powder, the stability and electrophoretic 

mobility of unlabeled MWCNT suspensions were determined. The critical coagulation 

concentration of 10 mg L-1 MWCNTs in KCl (1 to 100 mM) and CaCl2 (0.1 to 10 mM) 

solutions was determined by visual observations over a 24 h period. The hydrodynamic 

radius was determined immediately after suspension preparation and after 1 and 24 hours 

by dynamic light scattering (DLS) using the Zetasizer Nano. The electrophoretic mobility 

of MWCNT suspensions (1 mg L-1, 1 mM KCl, pH 8.5) was measured with the same 

machine.  

 

3.6 Water-saturated column setup 
Stainless steel columns with an inner diameter of 3 cm and a length of 12 cm were 

used for water-saturated transport experiments. The column ends were fitted with a 

stainless steel plate (1 mm openings) and a PTFE mesh (200 μm mesh size) to support the 

sand/soil and to ensure a uniform flow. The columns were incrementally filled with porous 

medium by trickling sand/soil and deionized water into the column, and then tapping the 

column with a rubber mallet. The packed column was connected to a pump (MCP V 5.10, 

Ismatec SA, Glattbrugg, Switzerland) on the inlet side and a fraction collector (Foxy Jr. ®, 

Teledyne Isco Inc., Lincoln, NE, USA) on the outlet side. A Darcy velocity of 0.62–0.66 

cm min-1 (Table 2) was applied for all water-saturated experiments; equivalent to a pore 
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sufficient amount of MWCNTs has to be applied to the column to allow their detection in 

the leachate even if they are highly retained in the porous media. Therefore, it was not 

reasonable to apply a small pulse of MWCNTs. In consequence, three pore volumes (90 

mL) of MWCNT suspension (1 mg L-1) were injected to obtain a distinct BTC. As 

application tools, a PTFE sample loop, a stainless steel sample loop, and the direct 

injection without any sample loop (Figure 6) were compared. For the first two methods, the 

sample loops with a holding capacity of three pore volumes (approx. 90 mL) were 

consecutively connected to the pump and the column. The loops were filled with the inert 

tracer and the MWCNTs, respectively, which were then flushed through the column with 

background solution. For direct injection the reservoirs of inert tracer and MWCNTs were 

connected to the column using a pump. 

The BTCs resulting from runs conducted with these three application methods are 

shown in Figure 7. Without any sample loop, the resulting BTC was of the typically 

observed shape (Liu et al., 2009). In contrast, both sample loops caused a delayed 

MWCNT breakthrough and a strong tailing of the BTC compared to the direct application 

with the pump. These results indicate that there was no continuous application of 

MWCNTs to the column.  

 
Figure 7. Breakthrough curves of MWCNTs (1 mg L-1, three pore volumes) in 607 µm 
quartz sand using different methods for particle application: a PTFE sample loop, a 
stainless steel sample loop, and direct injection without sample loop.  
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Additionally, a control experiment without column was performed to test if the 

outflow of the sample loops was constant. Therefore, the stainless steel loop was filled 

with 14C-labeled MWCNT suspension and flushed with background solution for another 5 

pore volumes. The samples were collected every 30 s at the outlet site of the sample loop. 

Figure 8 shows the normalized MWCNT concentration flushed out of the stainless steel 

loop over time. For the duration of MWCNT application (18 min) a C/Co of 1 would be 

expected, but it was only 0.8 at the beginning and decreased continuously with time. Thus, 

the sample loop affected the application of MWCNTs to the column. This resulted in an 

overestimation of the injected MWCNT concentration.  

 
Figure 8. Outflow concentration of MWCNTs flushed through the stainless steel sample 
loop with 1 mM KCl. The red line indicates the end of the injection pulse (approx. 3 pore 
volumes). 

 

Because both sample loops negatively affected the application of MWCNTs to the 

saturated column, the MWCNTs were finally applied without any sample loop. In addition, 

the actual applied MWCNT concentration was determined directly in front of the column 

using a valve (Figure 6) and considered as Co.  

For transport experiments, each wet-packed column was rinsed with around 30 pore 

volumes of 1 mM KCl solution before starting a transport experiment. A pulse of 

approximately 3 pore volumes of a conservative tracer (1 mM KBr) was applied to 

determine the column porosity and dispersivity. Afterwards, this tracer was flushed again 

with 1 mM KCl until background levels were achieved. Effluent solutions were collected 
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by the fraction collector every 30 seconds (e.g., 2.3 mL per vial). The effluent bromide 

concentrations were determined by a high performance liquid chromatograph (STH 585, 

Dionex, Sunnyvale, CA, USA) equipped with a UV-detector (UV2075, Jasco, Essex, UK).  

The same procedure was repeated for the MWCNT suspensions. The applied 

MWCNT concentration was determined using a valve just before the column inlet. The 

effluent concentrations of MWCNTs were measured using the previously discussed liquid 

scintillation counter method. Retention profiles for MWCNTs were also determined after 

recovery of the breakthrough curves. In this case, the packed column was excavated in 

0.5–1 cm thick increments. The sand from each layer was dried and then homogenized 

with a mill. The crushed sand was then divided into five 500 mg replicates and combusted 

at 900°C with a biological oxidizer (OX 500, R.J. Harvey Instrumentation Corporation, 

Tappan, NY, USA). The emerging 14CO2 was dissolved in vials filled with scintillation 

cocktail (Oxisolv®, MERCK KGAA, Darmstadt, Germany) and the radioactivity was 

measured by the liquid scintillation counter. Table 2 summarizes measured column 

properties determined from the conservative tracer experiments and mass balance 

information for MWCNTs. 

 

Table 2. Experimental conditions, hydraulic parameters, and mass balance information (as 
fractions of the total applied mass; eff - effluent, soil - soil profile) for water-saturated 
column experiments. The electrolyte was 1 mM KCl. 
 

Co 
[mg L-1] 

Type 
of 

soil/dc 
[µm] 

Flow 
rate q  
[cm 

min-1] 

Porosity Disp.a 
[cm] 

CNT 
effb  

CNT 
soilc 

Total  
mass 

balance 

0.01 240 0.64 0.46 0.029 0.05 0.91 0.96 
0.01 350 0.63 0.38 0.043 0.27 0.72 0.99 
0.01 607 0.62 0.41 0.090 0.51 0.46 0.98 
0.005 350 0.64 0.44 0.051 0.13 0.95 1.07 
1 240 0.64 0.45 0.038 0.04 0.82 0.85 
1 350 0.66 0.43 0.052 0.33 0.56 0.88 
1 607 0.66 0.46 0.069 0.73 0.21 0.94 
1 KAL 0.64 0.40 0.080 0.29 0.58 0.87 

a Disp. is the longitudinal dispersivity estimated on basis of the conservative tracer BTC 
b CNT eff is the total amount of MWCNTs in the liquid phase 
c CNT soil is the total amount of MWCNTs in the solid phase 

 

In addition to these column transport experiments, the influence of flow 

interruption on MWCNT transport in quartz sand (350 µm) was investigated using a Co of 

1 mg L-1. First, the saturated column experiment was performed, as described above. After 
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termination of the transport experiment, the flow was stopped. But instead of determining 

the RP, the saturated sand column with the retained MWCNTs was left at room 

temperature for 18 h. Then, it was flushed again with 1 mM KCl for around 5 pore 

volumes and the leachate was collected. Finally, the packing was removed to obtain the 

RP.  

 

3.7 Water-unsaturated column setup 
For unsaturated experiments, the polyvinyl chloride soil columns (Chapter 3.4) 

were mounted on acrylic glass plates covered with a high conductivity 20 µm nylon mesh. 

The air-entry value of the nylon mesh was approximately 50 mbar. The undisturbed soil 

columns were slowly saturated from bottom to top with 1 mM KCl. For repacked columns, 

soil and water were trickled alternately into an empty column. The water-saturated 

columns (repacked and undisturbed) were equipped with two tensiometers (inserted at 2.5 

and 7.5 cm below the soil surface) to monitor the pressure head inside the columns. Then, 

the columns were installed into the setup including an irrigation head on top of the column 

and suction at the bottom. The suction was applied by a vacuum pump and four vacuum 

barrels. In brief, the columns were irrigated from the top with 1 mM KCl and suction 

between 0 and -35 mbar was applied to the bottom. Software controlled equipment (Unold 

et al., 2009b) was used to achieve steady-state flow conditions in the columns.  

A unit gradient in the matrix potential (monitored using the two tensiometers) was 

achieved by automatically changing the irrigation rate or the bottom suction. The irrigation 

rate was recorded by weighing the storage bottle of the irrigation solution. The electrical 

conductivity of the leachate was continuously measured over the duration of the 

experiment. A schematic overview of the unsaturated column setup is given in Figure 9. 
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conductivity of the leachate. The columns were flushed again with 1 mM KCl until the 

conductivity remained constant at background levels. Following the tracer experiment, 5 

mL of MWCNT suspension (10 mg L-1) were pipetted evenly on top of the soil. The 

columns were flushed again with 1 mM KCl and the leachate was collected using a 

fraction collector. The leachate was analyzed in the liquid scintillation counter and the 

experiment was stopped when the radioactivity in the effluent fell below the detection 

limit. After termination of the transport experiment, the soil was removed in 1 cm thick 

increments and the RP was determined with the same procedure as described above for the 

saturated column setup. Table 3 summarizes column properties determined from the 

conservative tracer experiments and mass balance information for MWCNTs. 

 

Table 3. Experimental conditions, hydraulic parameters, and mass balance information (as 
fractions of the total applied mass) for water-unsaturated column experiments. The 
electrolyte was 1 mM KCl. 
 

Type of  
core 

Soil 
type 

Water 
saturat

ion 
[%] 

q  
[cm 

min-1] 

Porosity Disp.a 
[cm] 

CNT 
effb  

CNT 
soilc 

Total  
mass 

balance 

Und. KAL 96 0.0064 0.37 0.60 < 0.01 0.91 0.91 
Und. KAL 85 0.0084 0.32 0.69 < 0.01 0.98 0.98 
Rep. KAL 96 0.0067 0.38 0.37 < 0.01 0.86 0.86 
Und. MRZ 95 0.0063 0.49 2.41 < 0.01 1.01 1.01 

a Disp. is the longitudinal dispersivity estimated on basis of the conservative tracer BTC 
b CNT eff is the total amount of MWCNTs in the liquid phase 
c CNT soil is the total amount of MWCNTs in the solid phase 

 

3.8 Lysimeter 
A stainless steel lysimeter (Figure 10) with a surface area of 0.5 m² and a depth of 

115 cm was used for larger scale transport experiments (Burauel and Führ 2000). The 

lysimeter contained an undisturbed soil monolith from the test site in Kaldenkirchen-Hülst 

(KAL). It was equipped with two time-domain reflectrometry (TDR) sensors in 5 and 30 

cm depth, respectively, to observe the water content during the experiment. The lysimeter 

was covered with a stainless steel plate and was artificially irrigated with tap water at a 

precipitation rate of 1200 mm y-1.  
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procedure was repeated with the CLD solution in centrifuge tubes without soil. Soil and 

CLD were equilibrated for 24 h in an over-head shaker to establish the sorption isotherm. 

Afterwards, the centrifuge tubes were removed from the shaker and centrifuged for 20 min 

at 10,000×g. Afterwards, two aliquots of 2.5 mL of each sample were taken, mixed with 5 

mL of scintillation cocktail, shaken, and the radioactivity was measured using the LSC. All 

experiments were performed in triplicate. Finally, the adsorption isotherm was calculated 

using a graphical software program (Origin Pro 8, OriginLab Corporation, Northampton, 

MA, USA). 

 

3.10 Dialysis adsorption experiments 
Since centrifugation was not sufficient to separate the functionalized MWCNTs 

from solution, the dialysis technique (Telscher et al., 2005) was applied to determine the 

adsorption of CLD onto the MWCNTs. Therefore, half-cells made of PTFE with a holding 

capacity of about 5 mL were used. Two half-cells were connected (Figure 11), separated 

by a cellulose membrane with a cut off of 1 kDa (VWR International GmbH, Langenfeld, 

Germany), and inserted into a special frame.  

 

  

Figure 11. Picture of the two half cells before (a) and after connection (b). The half cells 
were separated by a membrane. 

 

Then, the MWCNT suspension (1 mg L-1) was injected into the bottom part of the 

half-cell using a syringe. The syringe was weighed with suspension before and after 

injection to determine the injected volume. This procedure was repeated with CLD 

solution of different concentrations (0, 2, 5, 10, 20 g kg-1) for the top parts of the half-cells. 

To test the adsorption to the PTFE wall of the half-cell, the procedure was repeated with 

the CLD solution in half-cells without MWCNTs. Duplicates of each concentration step 

were run. After injection of CLD solution, the frames were inserted into a rotator and 

rotated at 10 rpm for 48 h to achieve equilibrium (Figure 12). Afterwards, the solution was 

a)
9) 

b)
9) 
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removed from the top half-cell using a syringe and weighed into vials to measure the 14C-

CLD concentration in the LSC.  

 

 
Figure 12. Equilibration of the dialysis half-cells in a rotator. 

 

3.11 Mathematical modeling 
To account for the various transport and retention mechanisms described in Chapter 

2, the transport experiments were analyzed using the HYDRUS-1D code, a finite element 

model for simulating one-dimensional movement of water, heat, and multiple solutes in 

(variably) saturated media (Šimůnek et al., 2008). The code includes a nonlinear least 

squares optimization routine (Marquardt, 1963) that allows model parameters to be 

inversely fitted to experimental BTCs and RPs. Weights to data points were adjusted so 

that the contributions to the minimized objective function by the sum of squared deviations 

between measured and fitted values were approximately the same for the BTC and the RP. 

The conservative tracer BTC for each column was simulated using an equilibrium model 

based on the ADE and the column porosity and dispersivity was obtained by inverse 

optimization.  
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The theory of the ADE was already described above (Chapter 2.3). To model the 

results of this study, the parameter ψ of Equation 3 is given as a combination of Equations 

4 and 5:  

 

 
 

(10) 

 

where Smax [NcM−1] is the maximum solid phase particle concentration, dc [L] is the 

median diameter of the sand grains, and β [-] is an empirical variable that controls the 

shape of the retention profile.  

The above model formulation is very flexible and can account for time-dependent 

breakthrough curves and retention profiles that are exponential, uniform, and/or hyper-

exponential with depth. The first term on the right side of Equation 10 accounts for time-

dependent blocking/filling of retention sites using a Langmuirian approach (Gargiulo et al., 

2007a). This blocking term implies that retention decreases with time and that the retention 

profile becomes uniform with depth as S approaches Smax. The second term on the right 

side of Equation 10 describes depth-dependent retention (e.g., a decreasing retention rate 

with depth). When β = 0, this term equals 1 and an exponential distribution of retained 

MWCNTs is predicted with depth, similar to conventional filtration theory. Conversely, 

when β > 0 is employed, the retention profile of MWCNTs exhibits a hyper-exponential 

shape (e.g., a higher deposition rate close to the column inlet). Bradford et al. (2003) found 

an optimal value of β = 0.432 for different spherical sized latex microspheres and sand 

grains. However, this value of β did not adequately describe the observed depth-

dependency in retention profile shape for the non-spherical MWCNTs. This parameter was 

therefore re-estimated by simultaneously fitting β and k1 to BTC and RP from the three 

sized sands. Based on this information a value of β for MWCNTs was estimated from the 

average value from these experiments as 0.765 (standard deviation = 0.1). A similar value 

for β = 0.8 was employed by Wang et al. (2012) in MWCNT transport studies.  
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Four model formulations based on Equations 1 to 5 and 10 were considered in this 

work. The conventional attachment and detachment model (M1) is obtained by setting ψ = 

1. A model that includes attachment, detachment, and Langmuirian blocking (M2) is 

achieved when β = 0. A depth-dependent retention model (M3) is acquired by setting β = 

0.765 and setting Smax to a large value so that the first term on the right side of Equation 10 

goes to 1. Finally, a time- and depth-dependent retention model (M4) is given when 

β = 0.765 and Smax is set equal to a value resulting in the first term on the right side of 

Equation 10 being smaller than 1. 
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4. Results and discussion 

4.1 Characterization of carbon nanotubes 
Prior to transport experiments, the as-received and the functionalized MWCNTs 

were characterized by various methods. On the one hand, it was important to identify their 

general properties because particle shape, size, and stability affect their transport behavior 

in porous media. On the other hand, the effect of the acid treatment on the material was 

investigated in order to verify whether the functionalization procedure was successful in 

inducing oxygen-containing functional groups on the MWCNTs. The acid treatment 

described in Chapter 3.1 is a relatively rough functionalization method, and may affect the 

structure and properties of MWCNTs. Therefore, it was necessary to compare their size 

and shape before and after the functionalization procedure.  

 

Chemical composition 

The presence of functional groups was verified by X-ray photoelectron 

spectroscopy (XPS). Figure 13 shows the XPS spectra of as-received and functionalized 

MWCNTs. The intensity in the binding energy of the O 1s spectra (Figure 13a) was 

significantly higher after the acid treatment. This indicates that the functionalization 

method was successful and produced an increased amount of oxygen containing functional 

groups. The two materials also showed differences in their C 1s spectra (Figure 13b). The 

peak at 285 eV represents the sp2 carbon atoms of the graphene sheets and was dominant 

for both samples (Xia et al., 2007). Between 287 eV and 293 eV, the spectra of the 

functionalized MWCNTs showed a shoulder that is attributable to carbon atoms exhibiting 

bonds to oxygen atoms (Xia et al., 2007). Oxygen-containing functional groups are known 

to enhance the stability of CNTs in the aqueous phase because they increase their 

hydrophilic properties (Smith et al., 2009).  
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Pecora, 2000). Therefore, the reliable size determination of carbon nanotubes using DLS is 

difficult. Nevertheless, it can be used for comparison. The DLVO theory (Chapter 2.1) 

provides information on the stability and aggregation of particles but it was developed for 

spherical particles (Tian et al., 2011) and may therefore be unreliable for non-spherical 

particles like CNTs. This was proven by Tian et al. (2011), who showed that DLVO energy 

profiles of SWCNTs differed greatly when the tube length instead of the tube diameter was 

applied for the calculations. 

Simple aggregation experiments were performed to observe the stability of 

MWCNT suspension for the duration of the experiments. For a MWCNT concentration of 

10 mg L-1, no MWCNT aggregates were visible after 4 h in 1 mM KCl solution and the 

hydrodynamic radius at three measurement times (t = 0 h, t = 1 h, and t = 24 h) was in the 

same range (approx. 150 nm). For all transport experiments, MWCNT concentrations were 

equal to 10 mg L-1 or even lower (0.005–1 mg L-1). Thus, it was assumed that all MWCNT 

suspensions were stable for the duration of particle application to the columns/lysimeter for 

transport studies (approx. 15 min to 1 h). The electrophoretic mobility of MWCNTs                     

(1 mg L-1) in 1 mM KCl solution (pH 8.5) was -2.85x10-8 m 2 V-1 s-1. The negative charge 

on both MWCNTs and sand (Chapter 3.3) and the low IS conditions, suggest repulsive 

electrostatic conditions during the transport experiments that were unfavorable for 

attachment of MWCNTs. The critical coagulation concentration (CCC) was determined for 

unlabeled, functionalized MWCNTs in simple aggregation/sedimentation experiments 

(Figure 17).  
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Figure 17. Determination of the critical coagulation concentration of KCl (a) and CaCl2 
(b) for a MWCNT concentration of 10 mg L-1. 

 

The critical coagulation concentration was 40 mM for KCl and 0.4 mM for CaCl2 

when the CNT concentration was 10 mg L-1. This shows that the stability of MWCNTs in 

aqueous suspension is very sensitive to the ionic strength. It is known that divalent cations 

enhance the compression of the electric double layer surrounding the particles, thus leading 

to larger aggregation rates (Pan and Xing, 2012) compared to monovalent cations even 

when their concentrations are the same. This is explained by the Schulze-Hardy rule: 

 
  (11) 

 
where z is the valency of the electrolyte counterions and n is 6 in three dimensions 

and 9 in two dimensions (Sano, 2001). The Schulze-Hardy rule can be explained by a 

combination of van der Waals attraction and electrostatic repulsion (Overbeek, 1980). This 

explains why the critical coagulation concentration is two orders of magnitude lower for 

CaCl2 than for KCl. For all experiments, the electrolyte concentration (1 mM KCl) was 

significantly below the critical coagulation concentration. These findings support the 

assumption that all suspensions were stable, at least for the duration of the transport 

experiments. Nevertheless, Ca2+ is present in natural soils and may therefore also affect the 

stability of MWCNTs in natural porous media. 
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4.2 Transport and retention of carbon nanotubes in saturated porous 

media2 
Column transport experiments in quartz sand were performed at water-saturated 

conditions to evaluate the effect of input concentration and sand grain size on MWCNT 

transport. Therefore, three sand grain sizes (607, 350, and 240 µm) and three MWCNT 

input concentrations (1, 0.01, and 0.005 mg L-1) were considered. Since the available 

experimental setups were originally designed for solutes but nanoparticles behave like 

colloids, the setups were tested for MWCNTs and modified. This was done prior to the 

transport experiments and is described in Chapter 3.6. In addition to the breakthrough 

curves, retention profiles were measured and numerically modeled in order to obtain 

information on MWCNT mass balance, retention mechanisms, and to more accurately 

predict environmental fate. Finally, an experiment with intermittent flow was conducted.  

 

4.2.1 Effect of grain size  

Water-saturated column experiments were conducted to assess the effect of the 

collector grain size on MWCNT transport and retention. Figure 18 presents observed and 

simulated BTCs for MWCNTs in three different sized sands (240, 350, and 607 µm) when 

q = 0.62–0.66 cm min-1, IS = 1 mM KCl, and Co = 0.01 mg L-1. The BTCs are plotted as 

the normalized effluent concentration (C/Co) as a function of pore volumes that have been 

flushed through the column. The corresponding observed and simulated RPs for the 

MWCNTs are shown in Figure 19. The RPs are plotted as normalized solid phase 

concentration (S/Co) as a function of distance. The total mass balance information 

presented in Table 2 ranged from 0.85 to 1.07.  

The MWCNT breakthrough curves (Figure 18) reached the column outlet only 

slightly after the conservative tracer (data not shown) indicating that size exclusion was 

negligible for MWCNTs (Bradford et al., 2003). A clear decrease in the maximum 

MWCNT effluent concentration occurred with decreasing grain size. This can partially be 

explained by an increasing rate of mass transfer to the solid surface with a decrease in sand 

grain size as predicted by filtration theory (Tufenkji and Elimelech, 2004; Yao et al., 

1971). The MWCNT BTCs in the 240 and 350 µm sands also exhibited some time-

dependent blocking behavior (increasing breakthrough concentrations with time), 

                                                 
2 Contains parts from “Water Research 47, Kasel, D., Bradford, S. A., Šimůnek, J., Heggen, M., Vereecken, 
H., Klumpp, E., Transport and retention of multi-walled carbon nanotubes in saturated porous media: Effects 
of input concentration and grain size. 933-944, 2013”, with permission from Elsevier. 
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suggesting that retention locations were being filled over time. The observed concentration 

tailing was negligible after recovery of the BTC. The value of the detachment coefficient 

k2 was therefore set equal to zero for all of these simulations. 

The fitted model parameters to the BTCs (M1 and M2) as well as to BTCs and RPs 

(M3 and M4) are provided in Table 4, as well as the Pearson’s correlation coefficient for 

the BTC (Reff
2). A direct comparison between of the attachment coefficient k1 for the four 

model formulations is not meaningful since models M1 and M2 do not account for a depth-

dependency, whereas models M3 and M4 do. All four model formulations (M1, M2, M3, 

and M4) described the MWCNT BTCs quite well (Reff
2 > 0.85). Improved agreement with 

the BTCs was obtained for models that included the Langmuirian blocking term (M2 and 

M4). The Akaike information criterion (AIC) (Akaike, 1974) was used to assess the 

relative ability of the four model formulations to describe the BTC and RP data. The AIC 

value is a measure of the goodness of a fit that penalizes for adding fitting parameters; i.e., 

the model with the lowest value of AIC is preferred. It can be calculated as: 

 

  (12) 

 

where L is the negative log likelihood for the fitted model and m is the total number 

of independently optimized parameters (Russo and Bouton, 1992). When the inverse 

model parameters are calculated by least square optimization, the AIC can be calculated 

using the residual sum of squares from regression: 

 

 
 

(13) 

 

where n is the number of experimental data points and RSS the residual sum of 

squares (Russo and Bouton, 1992).  

The calculated AIC decreased from -258 (M1) to -496 (M4), indicating that M4 

provides the best agreement with the observed data. For a particular model, k1 and Smax 

increased with decreasing grain size. Previous studies on the transport and deposition of 

fullerene (C60) nanoparticles reported similar trends (Li et al., 2008). These trends reflect 

an increasing rate of retention and more retention locations in the finer textured sand.  
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Figure 18. Observed and simulated breakthrough curves for MWCNTs in three different 
sized quartz sands: 240 µm (a), 350 µm (b), and 607 µm (c). Experimental data were fitted 
with four different models including: attachment and detachment (M1); attachment, 
detachment, and blocking (M2); depth-dependent retention (M3); and blocking combined 
with depth-dependent retention (M4). The flow rate was 0.62–0.66 cm min-1, the 
electrolyte was 1 mM KCl, and the MWCNT input concentration was 0.01 mg L-1. Note 
different vertical scales in the figures. 
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Figure 19 shows the corresponding retention profiles and reveals that MWCNT 

retention was highest close to the column inlet and then rapidly decreased with distance. 

Consistent with the BTCs shown in Figure 18, greater MWCNT retention occurred with 

decreasing sand size. Large deviations were observed between experimental and simulated 

RPs for models M1 and M2. The Pearson’s correlation coefficient for the RP (Rsoil
2) was 

less than 0.58. Models M1 and M2 tended to underestimate the high concentrations near 

the column inlet and overestimated the concentrations at greater distances, especially for 

coarser textured sand. Thus, RPs were not considered for fitting model parameters using 

models M1 and M2. These observations indicate that the experimental RPs were hyper-

exponential with distance, and that the retention coefficient exhibited a depth-dependency. 

Models M3 and M4 include a depth-dependency in the retention coefficient, and therefore 

provided a much better description of the MWCNT RPs than either M1 or M2. The value 

of Rsoil
2 for the M3 and M4 models was > 0.98. Model M4 provided the best overall 

description of the data when both BTCs and RPs were considered.  

Hyper-exponential RPs have frequently been reported in the literature for colloids, 

microorganisms, and nanoparticles under unfavorable attachment conditions (Bradford and 

Bettahar, 2006; Bradford and Toride, 2007; Gargiulo et al., 2007a; Gargiulo et al., 2008; 

Wang et al., 2012a; Wang et al., 2011). A variety of reasons for hyper-exponential RPs 

have been identified, including: straining at grain-grain contacts and surface roughness 

locations (Bradford et al., 2003; Bradford et al., 2002; Shellenberger and Logan, 2001; 

Yoon et al., 2006), particle aggregation (Chatterjee et al., 2010; Chatterjee and Gupta, 

2009; Chen and Elimelech, 2006, 2007), hydrodynamic factors (Bradford et al., 2009; Li et 

al., 2005; Wang et al., 2011), and chemical heterogeneity on the sand and the colloid 

(Bolster et al., 1999; Li et al., 2004; Tong and Johnson, 2006; Tufenkji and Elimelech, 

2005). The relative contribution of each of these factors to the observed RP data is difficult 

to ascertain without additional information. However, the data does clearly indicate a 

strong dependency of the RP’s shape on the grain size under low IS conditions. The 

contribution of physical processes to the observed hyper-exponential RPs has to be proven. 

However, other results in the literature indicate that straining played a dominant role in the 

CNT retention under low IS conditions (Jaisi et al., 2008; Wang et al., 2012b). 
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Figure 19. Observed and simulated retention profiles for MWCNTs in three different sized 
quartz sands: 240 µm (a), 350 µm (b), and 607 µm (c). Experimental data were simulated 
with four different models including: attachment and detachment (M1); attachment, 
detachment, and blocking (M2); depth-dependent retention (M3); and blocking combined 
with depth-dependent retention (M4). The flow rate was 0.62–0.66 cm min-1, the 
electrolyte was 1 mM KCl, and the MWCNT input concentration was 0.01 mg L-1. 
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Previous transport studies with CNTs measured and simulated only BTCs (Jaisi and 

Elimelech, 2009; Jaisi et al., 2008; Liu et al., 2009; Mattison et al., 2011). Determination 

and modeling of retention profile are scarce (Wang et al., 2012b). Accurate simulation of 

both BTCs and RPs is needed in order to assess the fate and risks associated with MWCNT 

migration. To illustrate this point, Figure 20 presents the simulated RPs of MWCNTs in 

the three different sized sands over a distance of 500 cm when using the various model 

formulations that were calibrated to the column BTC (M1 and M2) or BTC and RP (M3 

and M4) data, respectively. In Figure 20 and the discussion below, the lower limit of the 

predicted S/Co was set to 1E-5 mL g-1. Increasing deviations in the model predictions 

occurred with transport distance and grain size. The M1 and M2 predictions were quite 

similar for a given grain size, with no breakthrough at a depth of 500 cm. The maximum 

transport distance predicted by the M1 and M2 models was around 200 cm in the coarsest 

textured 607 µm sand. In contrast, models M3 and M4 predict similar low levels of 

MWCNT breakthrough at 500 cm for the two largest grain sizes (350 and 607 µm). 

Consequently, using M1 and M2 to predict MWCNT fate would lead to the conclusion that 

MWCNTs will be retained in the various sands before reaching a depth of around 200 cm. 

In contrast, M3 and M4 would predict a transport of MWCNTs to depths greater than 500 

cm. Since models M3 and M4 provided the best description of the BTCs and RPs at the 

column scale (Figure 18 and Figure 19), the predictions of these models are more reliable 

than the predictions obtained from the other two models (M1 and M2). 
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Figure 20. Predicted retention profiles for MWCNTs in 500 cm long columns packed with 
240 µm (a), 350 µm (b), and 607 µm (c) sand. Here the normalized solid phase 
concentration (S/Co) is plotted on a log-scale as a function of distance. Simulations 
employed model parameters determined in Figures 18 and 19. Four different model 
formulations were considered, namely: attachment and detachment (M1); attachment, 
detachment, and blocking (M2); depth-dependent retention (M3); and blocking combined 
with depth-dependent retention (M4). 
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4.2.2 Effect of input concentration  

Additional column experiments were performed to investigate the influence of 

MWCNT input concentrations. Figure 21 presents observed and simulated BTCs (Figure 

21a) and RPs (Figure 21b) for MWCNTs in 350 µm sand when q = 0.62–0.66 cm min-1, 

IS = 1 mM KCl, and Co = 1, 0.01, and 0.005 mg L-1. Based on the findings of Chapter 

4.2.1, only simulation results from model M4 were considered in Figure 21. Simulation fits 

to BTCs and RPs were very good, with a Reff
2 > 0.97 and Rsoil

2 > 0.96. Table 2 and Table 4 

provide a summary of the associated experimental, mass balance, and model parameters.  

Inspection of Figure 21a indicates that the fraction of the injected mass of 

MWCNTs that was recovered in the effluent increased with Co. In addition, the shape of 

the BTC was much steeper for the highest Co = 1 mg L-1 condition. These trends may be 

explained by blocking behavior as retention locations fill up over time and produce 

increasing effluent concentrations (Bradford and Bettahar, 2006). Consistent with 

observations in Figure 21a, a higher Co is expected to fill a given number of retention 

locations (Smax) more rapidly. The value of Smax was fitted for the highest Co and then kept 

constant for the lower input concentrations. The fitted retention rate parameter k1 was 

similar for all Co. After recovery of the BTC, concentration tailing tended to be low, but 

was most pronounced for the highest Co = 1 mg L-1 condition. This indicates that some of 

the MWCNT retention was reversible at higher Co when Smax was filled to a greater extent 

(Kretzschmar et al., 1995).  

Similar to the BTCs (Figure 21a), the shape of the RPs was also sensitive to Co 

(Figure 21b). In particular, the fraction of MWCNTs retained close to the column inlet 

increased with decreasing Co. Conversely, the RPs became less hyper-exponential (more 

uniform) with increasing Co. Blocking provides an explanation for changes in the RP shape 

with Co (Bradford and Bettahar, 2006; Bradford et al., 2009; Kim et al., 2011; Zhang et al., 

2010). As MWCNT retention approaches Smax the overall rate of retention decreases and 

the RPs become uniform with depth (Bradford et al., 2009). 

Results from Figure 21 demonstrate that Co can have a large impact on the transport 

and retention behavior of MWCNTs. Enhanced retention and limited mobility of 

MWCNTs is expected for lower, more environmentally relevant concentrations of 

MWCNTs. These Co effects need to be considered in models that are used to predict 

MWCNT fate and risk, otherwise they may overestimate their transport potential and 

groundwater concentrations. 
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Figure 21. Observed and simulated breakthrough curves (a) and retention profiles (b) for 
MWCNTs at input concentrations (Co) equal to 1, 0.01, and 0.005 mg L-1. The flow rate 
was 0.62-0.66 cm min-1, the electrolyte was 1 mM KCl, and the grain size of the quartz 
sand was 350 µm. The data was simulated using a model combining depth- and time-
dependent retention (M4). 
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4.2.3 Effect of grain size and input concentration  

Figure 22 presents observed and simulated BTCs (Figure 22a) and RPs (Figure 

22b) for MWCNTs in three different sized sands (240, 350, and 607 µm) when q = 0.62–

0.66 cm min-1, IS = 1 mM, and Co = 1 mg L-1. Simulation results from model M4 were 

considered in Figure 22. Simulation fits to BTCs and RPs were good, with a Reff
2 > 0.97 

and Rsoil
2 > 0.81. Table 2 and Table 4 provide a summary of the associated experimental, 

mass balance, and model parameters. Similar to Figure 18 and Figure 19, Figure 22 

examines the influence of grain size on MWCNT transport and retention. However, the 

experiments shown in Figure 22 were conducted at a Co that was two orders of magnitude 

higher than in Figure 18 and Figure 19.  

Comparison of Figure 18, Figure 19, and Figure 22 reveals a similar trend of 

increasing MWCNT retention (decreasing breakthrough) with decreasing grain size at both 

Co levels. In contrast, the time-dependent blocking behavior shown in the BTCs (e.g., 

increase in the normalized effluent concentrations shown in Figure 18 and Figure 22a) was 

much steeper for experiments conducted at the higher Co. The RPs were also more hyper-

exponential at the lower Co (see Figure 19 and Figure 22b). As explained in Chapter 4.2.2, 

these trends occur because retention locations were filled more rapidly at a higher Co. 

However, close inspection of Figure 18, Figure 19, and Figure 22 indicates that this 

concentration-dependent transport behavior was also a function of the sand grain size.  
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Figure 22. Observed and simulated breakthrough curves (a) and retention profiles (b) for 
MWCNTs in three different sized quartz sands: 240 µm (a), 350 µm (b), and 607 µm (c). 
The flow rate was 0.62-0.66 cm min-1, the electrolyte was 1 mM KCl, and the MWCNT 
input concentration was 1 mg L-1. The data was simulated using a model combining depth- 
and time-dependent retention (M4). 
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Examination of parameters k1 (Figure 23a) and Smax (Figure 23b) as a function of 

grain size for the two Co levels revealed that the values of k1 and Smax both increased with 

decreasing grain size. As mentioned above, this reflects greater MWCNT retention rates 

and number of retention locations in the finer textured sand. However, higher Co values 

accentuated this trend with k1 and this rate of enhancement increased with decreasing grain 

size. Hence, the observed concentration dependency of MWCNT transport became more 

important with increasing Co and decreasing grain size. In contrast to these observations 

with MWCNTs, Bradford and Bettahar (2006) observed for spherical latex microspheres 

that concentration-dependent colloid transport behavior became more important with 

increasing grain size. These trends can be explained by the effect of porous media’s pore 

structure on MWCNT retention (Tan et al., 1994). The non-spherical MWCNTs have a 

high aspect ratio and it is hypothesized that solid phase MWCNTs may create a porous 

network with the ability to retain particles (Sumanasekera et al., 2010; Xin et al., 2012). It 

is logical to anticipate that the retained MWCNT network will become more significant at 

higher Co and in smaller grain sized sand. This finding suggests that the particle shape will 

have a strong influence on concentration-dependent colloid transport.  
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Figure 23. Plots of the depth-dependent (model M4) retention coefficient (k1) (a) and the 
maximum solid phase particle concentration (Smax) (b) as a function of sand grain size for 
input MWCNT concentrations (Co) of 1 and 0.01 mg L-1.  
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4.2.4 Transport of carbon nanotubes with flow interruption 

To investigate the influence of flow interruption on MWCNT transport, a transport 

experiment with intermittent flow conditions was performed as described in Chapter 3.6. 

The most important parameters for this experiment are summarized in Table 5. 

 

Table 5. Experimental conditions, hydraulic parameters, fitted model parameters, and mass 
balance information (as fractions of the total applied mass; eff - effluent, sand - profile) for 
the intermittent flow experiment. Quartz sand with an average grain size of 350 µm served 
as porous medium, the electrolyte was 1 mM KCl, the flow rate was 0.64 cm min-1, and Co 
was 1 mg L-1. A  of 0.765 was used for parameter estimation. 
 

Co 
[mg L-1] 

Type 
of 

soil/dc 
[µm] 

Flow 
rate q  
[cm 

min-1] 

Porosity Disp.a 
[cm] 

CNT 
eff1

b  
CNT 
eff2

c 
CNT 
sandd 

Total  
mass 

balance 

1 350 0.64 0.41 0.047 0.57 0.03 0.33 0.93 
a Disp. is the longitudinal dispersivity estimated on basis of the conservative tracer BTC 
b CNT eff1 is the total amount of MWCNTs in the liquid phase in the first peak 
c CNT eff2 is the total amount of MWCNTs in the liquid phase after flow interruption 
d CNT sand is the total amount of MWCNTs in the solid phase 

 

Since quartz sand and MWCNTs were both negatively charged (Chapters 3.3 and 

4.1), the presence of unfavorable attachment conditions was assumed. At these conditions, 

pore straining was expected to be the major mechanism for colloid retention in porous 

media (Grassian, 2008). Figure 24 shows the observed BTC (a) and RP (b) after the flow 

interruption and the second period of flushing with KCl. Two peaks of MWCNT 

breakthrough were observed for this experiment: the first peak reflects the BTC of the 

MWCNTs in the saturated sand, and the second peak the release of MWCNTs after flow 

interruption for 18 h. The second peak indicates that the flow interruption resulted in a 

remobilization of retained MWCNTs, although the amount of particles quantified in this 

peak was relatively low (approx. 3%). This suggests that the interactions between 

MWCNTs and sand grains are partially reversible, indicating that straining is the dominant 

mechanism for MWCNT retention but that attachment also occurs. 
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Figure 24. Breakthrough curve (a) and retention profile (b) for MWCNTs in a saturated 
sand column experiment with intermittent flow conditions. The MWCNT input 
concentration (Co) was 1 mg L-1, the flow rate was 0.64 cm min-1, the electrolyte was 1 
mM KCl, and the grain size of the quartz sand was 350 µm.  
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that this effect might be due to the release of oocysts retained by weak attractive forces and 
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statement that classic theories (CFT and DLVO) have limitations in quantifying the 

transport and retention mechanisms of colloids (Kim et al., 2010). It is known, that colloid 

transport in porous media is affected by the water flow regime and that transient flow can 

enhance colloid detachment from porous media (Zhang et al., 2012). The results of this 

flow interruption experiment indicate that a remobilization of functionalized MWCNTs in 

environmental compartments might be possible as flow conditions are not constant. For 

example, high flow rates can be present in natural soil due to heavy rainfall and a high 

infiltration rate and thus, remobilize retained particles. Furthermore, consecutive water 

pulses could be used for remediation of contaminated aquifers (Brusseau et al., 1989). 

Nevertheless, it has to be considered that quartz sand was investigated here and that 

saturated conditions and high flow rates were present in this experiment.  
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4.3 Transport of carbon nanotubes in natural soils3 
In addition to the experiments in quartz sand, experiments were performed in 

repacked and undisturbed soil columns under water-saturated and -unsaturated conditions, 

respectively. A more heterogeneous pore size distribution and different pore water 

chemistry in soil compared to quartz sand were expected. Two soil types with different 

physico-chemical properties and texture were used. A detailed description of the soils is 

provided in Chapter 3.4. The aim of these experiments was to investigate the influence of 

soil structure and texture as well as water content on MWCNT transport. 

 

4.3.1 Transport in disturbed soil under water-saturated conditions 

A transport experiment was performed in a column packed with the loamy sand soil 

(KAL, < 2mm) under water-saturated conditions at high flow rates (0.64 cm min-1) using a 

MWCNT concentration of 1 mg L-1. The negative charge on both MWCNTs and soil 

(Chapters 3.4 and 4.1), and the low ionic strength conditions (1 mM KCl) suggest that 

highly unfavorable attachment conditions existed for MWCNTs during the transport 

experiments. The observed RP and BTC (Figure 25) were simultaneously numerically 

modeled using M4 accounting for time- and depth-dependent behavior. The associated 

experimental, mass balance, and model parameters are summarized in Table 2 and Table 6.  

 

Table 6. Fitted model parameters for the breakthrough curve and retention profile of 
MWCNTs in water-saturated, disturbed soil. Correlation of observed and fitted data is 
reflected by R². 
 
Co  

[mg  
L-1] 

R² β Smax 
[Bq g-1] 

Standard 
error Smax 

k1 
[min-1] 

Standard 
error k1 

 

k2 
[min-1] 

Standard 
error k2 

 
1.00 0.98 0.765 6728 374 10.69 0.37 0.007 NF 

NF – denotes not fitted 

 

Similar as for the sand columns (Figure 22), the BTC of MWCNTs in disturbed soil 

at water-saturated conditions (Figure 25a) showed a slow increase of C/Co with time 

indicating that blocking occurs. The shape of the RPs was also hyper-exponential (Figure 

25b) which refers to straining.  

 

                                                 
3 Contains parts from “Environmental Pollution 180, Kasel, D., Bradford, S. A., Šimůnek, J., Pütz, T., 
Vereecken, H., Klumpp, E., Limited transport of functionalized multi-walled carbon nanotubes in two natural 
soils. 152-158, 2013”, with permission from Elsevier. 
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Figure 25. Observed and simulated breakthrough curves (a) and retention profiles (b) for 
MWCNTs at an input concentrations (Co) equal to 1 mg L-1. The experiment was 
conducted in a column packed with soil (< 2mm) from the test site KAL. The flow rate was                  
0.64 cm min-1, the electrolyte was 1 mM KCl. The data was simulated using a model 
combining depth- and time-dependent retention (M4).  

 

Around 30% of the applied MWCNTs were found in the column effluent and about 

60% were recovered in the soil profile (Table 2). This indicates a certain mobility of 

MWCNTs in the disturbed sandy loam soil at water-saturated conditions. Possible 
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explanations for this result may be the relatively homogenous pore size distribution due to 

the uniform packing of sieved soil and the high flow rate.  

The concentration tailing observed in the BTC (Figure 25a) indicates that some of 

the MWCNT retention was reversible when flushing with background solution 

(Kretzschmar et al., 1995). In general, tailing is an indicator for colloid detachment 

(Mattison et al., 2011). The model simulations resulted in a detachment coefficient k2 of 

0.007 min-1 (Table 6) supporting the hypothesis that some detachment of MWCNTs took 

place in the disturbed soil column. 
Jaisi and Elimelech (2009) report little transport (< 10%) of functionalized 

SWCNTs in saturated columns packed with the sand fraction of a soil (420–1,000 µm). 

Furthermore, they expect only limited transport of SWCNTs in soils and no risk of 

groundwater contamination. In contrast, Fang et al. (2013) found high mobility (up to 

85%) of surfactant stabilized MWCNTs in different disturbed soils (< 1,000 µm) at water-

saturated flow and predict a transport to layers > 30 cm and thus the possibility of 

groundwater contamination. A high mobility (up to 90%) in homogenous soil columns 

under water-saturated conditions was also described for TiO2 nanoparticles (Fang et al., 

2009).  

Reliable predictions on the environmental fate of MWCNTs are difficult based on 

the results discussed in this chapter. Therefore, experiments considering more 

environmentally relevant scenarios (e.g., low flow rates, undisturbed soil, no surfactants, 

water-unsaturated conditions) were performed for this thesis.  

 

4.3.2 Transport in undisturbed soil at two water-saturation levels 

Transport and retention of MWCNTs in an undisturbed soil core of the loamy sand 

soil (KAL) were investigated at water contents close to saturation (approx. 96% and 85%, 

respectively).  

There was no detectable breakthrough of MWCNTs in the soil core at a water 

content of 96%. Quantification of the retention profile (Table 7) revealed that 91% of 

MWCNTs were retained in the soil. The main fraction of MWCNTs was retained close to 

the column inlet and the retention profile exhibited a hyper-exponential shape. The same 

shape was observed in the described experiments for functionalized MWCNTs in saturated 

sand columns in Chapter 4.2 and was attributed to a depth-dependent retention mechanism. 

The determined retention profile for the soil column was simulated using M3 and is shown 
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in Figure 26. The retention coefficient accounting for depth-dependency was able to 

describe the shape of the experimental RP well. 

 
Figure 26. Observed and simulated retention profiles for MWCNTs in undisturbed (und.) 
loamy sand soil cores from the test site in Kaldenkirchen-Hülst (KAL) at two water-
saturation levels (85 and 96%). For detailed experimental conditions see Table 2. The dots 
are the experimental data and the lines represent the model fits. 

 

At lower water saturation (approx. 85%), no breakthrough of MWCNTs was 

observed and 98% of the applied radioactivity was detected in the soil profile. The shape of 

the retention profile was also hyper-exponential (Figure 26) and was fitted well using a 

model including a depth-dependent retention term (M3).  

Though both experiments were performed at different water-saturation levels and 

thus, different amounts of air in the column, the retention profiles were similar. Complete 

retention occurred already at 96% water-saturation but reduction of the water content to 

85% changed the MWCNT distribution in the soil. When comparing the profiles (Figure 

26), the MWCNT concentrations in layers deeper than 2 cm were higher at the higher 

water content than for the lower water content. This implies that MWCNT transport was 

slightly enhanced at the higher water content. An increase in retention was expected with 

decreasing water-saturation because of a larger air-water interfacial area and a greater 

amount of flow through small pore spaces (Gargiulo et al., 2008). In contrast to the 

expected trend, the fitted retention coefficient (k1) was higher at the higher water content 

(Table 7). One potential explanation is the insensitivity in the retention coefficient k1 when 

complete retention occurs. In this case, higher values of k1 will produce similar amounts of 
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retention. This hypothesis is supported by the high standard error for k1 for the experiment 

at 85% water content (Table 7).  

 
Table 7. Fitted model parameters for the retention profiles of the different experiments. 
Correlation of observed and fitted data is reflected by R². 
 
Type 

of core 
Soil 
type 

Water 
saturation 

[%] 

R² β k1 
[min-1] 

Standard 
error k1 

 

k2 
[min-1] 

Standard 
error k2 

 
Und KAL 96 0.89 0.765 10.93 16.87 0.62E-02 0.89E-02 
Und KAL 85 0.96 0.765 2.56 1.55 0.16E-02 0.13E-02 
Rep KAL 96 0.86 0.765 0.42 0.59 NF NF 
Und MRZ 95 0.97 0.765 0.21 0.25 NF NF 
NF – denotes not fitted 
Und – Undisturbed 
Rep – Repacked 

 

Nevertheless, for both experiments, no significant transport to distances greater 

than 10 cm occurred and the highest fraction of MWCNTs was retained in the top layer of 

the soil. In consistency with these results, Jaisi and Elimelech (2009) reported limited 

transport of CNTs in a particular fraction of soil (420-1000 µm) in water-saturated column 

experiments. Based on their findings and the presented results, it is assumed that there is 

no transport of functionalized MWCNTs through the studied loamy sand soil at water 

contents lower than 85%. 

It is known that CNT suspensions can be stabilized by natural organic matter 

(Hyung et al., 2006) and that humic acid can enhance CNT transport (Wang et al., 2008). 

Nevertheless there was no breakthrough of MWCNTs in the loamy sand soil containing 

about 1% organic carbon. Similarly, Wang et al. (2010) observed complete retention of 

fullerene (C60) nanoparticles in saturated columns packed with two different soils 

containing 0.75% and 3.3% organic carbon, respectively. One possible explanation for the 

high retention of MWCNTs in soils compared to quartz sand might be adsorption via 

negatively charged carboxylic groups of the MWCNTs onto positively charged metal 

oxides. However, the iron content of the soil from KAL was relatively low (Table 1). Thus, 

it was assumed that physical factors (e.g., straining) play a dominant role for the MWCNT 

retention in soil (Jaisi and Elimelech, 2009). Since MWCNTs are non-spherical particles, 

they are easily trapped in small pore spaces and may create additional retention locations 

(Pan and Xing, 2012). Another reason for enhanced MWCNT retention may be the low, 

but environmentally relevant, flow rate (0.006 and 0.008 cm min-1) in the described 

experiments. It is already known, that the flow rate strongly influences MWCNT transport 
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and that retention increases with decreasing flow rate (Liu et al., 2009). In addition, the 

chemical heterogeneity of soils may also enhance MWCNT retention compared to quartz 

sand (Pan and Xing, 2012). Aggregation also influences CNT mobility in porous media 

(Pan and Xing, 2012) but could not be measured in this study. 

In summary, results show that even at water contents close to saturation (96%) no 

detectable breakthrough of functionalized MWCNTs occurred in undisturbed cores of the 

loamy sand soil from KAL. The observed high retention of MWCNTs in soil at 

experimental conditions might be due to an interplay of low flow rate (Liu et al., 2009), 

soil composition (Fang et al., 2009), heterogeneous pore size distribution (Pan and Xing, 

2012), and the presence of an air phase (Gargiulo et al., 2008). Based on the results of the 

environmentally relevant setup (undisturbed soil core, precipitation from the top, point 

application of MWCNTs, leaching from top to bottom, and low particle concentrations) no 

significant transport of MWCNTs in the loamy sand soil through the vadose zone is 

expected. 

 

4.3.3 Comparison of undisturbed and repacked soil at water-unsaturated conditions 

An additional experiment was performed in a repacked column with soil from KAL 

at a water content of approx. 96% and compared with the experiment performed in the 

undisturbed column at the same conditions (Figure 27). The dispersivity of the undisturbed 

soil column was almost twice as high as that for the repacked column (Table 3), indicating 

more heterogeneity in the undisturbed soil (Unold et al., 2009b). Additionally, the 

conservative tracer BTCs (data not shown) were described well for both repacked and 

undisturbed soil columns using the classical ADE model. This finding indicates that 

physical non-equilibrium processes (e.g., preferential flow) did not play a dominant role in 

these experiments (Unold et al., 2009b). In general, preferential flow will be more 

prominent in fully water-saturated media because macropores drain fast when the water 

level falls below full saturation, unless high rainfall intensities occur (Beven and Germann, 

1982). 
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Figure 27. Observed and simulated retention profiles for MWCNTs in a disturbed (dist.) 
soil column from the test site in Kaldenkirchen-Hülst (KAL) compared with the previously 
shown RP for the undisturbed soil column from the same test site. The water-saturation 
was around 96%. For detailed experimental conditions see Table 2. The dots are the 
experimental data and the lines represent the model fits. 

 

The transport results were similar for both undisturbed and repacked column 

experiments. The only difference was that the MWCNT concentration in layers deeper 

than 2 cm was higher in the undisturbed soil compared to the disturbed soil (Figure 27). 

This observation suggests a higher transport potential in the undisturbed soil. Nevertheless, 

no breakthrough was found in both columns. In the repacked column, more than 86% of 

MWCNTs were recovered in the RP which also exhibited a hyper-exponential shape 

(Figure 27). This result indicates that the structure of the undisturbed loamy sand soil was 

very homogenous without fractures or macropores, similar to the structure of the repacked 

soil column.  

The saturated transport experiment with disturbed soil from KAL (Chapter 4.3.1) 

revealed certain mobility (approx. 30%) of MWCNTs. In contrast, the experiment with the 

same soil at unsaturated conditions presented in this chapter resulted in complete retention 

of MWCNTs in the soil. One possible explanation could be the presence of air in the 

unsaturated experiments. But, more important seems to be the role of the flow rate (Liu et 

al., 2009). The flow rate of the water-saturated experiment (0.64 cm min-1) was about two 

orders of magnitude higher than for the unsaturated column (0.0067 cm min-1). The 

sensitivity of CNT transport to the flow rate indicates that straining is an operative 
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mechanism (Li et al., 2004). The increase of CNT breakthrough with increasing flow rate 

can also be explained by a decreased number of collisions between particles and collectors 

at high flow rates (Li et al., 2004; Liu et al., 2009). Thus, the experiments are only 

comparable when the same flow conditions are applied which can be difficult due to 

technical limitation of the setups. 

 

4.3.4 Transport in undisturbed soil from two test sites at unsaturated conditions  

In addition to the previously described experiments with a loamy sand soil, an 

experiment with a silty loam soil (MRZ) at conditions close to water-saturation (96%) was 

performed. In general, soil from MRZ was expected to exhibit stronger sorption than the 

loamy sand soil from KAL due to a higher clay content which causes a larger specific 

surface area (Unold et al., 2009b). Surface deposition and physical straining are expected 

to be the dominant retention mechanisms for CNT retention in soil (Fang et al., 2013; Jaisi 

and Elimelech, 2009).  

Nevertheless, various factors influence the mobility of CNTs in soils. Soil texture 

(e.g., clay content) affects the pore size distribution in the soil and thus, straining. In 

agreement with this, Fang et al. (2013) found that the transport of surfactant stabilized 

MWCNTs through various soils was negatively correlated with the soil clay content. For 

TiO2 nanoparticles, Fang et al. (2009) described a significantly increased retention with 

increasing salinity and clay contents.  

The comparison of KAL and MRZ soils at similar experimental conditions did not 

reveal any detectable differences in transport behavior of MWCNTs in both soils. No 

MWCNT breakthrough was detected and more than 90% was recovered in the soil profile 

of MRZ soil (Figure 28). The retention profiles in the two soils were very similar despite 

significant differences in their dispersivity and porosity (Table 3). In fact, the MWCNT 

concentration in layers deeper than 2 cm was slightly higher for the KAL soil that had less 

clay. Thus in the absence of preferential flow, no transport of MWCNTs through the 

vadose zone in the MRZ soil is expected because of its higher clay content and lower water 

contents.  
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Figure 28. Observed and simulated retention profiles for MWCNTs in an undisturbed silty 
loam soil from the test site in Merzenhausen (MRZ) compared with the previously shown 
RP for the undisturbed loamy sand soil from the test site in Kaldenkirchen-Hülst (KAL). 
The water-saturation was around 96%. For detailed experimental conditions see Table 3. 
The dots are the experimental data and the lines represent the model fits. 

 

In summary, results indicated that the transport behavior of MWCNTs was not 

significantly different for these two soils. It is hypothesized that physical filtration 

mechanisms are the dominant processes controlling MWCNT retention in these natural 

soils. These processes are expected to be influenced by water content (Gargiulo et al., 

2007a), flow rate (Liu et al., 2009), and particle concentration (Bradford and Bettahar, 

2006).  

 

4.3.5 Transport in a soil lysimeter 

In addition to the laboratory experiments, a lysimeter study was performed to 

investigate the transport of MWCNTs on a larger scale over a longer time period. The 

lysimeter experiment also represents intermittent flow conditions. 

The results of the lysimeter experiment revealed that 100% of the bromide tracer 

was recovered in the effluent after 107 days. In dramatic contrast, no radioactivity was 

detected in the lysimeter effluent after 220 days (Figure 29a) even at a relatively high 

irrigation rate (1200 mm y-1). Therefore, the lysimeter experiment was stopped and the 

MWCNT distribution in the soil profile was determined. The corresponding RP (Figure 

29b) exhibited the same hyper-exponential shape as in repacked and undisturbed columns. 
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The main fraction of MWCNTs was retained in the upper 20 cm of the soil column. 

Consistent with the findings of Jaisi and Elimelech (2009) and the unsaturated column 

experiments (Chapters 4.3.2 and 4.3.3), this indicates that no significant MWCNT 

transport occurred in the undisturbed loamy sand soil under unsaturated conditions.  

No effect of the irrigation events on MWCNT breakthrough was observed which 

suggests that the effect of intermittent flow might not be as relevant for unsaturated 

conditions in undisturbed soil compared to saturated flow in sand (Chapter 4.2.4). 

Furthermore, no preferential flow resulting in a fast transport and thus a detectable 

concentration of MWCNTs in the leachate was proven for the loamy sand soil from KAL. 

In addition, it is known that the flow rate strongly influences MWCNT transport in porous 

media (Liu et al., 2009). One reason for the breakthrough of MWCNTs in the disturbed 

saturated soil (Chapter 4.3.1) may be the high flow rate applied in this experiment. Since 

there was no high, continuous flow applied to the lysimeter it is not surprising that 

transport was limited. 

Finally, the lysimeter experiment proved that complete retention of MWCNTs 

occurred in the undisturbed loamy sand soil from the test site KAL for a time period of 8 

months. Nevertheless, the influence of certain weather conditions (e.g., oversaturation due 

to heavy rainfall, drainage and imbibition) and environmental factors (e.g., preferential 

flow paths, soil type, uptake by organisms) generally need to be considered when 

evaluating potential risks of MWCNTs to humans and the environment.  
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Figure 29. Cumulative breakthrough of tracer (Br-) and radiolabeled MWCNTs (a) as well 
as an averaged retention profile (b) 220 days after application of MWCNTs to a lysimeter. 
The lysimeter was filled with an undisturbed loamy sand soil from the test site 
Kaldenkirchen-Hülst. 
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4.4 Outlook: Influence of carbon nanotubes on transport and 

deposition of chlordecone in soils 
On the one hand, carbon nanotubes were considered for soil and groundwater 

remediation (Chapter 1.1) and may therefore have a potential to decontaminate soils 

polluted with chlordecone (CLD). On the other hand, a remobilization of the strongly 

retained CLD in the presence of CNTs might be also possible. Furthermore, CNTs could 

also enhance the retention of CLD and thus increase its persistence in soil. Therefore, 

investigations into the effect of MWCNTs on the mobility of CLD are of special interest 

and may be a promising topic for further research. In this study, sorption isotherms of CLD 

onto a loamy sand soil (KAL) and functionalized MWCNTs were determined. 

The adsorption isotherm for CLD onto the loamy sand soil from KAL is shown in 

Figure 30. In control experiments without soil, 100% of the applied CLD was recovered in 

the solution after equilibration for 24 h. This indicates that there was no adsorption onto 

the glass wall or the cap of the centrifuge tubes. A linear regression of the adsorption 

isotherm yielded a sorption coefficient (Kd) of 56 L kg-1 with a R² of 0.99.  

 

 
Figure 30. Adsorption isotherm of chlordecone onto the loamy sand soil (KAL). 

 

The partition coefficient Kd is not only influenced by the properties of the solute 

(e.g., solubility, octanol-water partition coefficient, vapor pressure), but also by the 

physico-chemical composition of the soil (e.g., electrolytes in the soil solution, clay 
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minerals, oxides and hydroxides, organic material) (Blume et al., 2010). The determined 

high value indicates a relatively high removal rate of CLD from water by the loamy sand 

soil which was expected because of the hydrophobic properties of CLD. Since most of the 

organic solutes preferably adsorb onto the soil organic matter, the linear relation between 

the equilibrium liquid and solid phase concentration of hydrophobic organic solutes is 

often referred to as a partition process in the soil organic matter (Blume et al., 2010; Li, 

2011).  

Based on the assumption that CLD was adsorbed on the organic matter of the soil, 

the Kd was normalized by the organic carbon content of the soil (Table 1) and resulted in a 

Koc of 5090 L kg-1. This is in the range of the known literature values for the Koc of CLD 

which are reported to range between 2500 L kg-1 and 20,000 L kg-1 (Woignier et al., 2012). 

This Koc-value indicates that the hydrophobic adsorption of CLD onto this soil was 

controlled by the interaction between CLD and the organic carbon of the soil (Li et al., 

2012b). In general, a high Koc-value represents limited mobility of organic chemicals 

which is consistent with the aforementioned persistent contamination of soils in the French 

West Indies. Fernández-Bayo et al. (Fernández-Bayo et al., 2013) reported a strong linear 

sorption of CLD onto soil and a high Koc-value. They also found that the sorption of CLD 

was not only influenced by the amount of organic matter but also by its composition and 

structure. In conclusion, they hypothesized that even in soils with low organic carbon 

content, a high sorption of CLD can occur.  

The adsorption isotherm for CLD onto functionalized MWCNTs is shown in Figure 

31 and demonstrates a strong adsorption of CLD onto the functionalized MWCNTs. The 

data were corrected for adsorption of CLD onto the PTFE of the dialysis half-cells. The 

isotherm was successfully fitted using the Freundlich model (R² = 0.99). Thereby, the 

estimated values for the two parameters were KF = 229 µg(1-1/n) L1/n g-1 and n = 1.49. In 

consequence, 1/n was 0.67, indicating that adsorption occurred at relatively heterogeneous 

surfaces (Blume et al., 2010). Pan and Xing (2008) state that the presence of high energy 

adsorption sites (e.g., functional groups) may be one possible explanation for the 

heterogeneous adsorption of organic chemicals onto CNTs. The KF-value describes the 

affinity of the adsorbate onto the surface of the adsorbent (Blume et al., 2010). The strong 

adsorption of CLD onto the MWCNTs is in agreement with the results of Yan et al. (2008) 

who observed strong adsorption of atrazine onto MWCNTs and were also able to describe 

the isotherm using the Freundlich model.  

 



Results and discussion 

75 
 

 
Figure 31. Adsorption isotherm of chlordecone onto functionalized multi-walled carbon 
nanotubes. 

 

The estimated Kd-value for the adsorption isotherm of CLD onto the functionalized 

MWCNTs was 60,000 L kg-1 (R2 = 0.95). The Kd was three orders of magnitude higher 

than for the loamy sand soil (56 L kg-1). This proves that there was a strong adsorption of 

CLD onto the functionalized MWCNTs. Thus, it can be hypothesized that MWCNTs 

might influence the mobility of CLD in the soil. 

It was proven that the modified MWCNTs contained functional groups (e.g., 

carboxylic groups; Chapter 4.1). These may also affect the adsorption of chemicals. The 

negative charge of the MWCNTs increases with an increasing pH-value because of 

enhanced deprotonation of the functional groups (Li, 2011). The importance of the amount 

of carboxylic groups on the adsorption of organic chemicals was investigated by Cho et al. 

(2008). They reported a decrease in naphthalene adsorption onto MWCNTs with an 

increasing level of adsorbent oxidation. This effect can be explained by increased polarity 

of the MWCNTs after functionalization (Cho et al., 2008). Although, the MWCNTs used 

in this study demonstrably contained carboxylic groups (Chapter 4.1), they exhibited a 

strong adsorption capacity for CLD.  

To investigate the effect of the MWCNTs on the transport and retention of CLD in 

the soil, various experiments are of interest. First, a normal column transport experiment 

could be performed with CLD in the soil from KAL. Based on the determined adsorption 
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isotherm, limited transport of CLD through the loamy sand soil is expected. Thus, a high 

retention of CLD is very likely in the top layer of the soil.  

Since CLD also strongly adsorbs onto MWCNTs and a breakthrough of 30% of the 

particles was found in a disturbed water-saturated soil at high flow rates (Figure 25), a 

simultaneous injection of these two compounds would be of interest to investigate the 

MWCNT-facilitated transport of CLD. In similar experiments, Fang et al. (2013) showed 

that, in the presence of surfactants, MWCNTs could enhance the mobility of phenanthrene 

depending on the soil type. They also showed that in soils with a high adsorption affinity, 

the phenanthrene adsorbed to the MWCNTs was stripped off and retained in the soil (Fang 

et al., 2013). Since CLD also adsorbed onto the soil tested in this study, it is unclear if the 

MWCNTs enhance the mobility of CLD when they are applied to the soil after the CLD. In 

addition, no significant transport of MWCNTs in undisturbed soil under environmentally 

relevant conditions was found (Chapters 4.2.2 – 4.2.4). Thus, MWCNTs are not expected 

to enhance the mobility of pollutants but rather to limit it. 

In general, it is relatively unlikely that suspensions of MWCNTs and pesticides will 

be released into the environment simultaneously. The MWCNTs retained in the soil may 

also alter the adsorption capacity of the soil and may therefore affect the transport and 

deposition of CLD. Thus, experiments with MWCNTs injected to the column first, 

followed by the CLD pulse, would also be interesting to understand the mechanisms of 

CLD sorption in the soil. The CLD might adsorb to both the retained MWCNTs and to the 

soil.  

Finally, the hypotheses presented here have to be verified in co-transport 

experiments considering different scenarios (e.g., variation of soils, flow rate, order of 

CLD and MWCNT application) to obtain information on the potential of groundwater 

contamination by MWCNT-enhanced transport of CLD or the possibility of remediation of 

contaminated soil using MWCNT. 
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5. Summary and conclusions 
Since an increasing production and use of NPs may result in their release into the 

environment, it is important to gain knowledge on their fate in the environment. The aim of 

this study was to investigate the transport and retention of functionalized MWCNTs in 

saturated and unsaturated porous media. Column experiments were performed in quartz 

sand and soil columns under different conditions. In addition, a soil lysimeter study was 

conducted. This study provided new insights into the environmental behavior and fate of 

MWCNTs and helped to evaluate the risks of MWCNT release into soils and sediments. 

Prior to the transport experiments, the MWCNTs were modified with strong nitric 

acid in order to remove metal impurities and to enhance their stability in aqueous 

suspensions. The MWCNTs were characterized before and after modification to determine 

their properties and the effect of the modification process. Characterization by different 

techniques (e.g., TEM, ICP-MS, XPS) showed that the modification process significantly 

lowered catalyst impurities and induced oxygen-containing functional groups. 

Nevertheless, some characterization techniques (e.g., DLS) reached their limitations for 

CNTs because of their high aspect ratio. Further work on the analytical techniques for NPs 

in general and CNTs in particular, especially in environmental matrices, is needed to 

improve the characterization and detection of this new class of emerging pollutants. 

Nanoparticles behave like colloids and tend to aggregate. However, the available 

and commonly used experimental setups and methods for transport studies were originally 

designed for solutes. Therefore, the setups were tested for MWCNTs and modified. The 

colloidal nature of NPs must be considered when analyzing these materials, making most 

of the common guidelines for testing chemicals inapplicable for nanoparticles unless they 

are adapted. 

The transport experiments under water-saturated conditions showed that the grain 

size of the porous medium and the input concentration of MWCNTs play an important role 

on MWCNT transport. Furthermore, this study highlights the importance of considering 

environmentally relevant concentrations and retention profiles to allow reliable predictions 

of MWCNT transport and fate. This was enabled by the 14C-labeling of MWCNTs. This 

work provides new information on the mobility of functionalized multi-walled carbon 

nanotubes. Results show that normalized MWCNT transport increases with higher input 

concentrations and in coarser textured sand. The retention profiles showed that the 

majority of MWCNT retention occurred near the column inlet, especially for lower input 

concentrations and smaller sand sizes. Simulations that considered a combination of time- 
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and depth-dependent retention provided a good description of the experimental data. An 

analysis of model parameters demonstrated that concentration-dependent transport 

behavior became more important for smaller grain sizes and higher input concentrations. 

These trends were attributed to the complex shape and deposition morphology of 

MWCNTs in smaller pore spaces at higher input concentrations. The results of this study 

with quartz sand suggest that functionalized MWCNTs tend to be mobile in sandy 

subsurface environments, and may be transported to depths greater than 500 cm. Thus, 

aquifer contamination cannot be excluded.  

An experiment with flow interruption showed a release of a small fraction of the 

applied MWCNTs after flow interruption. This indicates that some remobilization of 

functionalized MWCNTs in the environment might occur because natural flow conditions 

are not constant. Experiments with disturbed soil at water-saturated conditions showed a 

certain mobility of MWCNTs at high flow rates. Additionally, a concentration tailing of 

the BTC and the detachment coefficient indicated that retention in the disturbed soil was 

not completely irreversible. 

Experiments in undisturbed soils under water-unsaturated conditions were 

performed to assess the mobility of MWCNTs in natural porous media. The results 

revealed an almost complete retention of functionalized MWCNTs in undisturbed cores of 

two well characterized soils (loamy sand and silty loam) at low flow rates. There was no 

detectable breakthrough of MWCNTs. More than 86% of MWCNTs were recovered in the 

soil profile at conditions close to saturation. At lower water-saturation, MWCNT retention 

was enhanced in the upper soil layers. A long-term lysimeter study confirmed that the 

MWCNTs were retained in the top soil layer. Soils are therefore expected to act as an 

effective sink for MWCNTs. Reasons for the high retention of MWCNTs in soil might be 

physical and chemical heterogeneity, particle aggregation, the heterogeneous soil pore size 

distribution, and the presence of air. Although it is known that organic matter can stabilize 

CNT suspensions and enhance their transport, no transport in the investigated soil was 

found – possibly due to the low organic carbon content (approx. 1%). The results suggest 

little potential for MWCNT transport through the vadose zone and for subsequent 

groundwater contamination in the considered soils. Nevertheless, MWCNT incorporation 

by earthworms, sediment-dwelling animals or filter feeders and transport to deeper soil 

layers and groundwater under conditions of heavy rainfall and/or preferential flow cannot 

be excluded. In addition, transient drainage and imbibition events might remobilize 

retained particles.  
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Since colloid-facilitated transport is an important mechanism for the transport and 

translocation of pollutants, the effect of MWCNTs on the transport of organic 

contaminants is a promising topic for further research. In this study, preliminary 

experiments revealed strong adsorption of chlordecone onto a loamy sand soil and the 

MWCNTs. Since the adsorption of CLD onto the MWCNTs was significantly higher 

compared to onto the soil, a potential influence of MWCNTs on the mobility of CLD in the 

soil has to be investigated. 

This study provides fundamental information on the mobility of MWCNTs in 

natural porous media under environmentally relevant conditions. Nevertheless, further 

research is needed to better evaluate the environmental risk and to establish regulations for 

the production and use of these materials. The colloidal stability of CNTs is an important 

factor influencing their toxicity to organisms and their mobility in porous media. Since 

most of the commercial applications demand stable particles, the use of stabilized CNTs 

will increase and so too will the environmental risk. Therefore, investigations are needed 

on stabilized CNTs and their fate and transport after release from products. In addition, the 

effect of natural weather conditions (e.g., natural rainfall, drainage and imbibition) and 

plants on CNT transport would be a potential topic for further research. Investigations on 

the co-transport of CNTs and other compounds (e.g., heavy metals, organic chemicals) in 

soils of different chemical and physical composition are also of interest. 
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