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Abstract

The aspects of application development on parallel computing platforms are highly acute today.
With the intensive increase in the integration level of silicon devices enabling parallel computing
technologies on a single chip the power of supercomputers became available for computing systems
of the compact class. Thus, more sophisticated and calculation intensive computing methods have
become broadly available for the scientific society and industry. However, the inevitable drawback
for this computing boost is often a cardinal change in the application design and development

approach.

The present thesis addresses two types of compact High Performance Computing (HPC) platforms
found to be most successful nowadays: Field Programmabe Gate Array (FPGA) based expansion
cards and Graphics Processing Unit (GPU) coprocessing boards. To define their place in the parallel
platform domain a profound overview of modern digital single-chip systems is presented. The
characteristic features of FPGA and GPU architectures are discussed to identify the major aspects of

the application design for these platforms.

A special attention is paid to the methodological aspects of both application design concepts. A
thorough literature study has been carried out to systematise the complete application development
cycle starting with the comprehensive system-level analysis and finishing with the workflow of the
implementation on the target compute architectures. Several new ideas and interpretations have

been introduced in this work.

The application in focus is a fast automated image segmentation method based on hierarchical
island structures, the so called GSC (Grey Value Structure Code) worked out by Vogelbruch [2].
This complex segmentation method is feasible for different application areas and provides high-
quality segmentation results by the combination of both local precision and global connectivity.

Steered by the proposed methodological guideline a comprehensive analysis of the parallelisation
potential of the applied method is carried out in this work. Relying on many statistical
measurements and results of versatile system models the GSC algorithm is specially reelaborated
for the implementation on the two massive parallel computation platforms to achieve a high
performance of the segmentation needed for real-time application set-ups. A special attention has
been paid to the question of an effective computation organisation for the target platforms. The
details of the implementations on both platforms are discussed thoroughly. Finally, the two
implementations are compared to highlight their relative merits and downsides for this complex and

computation intensive application.

The results of the work show that even having a considerably longer development cycle the FPGA-
based solution on the Xilinx Virtex II Pro architecture can compete with the implementation on the
specialised nVidia GT200 GPGPU card of the next technological generation and can even notably
outperform it for image resolutions below 1024% while the nVidia G80 GPU of the same
technological evolution cycle cannot be considered as a competitor. Compared to the processing
speed on a single CPU (Opteron 2.6 GHz) the FPGA accelerates the application in dependence on
the image resolution by a factor of about 23, while the GPU outperforms with factors of 13 to 20.



Zusammenfassung

Der Forschungsbereich Applikationsentwicklung fiir parallele Rechnerplattformen ist hoch aktuell.
Mit dem rasanten Anstieg der Integrationsdichte von Halbleiterbauelementen, welche parallele
Rechnertechnologien auf einem einzigen Baustein ermdglichte, wurde die Rechenleistung von
Hochleistungsrechnern auch fiir Rechnersysteme der Kompaktklasse verfiigbar. Dies machte
anspruchsvollere und rechenintensivere Methoden fiir Wissenschaft und Industrie breiter einsetzbar.
Allerdings setzten diese Rechnertechnologien in der Regel eine grundsitzliche Verdnderung des

Applikationsentwurfs und des Entwicklungsansatzes voraus.

Die vorliegende Arbeit befasst sich mit den beiden zur Zeit erfolgreichsten kompakten HPC-Plattformen
(HPC ~ High Performance Computing): FPGA-Erweiterungskarten (FPGA ~ Field Programmable Gate
Array) und graphische Co-Prozessorkarten (GPU). Zu deren Einordnung innerhalb der parallelen
Plattformen wird in dieser Arbeit ein umfassender Uberblick iiber moderne digitale Einzelchipsysteme
gegeben. Die charakteristischen Eigenschaften von FPGA- und GPU-Architekturen werden diskutiert,

um die wichtigsten Aspekte des Applikationsentwurfs fiir diese Plattformen zu identifizieren.

Dariiber hinaus wird besondere Aufmerksamkeit den methodologischen Aspekten beider
Applikationsentwurfskonzepte gewidmet. Basierend auf einer umfassenden Literaturrecherche, wurde
hierzu der komplette Applikationsentwicklungszyklus systematisiert, von der umfassenden Analyse auf

Systemebene bis hin zum Implementierungs-Workflow fiir die Zielrechenarchitektur.

Eine schnelle und automatisierte Bildsegmentierungsmethode, der sogenannte GSC (Grey Value
Structure Code), welcher auf hierarchischen Inselstrukturen basiert und u.a. von Vogelbruch [2]
erarbeitet wurde, steht als Anwendung im Fokus. Diese komplexe Segmentierungsmethode ist fiir
verschiedene Anwendungsgebiete einsetzbar und liefert durch die Kombination von lokaler Genauigkeit

und globaler Konnektivitdt qualitativ hochwertige Segmentierungsergebnisse.

Entsprechend der vorgeschlagenen methodologischen Vorgehensweise wird in dieser Arbeit das
Parallelisierungspotential des GSC umfassend analysiert. Basierend auf den Ergebnissen vielfiltiger
Systemmodelle und der Auswertung von statistischen Messungen, wurde der GSC Algorithmus fir die
Implementierung auf den beiden Plattformen in Hinblick auf eine hohe Rechengeschwindigkeit, wie sie
in Echtzeitapplikationen benétigt wird, neu adaptiert. Hierbei wurde besonderer Wert auf die effektive
Organisation der Rechenschritte gelegt. Die beiden Implementierungen werden eingehend beschrieben.
Abschlieend werden die jeweiligen Vor- und Nachteile der beiden Implementierungen fir diesen

komplexen und rechenintensiven Anwendungsfall vergleichend herausgearbeitet.

Die Ergebnisse der Arbeit zeigen, dass, ungeachtet des wesentlich lingeren Entwicklungszyklus, die
FPGA basierte Losung auf der Xilinx Virtex II Pro Architektur mit der Implementierung auf der
spezialisierten nVidia GT200 GPGPU Karte konkurrieren und diese sogar fiir Bildauflosungen unter
10242 deutlich tibertreffen kann. Die nVidia G80 GPU des gleichen technologischen Evolutionszyklus
kann dagegen nicht als Konkurrent angesehen werden. Verglichen mit der Rechengeschwindigkeit auf
einer Einzel-CPU (Opteron 2,6 GHz), beschleunigt die FPGA-Implementierung die Anwendung in
Abhingigkeit von der Bildauflgsung um einen Faktor von ungefihr 23, wihrend die GPU diesen mit
Faktoren von 13 bis 20 tibertrifft.
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1 Introduction

With the rapid development of silicon IC technology over the last two decades more and more
sophisticated and calculation intensive computing methods have become broadly available for the
scientific society and industry. Around the turn of the century an intensive increase of the
computation power of digital systems resulting from the clock frequency increase have come to
saturation however [1]. The trend for extensive development of computation systems became

dominating. This alternative trend is the computation parallelism.

Parallel computations look natural for processing data of many systems. Elements of such systems
exist and interact “in parallel” defining the qualities of the systems. However, not all computation
methods are suitable for parallelisation. The main reason for that is relatively simple — the majority
of existent methods are initially developed for sequential technologies. Moreover, even taking into
account that a human naturally perceives the parallelism of concurrent processes, this parallelism is
not always consciously handled by the person. The human mindset is oriented to work sequentially,
which hampers the comprehension of the parallel aspects of computations. That is why parallel
application design imposes special demands on development means and approaches to allow

efficient design and maintenance of parallel computations.

This means that new hardware capacities alone are not enough for a cardinal breakthrough in com-
putations. The exploitation of the computing parallelism faces at least two significant challenges:
the problem of revealing parallelism in computation methods and the need for adequate
development means for parallel application design. This work addresses both the analytical and the
instrumental aspects of parallel computations for two representatives of parallel computer

architectures.

One of the application fields that have a good potential for computation parallelisation is image
processing. Due to the spatial distribution of the image data, elements or regions of an image can
often be processed concurrently on different computing elements. The present work focuses on the
parallelisation potential of one of the methods for image segmentation. This method is based on
hierarchical island structures and referred to as the Grey-value Structure Code (GSC) segmentation
method [2]. The method has been shown to be effective for different application areas to provide

remarkable segmentation quality [3].
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Up to now the method has been realised as a computer program for standard x86 CPUs and has
been parallelised for symmetric multiprocessing (SMP) using OpenMP. The parallelisation of the
method is done by dividing initial data sets into parts, processing each part as an individual image,
and subsequently joining the results. However, due to its regular hierarchical structure the GSC has
potentials for massive parallelisation enabled by finer granularity available in the GSC. These

potentials are revealed in the analytical part of this work.

Due to its high segmentation quality and universality the method can be attractive for automated
visualisation and image processing systems e.g. in medical applications, robot vision, industrial
defect and quality control, transport automation, etc. In these application fields processing time
often plays a key role. Thus, boosting the method by parallel computation justifies extra efforts for

scrupulous parallelisation analysis and parallel implementation studies.

The work targets primarily at the performance efficiency of the parallel implementation rather than
the qualitative aspects of the method in general, which has been addressed in the previous
works [3]. Although the GSC method may vary in realisation of its algorithmic parts, these
particular implementations are not always suitable for parallel solutions. Considering the fact that
these algorithmic variants do have a minor impact on the segmentation quality the preferences are

given to those algorithmic solutions best suited for the target platforms.

Apart from the particular application the work focuses on both aspects of parallel application
design. The first is the parallelisation analysis of the computations carried out in compliance with
the methodology presented in this work. The second aspect covers the peculiarities of parallel
application development on two different target massively parallel computation platforms. These
peculiarities are emphasised by comparative analysis of two implementations of the GSC on these
platforms. The comparison considers the design process specifics and the relative implementation
efficiency of the parallel GSC. By comparing the implementations the work aims to broaden the

view on two specific parallel computation technologies in general.

The computation technologies under consideration are the configurable logic of Field-
Programmable Gate Arrays (FPGA) and the stream processing architecture of Graphical Processing
Units (GPU). Both parallel processing solutions became popular in the scientific society and
industry for their low initial set-up investments, low development costs and relatively high
computation power. Both technologies are often considered as rivals in the low-cost solution market

for high performance computing (HPC).

The choice of these two platforms is not accidental. The method's specifics require the systems that
are equipped with shared global memory and can benefit from high level of computation parallelism
and relatively wide range of computation granularity. Therefore, the systems like Massive Parallel
Processing (MPP) must be too ponderous due to their distributed memory organisation and the mes-
sage passing mechanism; the vector systems are too awkward to maintain control flow flexibility in

parallel processes; and the multiprocessor systems with symmetric memory access (SMP) may
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suffer from poor scalability limiting the massiveness of parallel processing. That is why only two
single chip processor' solutions have been selected to satisfy the GSC prerequisites. They are the
FPGA and the GPU board systems. For the studies the parallel GSC was implemented using a
specially designed FPGA (Xilinx Virtex-II) board for memory intensive high performance com-

puting and an nVidia's Compute Unified Device Architecture compatible GPU card (Tesla C1060).

Although both solutions share the same customer niche having comparable hardware prices, power
consumption, and computing power parameters, the design process of a target application on these
two platforms differs fundamentally. The substance of this difference lies in the way of representing
computation algorithms — a configurable logic structure on the one hand or a sequence of operations
realised in a particular instruction set on the other hand. The different approaches to algorithm
implementation result in characteristic benefits and downsides for each technology. The relative
merits and limitations of these two solutions being revealed during the GSC application design are

described in this work.

The applications and the projects the GSC is used in (e.g. industrial inspection, medical analysis)
demand significantly higher performance compared to what a CPU solution can offer. A cardinal
breakthrough in the applications’ performance can be very welcomed by industry and medicine.
Hence, the topicality of the work for the field of image processing arises from the fact that the GSC
has ever been implemented neither in a form of application specific hardware due to the complexity
of the method nor using the general purpose computing on GPU (GPGPU) technology due to its
relative novelty. These implementations can significantly improve performance of this highly
sophisticated segmentation method, while the results of the profound parallelisation analysis of the
method presented in this work can be used in future implementations of the parallel GSC on the

prospective parallel platforms.

Meanwhile, the two technologies causes a strong curiosity among the experts with regard to the
competition between FPGAs and GPUs in the area of compact HPC. Hence, another topicality of
the work lies in the instrumental and the technological aspects of developing parallel computing

applications for the two technologies.

High-end FPGA boards have been deservedly considered as the leaders of compact supercomputing
since many years. However, due to significantly long development cycles in application design
these platforms better serve the class of high performance embedded computing. The long
development cycle is a contradictory problem for general purpose computing. This problem has
been tried to be solved by applying well-developed functional libraries or by resorting to high-level
synthesis. Notwithstanding the prospects of the ideas in general, these approaches are not very
promising in this particular application area due to the high requirements to the qualification of an
end user, who needs to adjust and tune generic functional blocks during application assembling
anyway. That is why, when general purpose computing on GPUs became broadly available it was

considered as universal remedy for HPC at hand.

' The term processor is used in a broad sense of the word here.
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At the same time, the streaming architecture of GPUs has its own serious limitations, which are
revealed in this thesis. These limitations notably restrict the scope of application types that can be
efficiently implemented on GPUs and do not generally allow GPUs to substitute FPGAs in the

compact supercomputing field.

Nonetheless, the continuous increase in the integration level of modern processors will most
probably add a new flavour to GPU computing making its flexible mature programming technology
applicable for a broad range of tasks. The new stable tendency towards hybridisation of processor
architectures (i.e. combination of several CPU and GPU cores in one silicon device) promises to
broaden the GPU’s computing capabilities significantly, making the GPU a streaming coprocessing
unit in a hybrid multicore system. Hence, in general the stream processing technology has a chance
to expand even into the embedded application area of FPGAs, forcing both technologies to become
competitors for a huge number of applications. For this reason the comparison of these two

technologies is an exciting topic for the computing society.

Structurally the work consists of eight chapters. Chapter 2 shows the research background for the
work to draw a general picture of the application field and to introduce the reader to the specific
application and the instrumental part of the work. It starts with a brief description of segmentation
methods grouping them into several general classes of segmentation techniques. Beside the backg-
round of image segmentation, the chapter gives an introduction to the essence of the GSC segmen-
tation approach describing the basic concepts of the method. The section describing the instrumen-
tal part discusses tendencies in modern digital systems and gives an overview of the major parallel
computation technologies. The conception of algorithm interpretation in modern computing is
regarded in this chapter, which brings the previously mentioned algorithmic and instrumental parts

together. Finally, the two implementation platforms considered in the work are described in detail.

With the growth of system complexity the design methodology becomes of special importance. This
is explained by the fact that at a certain level of complexity a design carried out beyond a
methodological framework not only risks losing the result quality, it becomes simply not
handleable. The methodological constituent gets especially important for parallel applications as
they require qualitatively new approaches to development. This is why an undivided attention is
focused on the design methodologies in Chapter 3. Although the methodology aspects of the design
process do not contribute any quantitative results to the studies in the application area, it gives a
clear picture of development complexity for the two target platforms and helps to compare the

implementation approaches qualitatively.

Chapter 3 constitutes a form of survey. The material in this chapter generalises, structures, and
refines a broad range of works related to hardware and programming design. Many ideas in this
chapter are introduced for the first time or were the object of profound reconsideration. In this
chapter the top-down approach is advocated as the most appropriate technique for development of
systems of middle and high complexities. The design flow is shown as gradual refinement of the

system specifications. A special attention is paid to the verification. The peculiarities of the GPU
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architecture are described separately to highlight targets for optimisation of the GSC implementa-
tion. The methodology given in this chapter serves as a guideline for the GSC parallelisation

analysis and implementation on the target platforms described in the next two chapters.

The results of the GSC analysis and details of its realisation on a precise FPGA platform and a GPU
card are represented in Chapter 4 and Chapter 5, respectively. Chapter 4 is laid out in compliance
with the complete chain of top-down design and depicts gradual specification of the application at
different levels of abstraction. It starts at the functional analysis of the method and concludes with
the results of its implementation on the target FPGA platform. At the same time, Chapter 5 focuses
solely on the latter steps of a top-down design process of SW development — the partitioning of an
application to a target computing architecture. The chapter focuses on the peculiarities of the GSC
implementation on the given GPU platform, which determine the implementation process. Although
the system level studies of the GSC are represented in the hardware-related chapter, the technology
independent results of analysis at the higher levels of abstraction given in Chapter 4 are useful for

evaluating the method’s potentials for implementation on the GPU platform.

In Chapter 6 the two parallel solutions are compared each with the other using the findings acquired
through the GSC implementation. A generic comparison of FPGAs and GPUs is a difficult task as
the concepts and the paradigms, including design technologies, behind these device classes are
completely different. Moreover, these classes of devices generally come from different application
areas, which hinders finding the comparison criteria. That is why it is important to identify a set of
metrics that are relevant to the specific application field. This chapter collects a number of criteria
that can characterise this type of systems with regard to the challenges of compact high performance
computing. The GSC implementations were compared by computing performance, scalability,

implementation efforts, and functional modification capability.

Chapter 7 summarises the studies. It highlights the major points of the work, outlines the specifics
of the GSC under the aspect of parallel computing, discusses the peculiarities of the
implementations of the GSC on the particular computation platforms, and compares the relative
merits and downsides of these technologies.

Chapter 8 presents a generalisation of the experience gained from the GSC implementation, and
suggests some recommendations for implementation of other algorithms on GPU and FPGA
platforms. This chapter also offer an analysis of the trends in FPGA and GPU technologies and
gives an outlook on what can be expected from the prospective chips with regard to performance of
the parallel GSC. Furthermore, it discusses briefly which potentially interesting questions were not

covered in this work and might be subject for future studies.
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2 Fundamentals and research background

2.1 Segmentation in image processing

2.1.1 Overview on segmentation methods

Segmentation takes an important place in the image processing pipeline, being a bridge between the
preprocessing of the raw image (acquisition, transforming and positioning, quality improvement,
filtering) and the intellectual computer analysis (object recognition and classification, scene
measurements and analysis). The aim of the segmentation is to partition the image into
subsets/regions, each pixel in which is similar to the rest of the pixels in a region by a certain
criteria. Segmentation methods are various in applicability and usage. They can be widely
applicable (relatively universal) or sufficient (relevant) only to images of a specific nature,
automatic or supervised by an operator. The underlying mathematical and physical principles that
segmentation methods are based on are numerous [4-10], meanwhile they mainly rely on two basic
characteristics of a spatial signal. These are discontinuity (detection of segment boundaries) and
homogeneity (similarity of pixels within a segment). The most widely recognised and settled classes

of algorithms are briefly described here.

Threshold-based or histogram-based techniques [11-12] sorts out the elements of images into some
segment classes (e.g. object and background) with respect to appropriate thresholds, which can be
global, local or adaptive. These techniques have the advantage of being relatively simple and fast,

but are rather sensitive to the image quality (e.g. illumination spread, contrast).

Edge-based methods [13-14] exploit discontinuities of the signal in the images treating them as
segment boundaries. Edge-based techniques primarily use differential operators for detecting those
boundaries. These methods can be subdivided in sequential edge finding methods [15-16] and
parallel methods [17-19]. The challenge often met in those methods is that the edges distinguished
in images are not necessarily joint, thus special algorithms are needed to form solid borders of
segments [20-22]. The major problems of these methods are their noise sensitivity and their result
dependence on the mathematical approximation methods in multidimensional derivatives’

computation. A particular case of edge-based methods is the watershed technique [23-25]. This
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method regards the image as a topological relief (with the third dimension being pixel features),
which is flooded with liquid, thus forming basins, i.e. image segments, enclosed with ridges of the
relief. Normally, morphological operators are used for the detection of basin boundaries. One great
disadvantage of the watershed technique is its oversegmentation tendency which may be reduced by

several approaches [26].

Region-based methods consist in joining/disjoining image elements to/from newly forming
segments. In particular graph-based techniques can be used for segments forming, which represent
the image as a graph with image elements being nodes, while edges reflect the similarity of nodes as
a distance between the regions in some metric space. The strategies for segments’ forming can be
region merging [27-29], region splitting, splitting and merging [30-31], or pyramid linking [32],
[33]. The potential problem with region-based approaches is selecting appropriate homogeneity

criteria and in some cases the selection of points for the region inception.

Deformable models [9, 34-41] exploit the idea of the physical characteristics of materials. The
underlying idea of the methods is in modelling the behaviour of some imaginary contour having
some physical properties (elasticity, stiffness, torsion ability) under internal and external forces.
These forces are constantly applied to the contour until they deform the contour so that it fills some
image segment. The evolution equation posed as an energy minimisation problem is solved by
methods of finite difference and finite elements [42]. Another method to realise a deformable model

is to use curve evolution theory [34] and level-set methods [43].

Classification methods [44] can be used to perform an implicit segmentation of a data set. For this,
typically several characteristic features need to be extracted from the data set. The assignment of
pixels to segments normally is performed in a multidimensional feature space by identifying
clusters of similar objects and using a classifier for the affiliation decision. These classifiers
comprise e.g. geometric classifier, minimum distance classifier, k-nearest-neighbour classifier,
decision tree classifier, and statistical classifiers. Also neural networks [45] can be used to
implement a classifier. By the use of a classification method for segmentation the contiguity
conditions of segments can get lost. To obtain satisfying results, additional spatial merging

algorithms need to be used or enough characteristic features should be extractable from the data set.

In addition to the classical method groups some hybrid methods have been proposed to aggregate
the advantages of those methods. Most of them combine edge- and region-based methods [46-47],
[48] e.g. by applying a watershed algorithm on the image gradient magnitude and complete the

segmentation process by a hierarchical region merging process [49].

The GSC method [2] focused in this work is based on the CSC (Colour Structure Code) [50-51] and
realises an isotropic inspection of the 2D data set using hierarchical island structures for the image
representation. It belongs to the category of automated region-based techniques operating with
monochromatic features. The advantage of this method is that it merges local precision and global

view of an image by reevaluating homogeneity decisions taken on a lower hierarchical level on the
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basis of the global view. This is realised by subsequently splitting originally merged regions down
to the lowest hierarchical layer. As it is shown in [3] the GSC can be used for different application

areas providing promising segmentation results and remarkable a segmentation quality.

2.1.2 Grey Scale Code method

The GSC is based on the mathematical abstraction of a hierarchical overlapping island structure
[50-51]. The 2D-GSC operates on a hexagonal Bravais lattice, which is covered with central
symmetric islands of seven neighbouring nodes with one node in the centre. The islands are placed
on the lattice so that every island overlaps with each of its six neighbours in a single lattice node
(referred to as an overlapping node or point). Their centres form the hexagonal Bravais lattice of the
next upper hierarchical level, with the correspondent islands being nodes of the hexagonal Bravais
lattice of the upper hierarchical level. The groups of seven nodes at this upper hierarchical level
again form islands on this hierarchical level, which are referred to as macroislands®, in the same
topological rule (Figure 1a). To apply this lattice to a 2D picture the GSC suppose an imaginary

shift of even and odd pixel lines, so that the pixels are in an alternate order (Figure 1b).

Cental Symmetrical Island Overlapping Node mmq
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Figure 1: Forming hierarchical island structure
a) Overlapping central symmetric islands on the hexagonal Bravias lattice
b) Mapping of hierarchical overlapping island structure to a pixel image

Considering the island organisation rule the total topological representation of an image can be seen

as a pyramidal hierarchical structure (Figure 2) with direct topological correspondence between

islands of upper and lower hierarchical levels. A level resolution of the pyramid is defined as
W=W,,/2+1

where Wis the level width in islands, i is the level number, and the division operator is an integer

division.

? Islands on the upper level are referred to as macroislands, while islands on the lower level are referred as subislands in respect with
islands of a current level.
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This hierarchical island structure is a framework for the region forming process. On a specific

hierarchical level (HL) regions grow only inside the islands of this level.

At the lowest level the pixels that are covered by an island (referred to as a pixel island) may be
grouped into initial or pixel regions. Two pixels may belong to a region if they are neighbours and
if they satisfy some threshold condition. The pixels that are not covered by any region are called
singularities. An image pixel can belong to two neighbouring islands and, therefore, can be covered
by two different regions. In this case these regions are referred to as overlapping. This overlapping

is the criterion for the region forming at the next hierarchical level.

Pixel Level Island (Pixel)
HL(P)

HL(N-2)

e HL(T)

HL(0)

Level 0 Island
HL(0)

N\ B g PICTURE
evel 1 Island . HL(P)
HL(1) ; -

a) b)

Figure 2: Pyramidal hierarchical-layer structure (HL(i) — hierarchical level, i — level index)
a) Island hierarchy relationship; b) GSC relationship pyramid

One level higher the pixel islands' level, the initial regions may form new macroregions® in
correspondent hierarchical macroislands if they overlap and satisfy the threshold condition. As in
the case of the pixel islands' level, the same region may be included into two macroregions of two
neighbouring macroislands, making those macroregions overlapping. Again, this overlapping
condition together with the threshold satisfaction are the necessary criteria for forming higher rank
regions inside the macroislands on the next higher hierarchical level and for all further levels
through the pyramid in general. This means that a region of a hierarchical level consists of

overlapping and similar regions of the hierarchical level underneath (Figure 3a).

The process of gradual region linking through the hierarchy represents a simultaneous segment
grow over a picture with averaging joint region values. If a region cannot be linked further, it
reaches its limits and forms a segment. Hence, the corresponding segment label or the mean value
can be assigned to the original image pixels it covers. For this, the GSC requires some relationship
information between regions of higher and lower hierarchical levels. This relationship indicates the
inclusion of regions of a lower level in regions of a higher level. An upward, downward or two-way

relationship can be established if appropriate. This hierarchical region relationship can be repre-

* For terminology convenience for the levels higher than pixel island levels the regions that are formed at a current hierarchical level are
referred to as macroregions, while the regions that they are built of (i.e. one hierarchical level lower) are referred to as just regions, and
the regions being two levels below the current level are referred as subregons.
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sented as a hierarchical region coverage tree that establishes the parent — child relationship between
regions of adjacent hierarchical levels. Considering this, the whole picture can be represented by the
forest of these graphs (Figure 3b), with each tree representing a segment. A tree root will contain a

mean value of the whole segment, while the root index may be treated as a segment label.

a) b)

Figure 3: Region forming and region relationship tree
a) Region forming example: R1,R2,R3 and R4,R2,R5,R6 form two macro-regions Mrl and Mr2 respectively,
as they have common overlapping points, satisfy a threshold condition and are covered by common
hierarchical islands; the macro regions Mrl and Mr2 have a chance to be linked at the next hierarchical
islands if they are covered by a common macro-island as they have a common sub-region R2 and seem to be
similar.
b) Hierarchical relationship of regions represented as a region relationship tree

The GSC method can be represented as the following three subsequent phases. In the coding phase
neighbouring and similar pixels are combined to local regions of the lowest hierarchical level.
During the following /inking phase these regions are linked hierarchically to global segments up to
the highest hierarchical level, forming the hierarchical region coverage forest. In the following
result generation phase the segments' labels or the mean values stored in the coverage tree roots are
assigned to pixels. The image coordinates of a segment's pixel can be unambiguously determined by
the topological coordinates of the pixel islands and the initial regions' pixel positions in the islands.

It is important to note that during the linking phase two regions can be overlapping, but nonsimilar.
Therefore, in order to obtain a disjoint segmentation result, the overlapping area need to be
separated afterwards. This separation is referred to as region splitting. The splitting procedure can

be integrated either in the linking or the result generation phase.

2.2 Digital platforms

At the end of the last century it became obvious that the semiconductor industry is not capable to
keep the pace of innovation within “Moore’s Law” progression any longer [1]. Moreover each next
step in making microelectronic devices faster needs critically greater investments into the
interdisciplinary research and development (R&D) cycle than it was ever before [52-53]. As a result

the focus of the computer industry shifted notably towards the development of more effective
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hardware architectural solutions and sophisticated calculation process organisation [54].
Computation parallelisation and application specialisation of hardware became the global tendency.
Although these computation efficiency boosters are not new in computer science, these approaches
tend to migrate from the upmarket supercomputers to middle and low-end market computation

systems.

Computation parallelism primarily characterises instruction-flow driven computers such as those
that are based on conventional processors®. For these systems different parallelism levels can be put
in correspondence, in contrast to application specific hardware, for which parallelism is its intrinsic
and implicit quality and thus it is difficult to define some distinct borders of parallelism granularity.
In processor-based systems several levels of parallelism can be distinguished: the parallelism of
operations, instructions, tasks or threads, and applications. The nowadays processor architectures try
to address all the types. For instance most of the processor vendors extend their traditional
instruction set architectures with SIMD (Single Instruction Multiple Data) instruction subsets such
as AltiVec by AIM alliance [55], or MMX and SSEx by Intel [56], ARM's mulimedia NEON [57],
or encryption AES [58] instructions. These extensions are vector operations and can be treated as a
mean for exploiting operation level parallelism. Further perfection of superscalar architectures and
adoption of VLIW (Very Large Instruction Word) architecture for variety of processor architectures
(e.g. VelociTI architecture by Texas Instruments [59] for digital signal processors, EPIC paradigm
introduced by HP and Intel alliance [60] used in Itanium architecture) can be seen as examples of
instruction level parallelism. Multicore platform design is an approach that has been focused on by
the majority of processor vendors. This approach can be seen as a mean for lower level parallelism
exploiting in single chip solutions. The global tendency in multicore chip design is the migration of
multiprocessor architecture principles to the level of a VLSI circuit. The multicore platforms vary
broadly in a number of correlated characteristics such as the number of cores, inter-core
communication organisation, level of architecture integration (common resource sharing), core
coarseness, homogeneity, and application domain. The number of cores in a modern multicore
processor may count dozens and hundreds (e.g. massively parallel TilePro by Tilera [61], or
Ambric's multiprocessors [62] with 2-d mesh interconnect). The number of cores will typically
influence inter-core communication organisation (shared memory and message passing) and on-
chip network topology (common bus, two dimensional mesh, crossbar, or ring). The cores could be
light weighted specialised co-processing units or full potential general purpose processors. An
interesting feature of a multicore chip is the core homogeneity. In heterogeneous platforms one core
typically play a role of a general purpose host processor and the other(s) act as specialised
accelerator co-processors. For example: the OMAP platform by Taxes Instruments [63] contains an
ARM host core and one or several digital signal processing (DSP) core(s), or the Cell BE
architecture is compound of one PowerPC host processor and a number of so called SPE

(Synergistic Processor Elements) streaming coprocessors [64]. In contrast homogeneous graphical

* The term is used for a broad class of standard ICs with sequential instruction execution architecture such as microprocessors, digital
signal processors, vector processors, specialised co-processors, etc. The term will be used hereafter to refer this type of ICs.
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processors contain only a grid of replicated SPMD (Single Program Multiple Data) processing cores
[65-66]. The multicore platforms could be found in different application areas such as general

purpose computing and embedded, multimedia, and network systems.

Exploiting the architectural parallelism of a system requires special means of computing
organisation. These means reside in the hardware programming model, which demands a support
from the operating system (e.g. SMP OS) or in optimising compilers (e.g. EPIC technology
compilers). Such means make the programming process transparent for programmers. Alternatively
the software parallelisation may need special guidance from the coder to discover the potential of a
system (e.g. OpenMP, OpenCL, MPI, CUDA or other proprietary SDK).

Thus, the amount of knowledge that has been accumulated over the last century in the field of high-
performance upmarket computer architectures become available in middle and low-end markets,

making performance demanding computation affordable for a large number of users.

Application specialisation of the hardware is another tendency in the computer industry. This
specialisation becomes available due to the following circumstances. With the rapid development of
the semiconductor manufacturing technology the cost of a logic gate of matured technologies has
become significantly low [67-68]. The level of electronic design automation (EDA) became
sufficient for complex system design and in particular for modular system design. The market of
hardware intellectual property (IP) cores is well developed and enough saturated, which seriously
eases the development of complex systems. All these preconditions make silicon implementation of
rather complex algorithms affordable even for micro- and nanocap companies. Thus, it often allows
the migration from solutions based on standard VLSI circuits with a unified architecture, such as
conventional processors, to customisable and application specific solutions such as Application
Specific Standard Products (ASSP), Application Specific Integrated Circuits (ASIC), Programmable
Logic Devices (PLD), and coarse-grained customisable multicore SoPs. The mainstream processor
vendors are not exceptions in this case. Application specific instruction set extensions and

heterogeneous multicore processors are good examples for the hardware specialisation.

In the following section the computation organisation will be seen from a perspective of the target

application implementation.

2.2.1 Algorithm implementation

It happened historically that the electronic digital computer is commonly understood as a machine
that manipulates pieces of data in sequential order guided by a sequence of intrinsic instructions.
This sequence is called a program and is stored in external memory. The total of all intrinsic
instructions is an Instruction Set Architecture (ISA) of the machine. A machine built this way is
conventionally called a processor. Generally a processor can be represented as a regular set of
execution units with a data-path switching circuitry that distributes data among the execution units

upon given instructions. This approach in building computer architecture gives two important
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characteristics to the computer to be an economically efficient solution. They are regularity of
hardware structure and versatility of computations. Changes in an implementation of computations
require modification of only a program. Although modern computers are capable of executing
multiple instructions at a time they still obey the principles of program algorithm interpretation and

imply time-sequential execution.

A program as series of instructions is not the only way of implementing a computation task. A com-
putation task can be realised as a number of data-transformation (or functional) blocks that are con-
nected to each other with data paths to form a computation structure. This understanding of comput-
ing corresponds to the data-flow representation of a computation task. It allows a natural exposition
of parallelism in data transformation in contrast to the instruction-flow representation, which
characterises rather the executor of data transformation than the data transformation itself. Com-
putation systems that are built based on structural interpretation of algorithms are opposed to the

unified and sequential processor architectures.

The main technological difference between these two approaches is that the computers based on the
principles of structural implementation of algorithms lacks for application versatility compared to
the program-driven. Functionality of their data-transformation blocks and interconnection network
configuration are application specific. A change in an algorithm implies change in either network
configuration or block functionality or both. This becomes a problem if the application specific
system is produced as a single VLSI circuit. Although VLSI will typically improve characteristics
of a system, such as cost, performance, reliability, power consumption, etc., compared to multichip
solutions on standard components, it makes the production of those Application Specific Integrated
Circuits (ASIC) more expensive in comparison with unified standard ICs. This rule is true unless
the implemented functionality of these ASIC becomes so broadly demanded in the market that this

type of ASICs starts being produced massively (Application Specific Standard Product — ASSP).

To reduce production costs the industry once chose the following two strategies: structure regularity
and structure programmability. These two approaches brought to life a class of ICs with
programmable or configurable structure. The key idea of this type of devices is to produce standard
ICs with regular array of functional blocks (mainly configurable) with programmable® infrastructure
for block interconnection and to let the end user configure the device for a specific application.
Together with high level of integration achievable by the modern fabrication these programmable

structure devices made hardware implementation of application algorithms broadly available.

2.2.2 Devices with configurable structure

Modern high-integration devices with programmable structure could be divided into two subclasses.
They are known as Complex Programmable Logic Devices (CPLD) and Field-Programmable Gate
Arrays (FPGA). These two types of devices are principally different in the architecture of their

* Terms configurable and programmable can generally be treated as synonyms. Meanwhile in this chapter programmable implies that a
device can be configured by an end user without purchasing any additional services from a manufacturer for device configuration.
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functional blocks and the organisation of their interconnection system. To understand the
fundamental principles and peculiarities of these two programmable device types it is important to

look at the roots of these architectures.

2.2.2.1 Simple programmable logic devices

CPLDs are the result of the evolution of more simple programmable logic devices. These simple
programmable logic devices (SPLD) are Programmable Logic Arrays (PLA) and Programmable
Array Logic (PAL).

Both device types implement disjunctive normal forms (DNF) of switching functions. The structural
model of an SPLD can be represented as an AND gate plane and an OR gate plane linked in series.
The AND plane may receive m Boolean inputs in direct or inverse form and produces ¢ conjunctive
terms. Connection of each input signal (direct or inverse) to an AND gate is programmable, while
the number of conjunctive terms is device specific. The outputs from the conjunctive terms are fed
to the OR plane. The OR planes for devices of PLA and PAL types are different. In a PLA device

the OR plane is programmable, whereas in a PAL it is fixed®.

The first generation of SPLD was quite trivial in functionality and could implement only
combinatorial logic with simple input/output buffer schemes. The further development of this
device type was targeted to higher functionality and application flexibility. It was bidirectional or
high-impedance pins introduction, output inversion and internal signal feedback, configurable
trigger memory elements and resource sharing. A good retrospective of SPLD evolution could be
found in [69]. With increase in complexity of PLDs a new class of programmable logic devices has
been distinguished. This new architecture built on arrays of PLA/PAL functional blocks connected

by a common programmable interconnection array is referred to as Complex Programmable Device.

2.2.2.2 Complex programmable logic devices

A classical CPLD is a device consisting of multiple simple PLD-like Function Blocks’ (FBs) and
I/O Blocks (IOBs) highly or fully interconnected by a switch matrix referred to as Programmable
Interconnect Array or Matrix (PIA/PIM). IOBs provide the buffering of device inputs and outputs
and can be configured to be complaint with different electrical standards. Each FB provides a pro-
grammable logic capability for the device. It consists of a Sum of Product (SoP) plane® linked to an

array of macrocells. The outputs generated by FBs may be routed back to the switch matrix or used

¢ Programmable OR plane in a PLA consists of a number of disjunctors, each OR gate having ¢ inputs. By programming the OR plane
each disjunction may receive any combination of available conjunctive terms. Each conjunctive term can be fed to several disjunctors.
The number of disjunctors in the OR plain is defined by the number of device outputs. Given # outputs, a PLA can implement a system
of »n switching functions, which depend on no more than m variables and contain no more than ¢ terms.
The reason why in a PAL device the OR plane is fixed is that in many cases there is no need for such flexible interconnection capability
of AND terms. The inputs to an OR gate can be hardwired from a fixed set of conjunctive terms making PAL device simpler and faster.
Those AND terms that happened to be fed to more than one OR gates can be elaborated in the AND plane several times.

7 In Xilinx terminology. Altera, for instance, uses the term Logic Array Block (LAB) to refer to analogous unit.

# The SoP plane of a functional block can be PLA-like (i.e. both AND and OR planes being fully programmable), PAL-like (i.c. only
AND plane is fully programmable, while OR plane is fixed), or a hybrid. An example of CPLD with a hybrid SoP plane is Xilinx
XC9500 [70]. Function blocks of this CPLD have fully-programmable AND planes linked to Product Term Allocator (PTA) blocks,
which allow product term exchange between neighbour macrocells.
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to drive correspondent 10 blocks (Figure 4a). The switch matrix connects all FB outputs and device

input signals to FB inputs.

Function blocks of a CPLD may contain local feedback paths that allow the outputs of FBs to be
driven back into programmable AND array without going outside the FBs. These paths are used for
creating very fast sequential logic where all state registers are within the same FB. CPLDs may
include dedicated resources for signal exchange between neighbouring FBs without routing them
through the PIA, which allow complex logic functions to be allocated in adjacent functional block

increasing user design performance.

Each function block contains an array of macrocells. Further, each macrocell comprises a com-
binatorial or a registered logic path for one of sum-of-product functions’ generated in the SoP plane.
A macrocell typically contains a combinatorial logic cloud followed by a flip-flop. Flip-flops of
macrocells can be used to register input signals of a CPLD device directly without routing through
PIA and SoP plane of FBs. The macrocell flip-flop may accommodate asynchronous presets and
resets as well as power-on initial states. It can typically be configured as either D or T type register,

or as a latch.

Outputs of functional blocks are connected to vertical unsegmented lines in the Programmable
Interconnect Array. It is typical that each FB output has its own dedicated vertical line. FB inputs
are connected to horizontal lines. Horizontal lines intersect all the vertical lines providing program-
mable interconnection points. Therefore, any input of FB can be connected to any output, thus

offering full connectivity of blocks. General scheme of PIA is represented in Figure 4a.

The advantage of this kind of interconnect is high-speed and deterministic signal propagation within
PIA, due to identity of connection paths and a small number of programmable point. In some cases
PIA does not contain programmable interconnection points at all (e.g. Altera's MAX3000) allowing

unused input signal to be masked prior to letting them run into functional blocks.

Programmable structure devices with a common unsegmented switch matrix have their own struc-
tural limitations. The number of connection lines increases dramatically with increase in number of
elements to be connected, which hampers FB number scaling for CPDLs. A modern CPLD contains
up to some hundreds of functional blocks and I/O pins. This fact together with rich combinatorial
logic capability and fast internal connectivity makes CPLD architecture perfect for such applica-
tions as interface bridging or I/O expansion, but not for a real System on a Chip. A more solid appli-

cation requires more resources and other architectural approaches, like those of FPGA-type devices.

2.2.2.3 Application-specific integration circuits

FPGA devices have their architectural roots in ASICs technology. ASIC devices can be classified as
full-custom or semi-custom devices. The difference between those classes is in the IC element

optimisation and the component reuse.

’ In a real CPLD architecture it is difficult to distinguish a border between the SoP plane and a macrocell. Many datasheets shows the OR
plane gates as a part of macrocells.
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An IC can be viewed as a set of transistors and connection wiring. A full-custom ASIC implies
customisation of all the components of an IC including transistor parameters, component placement
and routing. This approach in IC manufacturing is the most efficient in power consumption, IC
performance, and size, yet the most expensive, error-prone, and laborious. That is why it is used
typically exclusively for designing dies with some critical requirements and for devices made by a

new manufacturing technology.

Standard Cell methodology helps to reduce the time-to-market and the design costs. This
methodology implies the reuse of IC components. These components are given as a library of
predesigned low-level logic functions, such as AND gates, OR gates, multiplexers, flip-flops, etc.,
known as standard cells. These cells are realised as full custom cells with fixed height and variable
width. Full customisation of cells means that each cell in a library may be optimised individually,
which allows minimisation of internal delays and area optimisation. The fixed height lets the cells
be placed in rows, which eases automated design layout, while the variable width gives the

functional flexibility of a cell.

Rows of standard cells may form rectangular blocks with higher-level functionality. These areas of
standard-cell rows can be combined with larger predesigned cells like controllers or memory blocks
on a chip. These higher-level cells are called megafunctions or system-level macros. A designer is
flexible in ASIC component placement. All these allow modular design with much space for chip

optimisation, although still requires production of complete set of IC layer masks.

Another approach of ASIC production is to use premanufactured wafers with a regular array of
transistor pattern blocks, which are called base cells. Base cells have a fixed logic element set
inside. All ASIC resources have a fixed placement and form a regular structure. This is why this
kind of ASICs is called Gate-Array-Based ASICs. Customisation of a device is performed

exclusively by the interconnection customisation, which let them be called semi-custom ASICs.

Gate-Array ASICs may contain dedicated area for interconnection routing. In this case base cells
are typically organised in columns. This type of GA is called channelled. The other type of GA does
not have special routing areas. Wiring is performed through unconfigured base cells. This type of
ASIC is called channelless GA or Sea-of-Gates (SoG). GA can be homogeneous or containing
blocks of base cells of different type or dedicated megafunction cores. In the latter case this type of
ASIC is called structured GA. A base cell can be fine-grained, containing only transistors and
resistors, or can be partially preconfigured (coarse-grained), containing low-level logic functionality

such as multiplexors, registers, lookup tables, etc.

A good overview of ASIC technology can be found in [69, 71]; more detailed information on ASIC

design is given in [72].
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2.2.2.4 Field-programmable gate arrays

The concept of Gate-Array ASIC architecture was adopted by FPGA devices. A typical FPGA
architecture consists of an array of identical function blocks, a distributed interconnection system
and a number of I/O blocks placed in the peripheral areas of a die. The main difference between GA
ASICs and FPGAs is that all elements of an FPGA including the connectivity infrastructure are pre-
manufactured and end user programmable. A typical FPGA is organised as a rectangular matrix of

function blocks with its interconnection system placed between rows and columns of the matrix

Figure 4b.
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Figure 4: CPLD vs FPGA principle architectures
a) CPLD architecture; b) FPGA architecture

When programming an FPGA, its function blocks are configured to perform the required data trans-
formation, while its interconnection system is programmed to make connections between those
function blocks. As a result, the inner parts of an FPGA form the circuits that implement the desired
application functionality, and its I/O blocks on the edges of the die provide an interface for the inte-
gration with the rest of computation system. I/O blocks of modern FPGAs are programmable to be
complaint with a wide variety of I/O signalling standards.

A typical function block model can be represented as a data path consisting of a function generator
block, implemented as a lookup table (LUT)' or a number of them, a cascade of multiplexers for
data-path configuration, and a register block, which includes one or several flip-flops.

A large number of function blocks make highly connected systems built on continuous connection

lines ineffective. As the number of blocks grows, high connectivity leads to an irrational usage of

""Devices with LUT-based function blocks currently predominate in the market. Meanwhile, there are alternatives (mostly matured) e.g.
multiplexer-based FB devices and fine-grained Simple Logic Cell (SLC) architectures. The author of the work is aware only of one
modern alternative multiplexor-based architecture, which is QuickLogic PolarProll FPGA [73]. A good survey of alternative matured
FPGA architectures could be found in [69, 74-75].
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the die space, as the most of the chip area is needed for wiring. That is why the interconnect system

of modern high-density FPGA architectures is organised as hierarchical segmented networks.

Such interconnection systems consist of segmented lines of different length and programmable
switching matrices at the intersection of horizontal and vertical interconnection traces. The seg-
ments are linked together with programmable connection points inside the switching matrices to

make the desired connectivity of the logic blocks.

Every programmable connection point adds a significant delay to signal propagation time in the
interconnection network. To minimise the number of hops hierarchical interconnection systems are
built with line segments of different lengths. The short lines connect mainly neighbouring or nearby
function blocks of an FPGA. They are used to glue functional blocks with high logic integration
(dense logic groups), which are reasonably placed close together. The longer segments connect
function blocks in a certain distance from each other. They are used to connect logic groups which

have a small number of signals to exchange.

Hierarchical network organisation together with accurate resource placement and connection
routing may allow keeping the number of programmable connection point minimal. Therefore, a
hierarchical interconnection system offers a balanced solution between density of interconnection

network wiring and signal propagation time in a complex, resource intensive design.

Another example of hierarchical organisation in FPGA devices is integration of a number of
function blocks within a new kind of architectural blocks (Configurable Logic Block in Xilinx
terminology and Logic Array Block in terminology of Altera). The function blocks inside these
unions can share logic resources and exchange signals without exploiting global interconnection
network system. These architectural blocks form new singularity in a global interconnect system.
This grouping allows efficient implementation of both simple and complex logic functions on the

same types of function blocks, keeping granularity of function blocks relatively low.

A special attention in modern FPGAs is paid to the synchronisation system. With the increase of the
clocking frequencies the length of a trace becomes a critical factor. The difference in distances
between a synchronisation signal source and sinks can lead to desynchronisation and metastability
effects in a system. Thus, clocking networks have a tree-like topology to minimise this effect.
Synchronisation systems are built using dedicated resources of a die such as detached trace layers,
specialised pads, buffers and clock control circuits. Clock control circuits are used for clock

deskew, jitter filtering, phase shifting, frequency synthesis, etc.

Apart from the basic architecture components mentioned above, modern FPGA devices are
typically equipped with dedicated arithmetic blocks, such as adders of matrix multipliers, blocks of
RAM, dedicated connection resources, such as fast carry chains or wide logic chains, and even hard

cores of popular interface controllers or even microprocessor cores''.

""The most typical architectural features that characterise each type of modern CPLD and FPGA devices are architectures of logic blocks
and interconnection systems. Meanwhile, this difference in modern devices becomes dilute. Starting from FLEX10K architecture Altera
Corp. tried to combine advantages of both devices types. It combined network of unsegmented horizontal and vertical channels with
LUT-based function block architecture [76]. In the latest MAX II CPLD family Altera migrated from SoG-based to LUT-based logic
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The integration level of modern FPGAs may be measured in hundreds of thousands of function
blocks, have megabytes of onboard RAM and hundreds of I/O pins. This integration level is

sufficient for building complex system on a single chip.

2.2.2.5 Virtex Il Pro architecture
The Virtex-Il Pro is a high-density FPGA architecture with an SRAM-based in-system

configuration. It is built on a matrix of configurable logic elements and embedded blocks
surrounded by input/output blocks. The connectivity of the blocks is provided by a hierarchical
distributed interconnection system. The internal logic is implemented by configurable elements of

three types organised in a regular array of:

*  Configurable Logic Blocks (CLB) consisting of four slices or eight function blocks each'
(up to 11.024 CLBs),

» static dual-port RAM blocks with total capacity of 7.992Kb (up to 444 BRAMs),
*  18-bit x 18-bit matrix multiplier blocks (444 maximum).

The interior of the die contains up to two embedded IBM PowerPC 405 RISC processor hard-cores,
providing further flexibility in System on a Chip design.

The clock management is provided by Digital Clock Manager (DCM) blocks that includes self-
calibrating clock distribution delay compensation, clock multiplication and division, and widely
programmable clock phase shifting. The most powerful device in the family contains twelve of
these blocks.

The 1/O system of a chip provides up to 1.164 user pins. The configurable 1/O blocks of Virtex II
Pro are complaint with twenty-two single-ended standards and ten differential standards. The 1/O
clocks can be configured for unidirectional or bidirectional signalling and for single or double data

rates.

The Virtex II Pro contains up to twenty gigabit serial transceiver with a maximum data transfer rate
of 3.125 Gb/s each, providing a high-bandwidth interconnection between chips, backplanes, or
other subsystems. The programmable routing resources provide the interconnection for all of these
elements. The interconnection system is hierarchical. The network consists of vertical and
horizontal segmented lines of different lengths. The lines are connected through programmable

switch matrices, allowing flexible and balanced routing of signals.

All programmable logic blocks and routing resources are controlled by static configuration memory

cells. Thus, devices are capable for unlimited reprogrammability. Partial configuration of a die is

elements grouped in larger logic blocks. Additionally Altera changed the organisation of MAX II interconnection system from common
programmable interconnection array to a network organised in vertical and horizontal unsegmented tracks [77]. In fact the architecture
principles of FLEX10K and MAX II families are very similar. It seems that architectural approaches in early Altera FPGA families are
resurrected now in the latest CPLDs.

"2 A slice is a fines structural unit of Virtex architecture. Each slice roughly consists of two functional blocks, i.e. two LUTs and two flip-
flops with path configuration logic.
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available as well. Compact profound description of elements of Virtex II architecture can be found

in Appendix A.1.

2.2.3 Graphics processing units

Although the architecture of graphics processing units (GPU) has drastically evolved from accele-
rators with fixed graphic processing pipeline stages of fixed or minor configurable functionality to
massively parallel computation coprocessors capable for high performance computation (HPC), it is
very important to understand the graphics background of this type of platform to effectively exploit

its computation power.

Awareness of 3D processing basics helps in comprehension of modern GPU architecture
peculiarities and assists in understanding what types of algorithms are well suited for GPU

computing or how an algorithm should be optimised to gain performance on such platform.

2.2.3.1 Graphic pipeline

Graphics processing units have been designed to relieve the CPU of the increasing burden of the
real-time rendering of virtual scenes for 3D games or animation filming. The introduction of the
object abstraction model into graphic processing allowed the decomposition of the visualisation
process into a number of unified visualisation stages independent on a scene and its characteristics.
The decomposition lets a virtual world designer concentrate on specific properties of instances
intrinsic for each specific abstraction level, while the stage unification gives a capability for the
automation of the visualisation process. At the same time the decomposition helps to optimal
organise the visualisation processing, allowing task parallelisation and even distribution of data

flows over the graphics pipeline stages.

A scene in a 3D graphics world is a composition of virtual objects and light sources. Objects are
characterised by their shapes and surfaces attributes. Surfaces of complex shapes are normally
represented as a collection of plane primitives (typically triangles) to simplify the computation of
the light beam and surface interaction. The composition of geometry, light and surface qualities

defines the visualisation of a scene.

A canonical graphic pipeline is a hardware/software abstraction representing stages of the visualisa-
tion process realised in a GPU. The exact number of stages and the function set of each stage varied
over the evolution history of GPUs [78-80]. Meanwhile, a general graphics pipeline can be repre-

sented as the following:

a) The vertex processing stage operates on the vertexes of the surface primitives. The basic
task of this stage is the lighting of each individual vertex depending on the relative position
to a light source and the projection of 3D coordinates in the virtual space to the plane of

observer monitor'?.

'* Meanwhile, depth information of a scene is not discarded, it is in latter stages for element visibility detection.
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b) The primitive assembling stage performs the grouping of correspondent vertexes that

comprise a geometry primitive.

¢) The geometry processing stage allows new geometry generation out of former geometry
primitives (e.g. primitive tessellation).

d) The rasterisation stage transforms the geometric primitives to groups of pixels.

e) The fragment processing stage calculates visual parameters (generally colour and opacity)
for each individual pixel in a fragment (group of pixels comprising a primitive). It shares
common calculations within the fragment and then derives individual values for each pixel

in a fragment.

f) The pixel operation stage performs the mapping of all the pixels with the same X, y

coordinates, but different z-depth to the screen producing the resulting scene view.

Three generation of GPU architectures are distinguished in this work. Initially the GPU architecture
was represented as a hardware pipeline with stages of fixed or configurable' functionality [78].
This rigidity in architecture tied the visualisation capability of software to functional capacity of
certain device families, forcing the programmers to reserve several execution paths for different
platform. At the same time it bound a designer to the limited set of processing functionality

provided by hardware vendors, which limited the progress of the visualisation technique.

As the time passed, some of the stages that are more diverse in implementation become program-
mable, while more straightforward operations remained to be executed by fast dedicated blocks [81-
83]. These programmable stages were the vertex and fragment processing stages'®. The introduction
of programmable nodes into the graphics pipeline marked the second generation of GPU architec-
tures. Programmability gave a higher potential to the visualisation technology and allowed more
impressive visual effects. The visualisation technique now relied more on creativeness and crafti-

ness of graphic programmers.

At first the instruction set architecture (ISA) of those programmable stage processors were quite
specific and were programmed in specialised assembly languages. The programs for these pro-
cessors are called shaders. However, to unbind programmers from specific hardware architectures
unified graphics application interfaces (API), such as Direct3D and OpenGL, were introduced to
function as a gasket between hardware and software, shifting the problem with software compatibi-
lity onto GPU producers.

Meanwhile, the hardware task parallelism (i.e. hardware task pipeline) gave several major disad-
vantages. First of all is the problem of distributing the computing load, which is dependent on the
nature of a scene. So, for example, a scene with complex geometry, but simple surface attributes

will shift the load imbalance to the vertex processing stage, while a scene with small number of

"*Functionality could be selected or adjusted, but not created like in programmable units.

“Due to its complexity the geometry processing is a relatively new stage, which was implemented in shaders starting with the unified
shader processor architecture. Before that the geometry processing stage appeared in some rare GPUs, in which it was realised as fixed
tessellation blocks, but was more an exception than a rule in GPU architectures.
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polygons and complex textures will load more the fragment processing stage. The second problem
is a fixed data-flow path configuration which is specific for different graphics processing stages due
to hardware optimisation reasons. It restricts the usage of shader processors of certain graphical
hardware pipeline stages to particular graphical subtask. It implies that each new kind of shader
introduced in visualisation process should change the graphics hardware pipeline. These reasons led

to the idea of unified shader processor architectures — the third GPU architecture generation.

The third GPU architecture generation is characterised by shader processors with a generalised ISA,
which are built in a unified data-flow path implemented as a unified memory access model [84-88].
This architecture allows executing different types of shader (even those that are not yet invented) on
the same piece of hardware. Meanwhile, it does not imply that the dedicated function blocks are re-
moved from GPUs. Those blocks now play the role of auxiliary processing units and are not the in-

evitable stages in a data path.

The concept of the third generation architecture could be illustrated by the high level structure dia-
gram of the nVidia G80 architecture (Figure 5). One can notice that instead of linear data forward-
ing through a hardware graphics pipeline the data circulates through a unified shader array pro-

grammed for a certain graphic pipeline stage execution under the control of a dispatch unit.

2.2.3.2 Peculiarities of graphics processing organisation

When programming modern GPU for general purpose computing, one do not need adapt the prob-
lem to the graphics pipeline, while now a modern GPU is far more than a graphics accelerator.
Meanwhile, graphics processing tasks have a number of distinct characteristics in common, whose
peculiarities defined the architectural concepts of GPU processors. Understanding architecture spe-
cifics of graphical processors is the clue to effective implementation of general purpose computa-
tions on a GPU.

The nature of graphic processing implies high data parallelism, as the majority of the data pieces of
the graphic pipeline (vertexes, primitives, fragments, pixels) could be processed in each pipeline
stage independent on each other [78-79]. This makes the architecture of GPUs highly parallel and
scalable'®. The multicore organisation of GPU is a notable feature of GPU architectures.

Meanwhile, the graphic data element parallelism is not the only intrinsic data parallelism in the
graphics processing world. The majority of intrinsic data types of graphics processing are vectors,
which adds finer granularity of parallel computations to GPU architectures'”.

Another noticeable feature of graphics processing is that the execution flow on nearby data-stream

elements often results in the same execution path. This instruction stream sharing together with the

'®This peculiarity always drove extensive development of GPU architecture by increasing the number of parallel processor elements at
each stage of graphics pipeline.

""That is why processing elements in GPU architectures were equipped with vector ALUs(with vector component permutation) up to the
third generation of GPUs. Latter this tendency split into two direction. ATI chose concept of SIMD operations on VLIW ALUs, which
could be seen in case of GPU architecture as further development of vector operation concept that allows combined type operation on
vectors (needed in some graphic transformations). nVidia took more cardinal way of SIMD processing elements built on scalar ALUs.
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vector orientation of the calculation brought up the idea of SIMD orientation into graphics pro-

cessing. SIMD organisation is in reality the core paradigm of modern GPU architectures.

The idea of SIMD is even more strengthened by the fact that the graphics algorithms are calculation
intensive instead of a control branching orientation, which makes computations on SIMD architec-

ture less sensitive to divergence in control.

The independence in the processing and strong spatial locality of data elements brings to life
another noticeable feature of the computation organisation in modern GPUs — hardware multi-
threading. The dynamical branching capabilities of the shader processors, which are driven by
newer shader standard requirements, pose the problem of execution stalls in the processor cores.
These stalls are caused by the latency of a memory access if the required data cannot be prebuffered
due to dynamic branching uncertainty'®. The spatial proximity of graphic elements allows to load a
solid bulk of data close to a processor core and to bridge the memory access stalls by performing
the computations for prefetched data elements using thread execution context switching until the
data requested from the memory become available to the core. All modern GPUs maintain large

numbers of execution contexts on the chip to provide maximal memory latency-hiding ability.

This approach to memory latency hiding available in graphics processing together with other pecu-
liarities of graphic pipeline organisation make the memory system of GPUs quite specific. The
memory system is predominantly oriented to high throughput bulky accesses instead of latency

hiding typical for memory hierarchies of CPUs.

As noted above GPUs are characterised by a massively parallel multicore organisation based on
SIMD computation principles and oriented to a high data streaming throughput. These character-
istics are posed by the peculiarities of the graphic processing organisation. Meanwhile, those
intrinsic features of the computation organisation are not exclusive for graphic computation but are
common for a whole class of computation tasks with data parallelism, which were shown in a
number of works in the fields of physics, biology, finances and so forth. This makes the power of

modern GPUs available for general purpose computing.

2.2.3.3 Modern GPU architecture
The principles of architecture are the same for all the GPUs of the third generation [87-95]. A GPU

consists of a grid of unified shader processor cores with SIMD organisation with a broad ISA that
executes the general computation routines supported by a number of specialised graphic function
blocks. The workload distribution between the processor cores is performed by a thread blocks
scheduler (Ultrathreaded Dispatch Processor in ATI terminology and Thread Processor in terms of
nVidia). Each SIMD processor core consists of an array of similar execution units (basically ALUs

with some execution context circuits). The principle difference between GPU architectures of the

' Massive parallelism of a computations does not allow speculatively prefetch of large amounts of data needed for feeding all processing
elements working in parallel.
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main two GPU vendors — ATI and nVidia — is that nVidia has scalar ALUs and ATI builds its
SIMD processor cores on ALUs with VLIW architecture.

The data parallelism does not mean total computing stream isolation in GPUs. Shader algorithms
often require a data exchange between streams. To realise this each SIMD processor core is
equipped with a local storage shared by all the thread cores inside a SIMD processor core.

A typical example of such architecture is the nVidia GeForce 8800 GTX chip (G80 architecture).

The resources for general purpose computing of this device are shown at Figure 5.
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Figure 5: nVidia G80 architecture

nVidia GeForce 8800 GTX comprises 16 SIMD processing cores called “Streaming Multipro-
cessors” (SM) governed by a computing thread blocks scheduler. The processing cores are grouped
in eight Thread Processing Clusters (TPC) with two SM each. The two SM share a read-only L1
cache and a number of specialised graphic resources (Texture Units — TUs). All eight TPCs share

six global memory access channels using an intra-chip crosspoint switch. Each channel comprises a
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read-only L2 cache (load stream, load accesses may bypass L2 cache)' and a render output® unit

(store stream) coupled with a 64-bit GDDR3 controller.

A Streaming Multiprocessor consists of eight scalar execution units, which are called Thread Cores
or CUDA cores. The execution units share a common storage for thread interactions, the Shared
Memory. Each execution unit owns a private register space in a common register file and consists of
an ALU equipped with a floating-point unit and an individual branch unit with an instruction
pointer for the individual execution flow control. Meanwhile, an execution unit is not a mature pro-
cessor as it lacks a complete front end that can fetch and schedule instructions independently. The
mechanism of execution flow control is provided by a common instruction fetch/dispatch block,

which issues the SIMD instructions to all the execution units in an SM (see Figure 5).

A single Streaming Multiprocessor operates with computing thread blocks. A thread block is a num-
ber of execution threads, driven by a single program?' over a number of different data sets (or data
streams), which are able to interact with each other via a shared memory common to all execution

units in a Streaming Multiprocessor.

The number of execution threads in a block is flexible and may be greater than the number
of execution units®>. Moreover several thread blocks can be executed on one SM concurrently.
Heavy computing thread population of a multiprocessor is needed to support the hardware multi-

threading mechanism mentioned earlier.

Hardware multithreading is realised by microarchitectural abstraction called a warp. A warp is
thread grouping that form a hardware multithreading context in a Streaming Multiprocessor. Each
SM is able to maintain several warps in a time realising context switching. The size of a warp is

fixed for a given architecture, but not visible in a programming concept.

This leads to the idea that nVidia G80 architecture is well suited for massive parallel scalable com-
putation, meanwhile one noticeable downside of the SIMD computing organisation implemented in
GPU multiprocessors needs to be mentioned. In case of divergence in execution threads within a
warp a multiprocessor have to execute all current conditional branches of a program, which leads to
serialisation of control flow tree execution in this thread group. This downside is mentioned here as
it is an intrinsic peculiarity of the stream processor architecture. G80 has some other pitfalls, but
these pitfalls are related to memory subsystem hardware implementation and not the architectural

peculiarities. Those pitfalls will be described in Section 3.2.

L2 cache as well as L1 cache in the devices of the given architecture is used for data buffers of certain types allocated in the global
memory and can be bypassed for the load accesses for data of different types.

*Render output (ROP) blocks correspond to the last pixel operation stage of the graphics pipeline.

*'The same program may be executed with different execution paths depending on data it processes, these different paths with
correspondent data streams are called execution threads.

*This programming concept of SIMD architectures where the data dimensions are not directly bounded to hardware resources in a
program context is called stream processing paradigm.
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2.2.3.4 GPU computing

Initially general purpose computing on GPUs were realised by mapping the computation algorithms
to the graphics pipelines by means of graphics APIs and later higher level shader languages [96],
such as nVidia's Cg, OpenGL GLSL or DirectX HLSL, which was obviously an awkward approach
of the algorithm description. As the interest to GPU-powered computation arose in the scientific
world the need for abstract languages for general purpose GPU programming became tangible in
the academic environment. This need gave the birth to a number of academic projects for general
purpose programming on GPU, which were primarily built on the programming principles of stream

processing. BrookGPU and Sh were most broadly recognised among them.

The success of GPU computing shown in scientific community attracted the attention of the
business society and triggered a number of commercial third-party projects, e.g. RapidMind
(commercialised Sh, later acquired by Intel) and PeakStream (commercialised Brook, later
purchased by Google). The next step in GPGPU computing was made by the GPU vendors, when
they realised the marketing advantages of targeting a new application field for their GPUs. Both
AMD and nVidia launched their own GPGPU programming systems (Close-To-Metal and CUDA,
respectively)[80].

The latest stage of GPGPU language evolution is the standardisation of architecture-free stream-
processing languages. The current candidates to become the defacto standard are OpenCL [97],
initially developed by Apple Inc. in cooperation with AMD, Intel, IBM, and nVidia; and
DirectCompute, a part of Microsoft DirectX. Both OpenCL and DirectCompute together with
nVidia’s CUDA [98] (the most matured GPU computing framework) will be determining the
market landscape of GPU computing in the medium-term perspective. While all the modern
GPGPU programming frameworks are conceptually very similar, the market dominance most
probably will not be determined by the peculiarities of the programming concepts but by the

marketing policy of the companies behind those platforms.

The programming model of stream processing being common for all modern GPGPU frameworks is
based on the two main concepts of data streams (or just “streams”) and function kernels (or simply
“kernels”)[93 ,99]. A kernel is a program executed virtually in parallel over a set of data streams,

whereas a stream is a collection of data to be processed by a kernel.

The Compute Unified Device Architecture (CUDA) developed by nVidia is a particular example of
GPGPU programming framework. A CUDA application consists of a code executed on a central

processor (host) and of asynchronous function calls for kernels executed on a GPU (device).

The execution threads (or simply “threads”) comprising a function kernel are grouped in an array of
thread blocks, called a “grid”. A block is an array of threads that are grouped together to be
processed on a single SIMD multiprocessor (Figure 6a). All thread indexes are available inside the
kernel functions via special type variables. Typically they are used to bind a particular portion of the

common data arrays as individual input and output data streams for each execution thread.
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A kernel is executed in CUDA memory model shown at Figure 6b.
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Figure 6. CUDA architecture
a) CUDA application model; b) CUDA memory model

There are four types of variables according to the current CUDA memory model: local, shared,
global, texture and constant. The local memory is a private memory space of a thread. Local
variables are in general placed in the external memory, but can also be placed in the private register
file of a multiprocessor. This allocation is performed by the CUDA compiler and generally cannot
be controlled by a programmer. Global, constant and texture memory spaces are allocated in
onboard memory. Constant and texture memories are the only spaces that are cached in the current
generation of nVidia acceleration boards. Shared memory is the memory space allocated in on-chip
storage local to each multiprocessor. The shared memory is accessible to all threads within a thread
block and used for fast interthread communication within a block. The variables of all memory
types except the local memory variables can be treated as references to some common storage
allocations if seen from inside of a thread. Allocation of variables in different memory spaces is
defined by a programmer via variable type qualifiers except local memory variables, which are

classified as local by default.
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The methodology proposed in this chapter serves as a guideline for the GSC implementation. It
describes the theoretical aspects of the technological workflow for bridging the gap between the
mathematical abstraction of the computation task and the target implementation platforms. The
concept presented in this chapter relies on the current state of the art in the fields of application

specific hardware design and GPU programming.

The chapter consists of two separate parts reflecting the two-fold nature of the work. The major part
is dedicated to the design of FPGA based systems, while the minor focuses on the peculiarities of
GPU computing and related optimisation strategies. This disproportion reflects the difference in the
amount of efforts normally required for implementing an algorithm in hardware and software.

As the matters addressed in this chapter are considerably capacious and cannot be fully covered in
one chapter the problems are described briefly, and a number of references to the most remarkable

supplementary materials are given for deeper contemplation.

3.1 FPGA-system design methodology

Since FPGA devices are prefabricated standard ICs, FPGA based system design mainly consists in
the logic design, not going significantly deeper into the physical design phase®. This drastically

reduces and simplifies the development cycle being one of the favourable features of FPGA design.

With growing complexity of digital systems, component reuse became an indispensable practice in
design process. Although component reuse generally increases the economic efficiency of a project,
it imposes stricter requirements on each individual reusable component and thus increases the initial
costs of the component design [100]. Those requirements are higher adjustability, reliability, and
thorough documentation of the components.

Although modern digital design addresses a variety of physical aspects of digital systems, such as
power efficiency or signal integrity [101-103], this work primary focuses on the logic design

process. A good introduction to system design on FPGAs can be found in [100, 104].

P FPGA design implementation includes elements of physical design, such as technology mapping, placement, and routing, but they can
hardly compare with the physical design phase of, for example, full-custom ICs in complexity. Due to the prefabricated structure of the
device these procedures are highly automated and require human assistance only in some critical cases.
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3.1.1 General system design concept

3.1.1.1 Spiral approach to system development

The system design process lies in the gradual refinement of a system model. The process starts with
the specification of general system requirements and constraints, providing the initial outline of the
system. The system development path goes through a number of refinement stages of the system
model down to a description level sufficient for hardware realisation by means of automated
computer-aided instrumentation. Each refinement stage itself consists of a number of development
cycles including a specification, an implementation, a verification and an analysis. These cycles
form a top-down spiral like design flow (Figure 7).
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Figure 7: Top-down cyclic design flow

The initial specification of design requirements and constraints is followed by the exploration of all
possible solutions to the computation problem and the examination of available technical means for
realisation of the producible system. The ideas are translated into a model or a number of models,
constituting the initial implementation step. In general, implementation is a description process of
the system at a certain abstraction level in compliance with the corresponding model specification.
The implementation process is necessarily followed by verification, which examines the
implemented design models for compliance with the specifications imposed on the system and
determines the flaw source in case of inconsistency. The subsequent analysis steers the development
process to a certain decision direction for the next design process iteration. The model analysis
typically leads to the elaboration of additional design constraints resulting in an updated model

specification for the next abstraction level.

The top-down design approach® is generally the only way for complex system development, as it
enables a designer to develop global understanding of a design at early stages of the project. It
reveals potential challenges and bottlenecks of a system realisation before these problems manifest

in lower level implementation phases. This approach also serves as guidance for a designer in

*The top-down approach is not a strictly descending process. It permits both iterative cycles in design and early implementation phases
for critical system elements to assure satisfiability/performability of a system within a given specification and design time constraints.
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finding particular design solutions optimal for a given computing task in the multifactorial resource-

performance-cost space.

The process of refinement of system components does not have to be concurrent and synchronous
across the whole system model. The modern design techniques let different parts of a system be
described at different abstraction levels in a single model in the same time. This implies that the
main goal of the gradual refinement process is persistent consistency of a system model, avoiding
hazardous ruptures in model development. This asynchrony gives a high flexibility in the project
management allowing designers to concentrate on the most critical parts of a system and to work on

different project parts in parallel and independently.

3.1.1.2 Three-phase view on system design process

The design process can be represented in another view, which does not abolish the spiral-like
approach but split the development workflow in three coarse-grained phases characterised by their

development purpose and design technique.

In particular the term implementation in the framework of on-chip system design implies the
description of a system model on a particular technological and elementary basis subsequently
followed by the physical design phase. All activities on higher levels of abstraction targeted to the
proactive analysis of a design before the implementation are referred to as modelling. The
verification term in this workflow scheme implies almost exclusively the functional verification of
an implementation model, while the verification of other system features is referred to as the
analysis in the design process terminology (e.g. power, area, or performance analysis). Distinguish-
ing the functional verification as a separate workflow is due to the complexity of the functional

verification problem requiring specific engineering skills and techniques.

The term of modelling here implies the process of the realisation of a design specification for the
early analysis of significant design features. The goal of the modelling process is to approve the
conformance of the results attained with a proposed computing approach with the required or
expected results in terms of quality of computations (functional modelling). Another essential aim

of the modelling is an estimation of the data-flow distribution inside a system.

The goal of implementation is describing the system at an abstraction level sufficient for automated
hardware realisation by computer-aided tools. The implementation process is focused on the aspects
of efficiency (i.e. power, area, performance, resource consumption) of precise realisations of par-
ticular data manipulations under given technological constraints. Implementation can be seen as a
further refinement of models for preceding functional analysis. Implementation and modelling are
influencing each other. The global data flow distribution pattern and the concrete computing
methods selected during modelling substantially determine the structure of system components and
interfaces between them. Equally, the computation and throughput characteristics of the implement-

ed components and purchased IP cores may adjust or constrain the higher-level models.
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The aim of the verification process is to check the consistency of expected and actual system
responses. The challenge of the functional verification lies in the appearance of a consistency gap,
which can occur when transitioning from functional to logic description of a design. The developer
is not always able to take into account the side effects of the functioning of each discrete logic
element separately, as well as the cumulative effect of these side effects on the overall functionality
of the system. Therefore, the design intent realised by the developer and the resulting real function-
ality of the system do not always match. The verification process is insensitive to the result quality,
the implementation efficiency of a computation solution, or other model aspects emphasised in the

preceding workflows.

Verification models used as verification references typically interact with implementation models
assisting the developer in detecting, qualifying, and localising the mistakes made during the design
implementation. The verification workflow may have subordinate relationship to the implementa-
tion process if white-box or grey-box verification strategies, in which verification models are built
in accordance with a particular design implementation [105], are adopted, especially in the case of
assertion-based verification using the means of formalised design property specification. Equally,
the verification workflow is connected with the modelling activity, since the system features are
inherited directly from the model specifications at each abstraction level in the spiral design view
when the system verification plan is built. Moreover, some high-level models can be taken as
golden references in some verification strategies, or their infrastructure could be used for individual
component verification. Inconsistency of the results may indicate equally a fault in a model under
test or in a verification model or both. At the same time, the absence of inconsistency indications

does not guarantee a fault-free design.

3.1.2 Modelling

3.1.2.1 Static and dynamic models

In digital system design static and dynamic classes of models for the preimplementation analysis
can be distinguished [103]. A static model is a mathematical description of a system, which deter-
mines the relationships between a system feature of interest and associated prognostic input para-
meters. The main difficulty in constructing a static model is in determining a set of relevant signifi-
cant input parameters and finding functional dependencies between them and the target feature. A
dynamic or executable model describes temporal behaviour rules in a system. Using these models
the features of interest are derived from statistical observations of system response. Therefore, the
creation of a static model is a scientific problem, while creating a dynamic model is a technical task.
Moreover, dynamic models have several advantages over the static models, which include higher

accuracy, versatility, and practicality.

The following sections primarily focus on dynamic models due to more formality and determinism

in their construction as well as higher relevance to functional logic design.
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3.1.2.2 Model accuracy

For the model refinement process it is necessary to define the key model aspects and their resolution

levels. A solid work on the generalisation of the electronic system development was performed
under the aegis of the Virtual Socket Interface Alliance (VSIA), which elaborated a classification

system for digital system models for the current technology level [106-107] shown in Figure 8.
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Figure 8: VSIA digital system taxonomy

Since this representation is continuously being re-elaborated and refined (e.g. generalisation for

electronic system level design proposed in [108]), four main constituents are recognised in this

work for the accuracy specification of hardware logic design models, which slightly differ from the
VSIA understanding:

time accuracy determines the degree of the event ordering in a model; models may vary
from untimed and approximate accurate (e.g. event ordered) models to models operating
with physical signal propagation delays;

data abstraction represents the information load carried by the data objects; models may

vary from models operating with featureless data units to models refined to the signal level;

computation accuracy defines how precisely a data manipulation method is described; the
description may vary from abstract computation description stating only what result should
be achieved without specifying the way how it should be achieved (e.g. functional
languages) to a precise implementation of a selected method in terms of technological
elements acting as an implementation constraint;

topology precision defines the system's elemental abstraction recognising the function (role)
of the elements in a system, detailing of the connectivity of the elements and the nature of
the links; models may vary from opaque interface models, which provides only the service

lists to the surrounding environment, to fine-grained placed and routed gate-level models.
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The more accurate a model is the more efforts it requires from a designer to be implemented and the
more resources it demands to be executed at a computer. Thus, for modelling more general and
global processes in a system it is reasonable to stay at a higher level of abstraction. Equally, this
implies that the costs for correcting a mistake resulted from taking a wrong principle decision in the
design process can be the more tangible the higher the decision has been taken and the lower the
mistake is detected. Moreover, getting more global knowledge of a system using models of a high
detailing level often requires additional efforts for aggregating higher precision data and deriving

the global level features.

3.1.2.3 Partial model refinement

At the early stages of a design process it is often required to make the characteristics of an
individual component more exact. This may be needed for the forward analysis of a critical part of a

design or for the integration of a new component to an already implemented design.

Gradually changing the abstraction level of the components is often used for the transition of the
whole system from one abstraction level to another during the development process. It helps to
avoid serious model inconsistency gaps that may be caused by a momentary transition of the whole

design.

This kind of modelling/implementation technique is enabled by the separation of the interface and
functional parts of the model components and by the detachment of the transport and computational

infrastructure of a model.

3.1.2.4 Transaction-level modeling

The modelling technique that realises the transport and computation separation is referred to as
Transaction Level Modelling (TLM). The TLM design is known to be a design concept on a level
higher than the register transfer level (RTL) paradigm. It represents a system as a number of
computation blocks (modules) interconnected with communication components (channels), which

offer the transport medium for the message exchange (transactions).

TLM channels provide the communication interfaces to the computation blocks for message
exchange. An interface in the TLM concept is seen as a set of services provided by method calls of
a channel object. The types of the channel objects virtually define the abstraction level of the
interface. A channel may provide several different interfaces even at different abstraction levels. In
the latter case such a channel is called a transactor. The way a pair of interfaces is coupled is the

matter of the internal realisation of the message conversion inside a channel object.

The bus functional model (BFM) is a type of transaction level models which has a special signifi-
cance in modern design: it emulates the signal-accurate cycle-accurate activity of a communication
channel via the mechanism of function calls thus providing means for cross-level interaction be-

tween synthesisable RTL and higher abstraction levels or for highly accurate transaction modelling.
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3.1.2.5 Modelling analysis

Functional model

The earliest stage of modelling a system is the functional analysis. The functional model is
constructed strictly aloof from possible implementation variants or target platforms in an infinite or
flexible resource environment to reveal the highest possible potentials of computing or control
systems or computation methods. The model is represented as a number of interacting processes,
which communicate with each other via data streams, not focusing on realisation of those streams.
Functional modelling can analyse the complexity and parallelisability of the data processing, the
quality and accuracy of the computation methods, the interdependence of computational processes

and the interactions between them.

Architectural model

At the next stage of modelling the system is divided into elements with clearly distinguishable
functions: data-processing or control units, communication and storage elements®. The decisive
criteria for designing this architectural model are the current level of the technological

development®, the project budget, the development time, the available IPs and reuse components.

Functional implementation of data-processing units is not necessarily accurate — the model can
operate on symbolic objects, while the amount of data and the intensity of the flows in the system
are more important for this analysis stage than the quality of data and the quality of operations
performed on them. Component interfaces and communication channels do not necessarily have to
be specified at the signal level — communication delays and latencies, as well as arbitration, may be
approximate. Communication in this case is carried out usually at the level of atomic transactions,
while data processing is described at the level of computation processes that are distributed over the

functional blocks of system architecture (process partitioning).

An important task in the analysis of architectural models is in performing well-balanced functional
decomposition, so that data streams are uniformly distributed in the system. Of a primary
importance become evaluation and prediction of parameters of throughput of communication
channels, as well as computational complexity and foreseen architecture of individual data

processing blocks.

Interface model

A more detailed analysis of the system performance and the optimal distribution of information
flows can be done using an interface model. In this case the component interfaces are defined on
signal level. At this stage the question about the feasibility and effectiveness of the proposed
communication system arises. This model is built to find out the precise values of the

communication medium parameters, such as latency, delay, arbitration, and bandwidth, and even

1t is worth noting, however, that the memory elements may also serve as a communication means (shared memory, buffers).
*The technological development level is the integration level that defines the types and storage capacity of memories, available on-chip
resources for building the communication system and implementing the functional blocks.
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the questions of signal integrity and energy efficiency are addressed [103]. The importance of an
early interface specification on signal level is reasoned on their strong impact on the hardware
implementation of system components at lower levels. This means that an interface acts as a
specification for a functional block. Early specification of interfaces allows independent and parallel
development of individual components and simplifies the replacement of components in cases of

revision of their hardware implementation.

At the interface analysis stage the internal implementation of the functional components are
generally realised at the level of interacting processes that interact with the signalling interface

through transactor function calls.

Component model and early implementation

Typically, after the elaboration and analysis of the interface, model a designer concentrates on
interior organisation of the functional blocks, describing their functionality at the behavioural level
(BL), which binds the functionality to signalling protocols. This type of model is a component
model. The analysis of the model aims at the planning and optimisation of the data and control
flows within the components and a more accurate valuation of the operating parameters of the

functional blocks.

For the components critical to the hardware implementation, the architectural model may be refined
with the early implementation of functional blocks prior to developing a complete interface model.
This implementation is performed at the behavioural level or at register transfer level. The early
implementation of the functional blocks should answer the question whether it is possible to

implement the component with the given parameters of performance, area or energy consumption.

Similarly to RTL a behavioural model describes the timed cycle accurate functionality inside
blocks, but hides some peculiarities of the hardware implementation and avoids the precise
description of the structure details and the deterministic behaviour of every schematic element. The
main advantage of the behavioural description comparing to RTL is that the RTL model may be
significantly more time consuming both for the implementation and for the execution during

simulation.

3.1.3 Implementation

While the modelling workflow can be considered as a search process for the optimal system
organisation by the analysis of different system configurations, the implementation realises the
selected approaches in a concrete element basis on a given processing platform and under strict
operational constraints (resource, time, power, and constructive constraints). Thus, the technical

constraints in the implementation workflow pop up to the foreground.

The modern implementation process is a description of the logic circuit that realises a

computational method, rather than a description of the method itself. The translation of this
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description to the target elemental basis, i.e. the synthesis?, and the layout (placement and routing)
of the design is performed automatically by CADs guided by the designer’s implementation
constraints input®. Meanwhile, EDA manufacturers do not leave the hope for inventing effective

high-level synthesis means®.

3.1.3.1 Register transfer level

The level of the circuit description mentioned above is the register transfer level. The RTL
description paradigm implies that the state of any element of the system is explicitly determined at

any time. This makes the RTL description advantageous for automatic synthesis.

A significant merit of RTL descriptions, comparing to the two lower level abstractions (logic gate
level or transistor switch level), is its portability between target platforms with different elemental
basis. The description at the RTL defines a device as a set of memory elements linked with data
paths. The data paths are built out of combinatorial logic lumps, in which data transformations are
performed. In this way a digital system of any complexity can be represented as a network of data
propagation and transformation paths with intermediate storage elements scattered along them. This
network operates under the control of finite state machines that implement the flow of the control

over the data streams in the system.

When designing the system, the designer needs to take into account the propagation time of the
signals along the data propagation paths and clearly define the complexity of the combinational
logic between adjacent memory elements on this path. This is needed to ensure the data integrity in
the system. In a synchronous design, which is an indubitable rule for FPGA designs nowadays, the

constraint on the signal propagation time is determined by the clocking period (or its multiples).

3.1.3.2 Language-based description

Hardware description languages (HDL) are almost exclusive means for RTL description®. The
main advantage of these languages is the capability to define the way the data are transformed
inside the combinatorial logic nodes by a procedural description convenient for human perception.
Other advantages of HDLs are the description flexibility (design templatisation and parameteri-

sation), the data abstraction, and the modularity.

Hardware description languages can operate on both higher and lower levels of abstraction. The
latter may be useful for the manual optimisation of the project, e.g. tailoring design to a certain
FPGA family. The lower level description allows using directly the peculiarities of the die

architecture by building up the design structure using basic architectural (technological) primitives.

27 Synthesis in logic design in general is an automatic translation of a model description from one level of abstraction to another lower
(not necessarily adjacent).

* A solid amount of literature is devoted to technique of the logical design and implementation on FPGA. That is why this topic is not
covered in this paper in details but considered only in general its conception.

*To get to the level of progress in this area the reader is invited to refer to the following sources.

*Normally manufacturers offer and a graphical input for better perception for a human, but even the graphical input tools lately
transform a graphical representation to linguistic for further elaboration and storage.
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Such an approach can improve the project characteristics both in clocking frequency as well as in
area occupancy. Yet this approach will reduce the portability of the design, so that it ought to be

applied for the optimisation of critical parts.

3.1.3.3 Component reuse

The component reuse approach broadens the application area of components and reduces the
development effort for a project, but imposes additional requirements to the design process.
Naturally, the movement towards a greater universality of the component architecture generally
leads to a drop in its performance. So to satisty the demands of different systems special attention is
paid to the tunability of components. With its use also the fast and easy adjustment of a component

for the current design is enabled.

The component customisation is carried out either by a configuration, i.e. adjusting the functionality
of a component while the system is operating, or by parameterisation, i.e. tuning the functionality of
a component at a production phase. Both approaches have their drawbacks: a configurable
component utilises more resources of a die, while a parameterisable component requires a separate
production cycle. Of particular concern is the functional verification of such tunable components

due to the variety of their operational modes.

3.1.4 Verification

Verification is a set of arrangements for post-implementation®' analysis of the constructed model. It
targets to the compliance checking between obtained and intended qualities of a design and the

discovering of the potential flaw sources that led to inconsistency.

3.1.4.1 Functional verification

The central point in logic design is naturally taken by evaluating the functionality correctness. The
fact that functional verification is an inevitable and complicated procedure for any digital design
makes it most methodologically developed and formalised in the area of design verification.

Each step of a model refinement brings a new bulk of implementation errors. The amount of the
accumulated errors can be so high that the verification of a model as a whole will not be feasible,
because the localisation of the errors is not possible any longer. For this reason the verification
strategy uses a divide-and-conquer approach based on the system’s hierarchy.

This implies an intensive and separate testing of all components of the system, necessarily followed
by integration tests, which will normally reveal unforeseen contingencies in the components
interaction. Due to the increasing complexity of designs, the automation of the verification process

is inevitable.

*' Implementation here is interpreted in a broad sense meaning that in general verification can and generally should be done at any level of
abstraction.
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The importance of the role of the verification increases with a broad adoption of the component
reuse approach, which requires exhaustive verification coverage of each individual component. This
scrupulousness is reasoned by potential bugs in different component configurations, which didn't

appear in the original design.

Theoretically two principle verification models can be distinguished in functional verification.
White-box verification models are those that have access to the internal structure (signals) and are
built with the assumption of a particular implementation of a device under test. In contrast, the
black-box models are built without any knowledge of internal organisation of a component or a

system and designs under test can be observed only through its interfaces.

These two models are antipodes in their qualities. Black-box models are reusable for any realisation
of the design functionality. They can be treated as a golden reference while they express the pure
functionality of a design without the influence of a designer’s implementation approach. That
cannot be said about white-box models that require changes in the testbenches after changes in the
implementation. However, if the problem of observing and localising flaws is in the focus, the
white-box model is the only solution. In practice a testbench is a combination of the two

approaches.

Meanwhile, it is important to organise the verification environment in such a way that the means for
functionality checking and flaw localising are separated from each other. It is crucial that the
testbench for checking the functional correctness does not repeat the design implementation and
implementation faults. Thus, this testbench should be written at another abstraction level to focus on
the design intent and not on the way it is particularly realised. The localisation of mistakes is
performed by checking the implementation model against the design specifications and

characteristic properties of the system at the implementation level.

It needs to be noted in advance that traditionally the hardware description languages (HDL) have in
fact conspicuous functional language trait. The characteristic description style of functional
languages does not allow elegantly conveying dependencies between the states of a system, which
is critical for the description of dynamic systems properties™. For addressing that problem special
syntax languages, referred as property specification languages, were introduced and latter
incorporated into modern hardware oriented languages. A solid portion of tasks targeted to flaw

observation is currently being shifted to these languages.

The verification task requires the list of what is to be check during the verification both for feature
checking and flaw localisation. It is essential to identify the scope of the properties to be verified
and to put it down into a verification plan otherwise the verification process is likely to be mosaic
and badly organised. The implementation of test cases for items in a verification plan forms a
verification model, which can be refined and supplemented with new test cases during the design

refinement.

2 Although it is possible to do by deriving additional substances for property specifications. The most famous example for is Open
Verification Library for property assertion that was written in pure Verilog HDL syntax.
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By the criteria of subject in focus, verification tasks can idealistically be divided into task of three
verification levels: application level, level of components and integration level. Tasks belonging to
application level are focused on checking the functional correctness to the declared intent.
Meanwhile, application level tasks do not necessarily imply functionality of the total system — the
concept can be applied to subsystems or an individual component, the point is only functionality,
i.e. black box approach. Tasks belonging to component level verification are focused on flaw
localisation, i.e. implementation of a component, meaning white- or grey-box approach. This group
of tasks requires most intensive coverage of a design properties, as it covers the aspects of system at
the abstraction level of implementation, i.e. the exhaustive detailing of features of a system.
Integration verification tasks combine two concepts of above levels. The verification process is
organised as if the higher-level functionality is exercised, but the purpose of that is to check the
correctness of components interaction, which could be, for instance, damaged by interface
functionality misinterpretation inside a design group, or if some interface features were not taken

into account during component level verification.

There are two major techniques for a design functional verification, which differ in the way they
handle models under test. Static verification exploits formal mathematical techniques that do not
require dynamic simulation of a model. The second is dynamic verification, which checks model

behaviour by stimulating a system and observing its response over a time.

Verification plan

The verification plan is a document that aims to capture the scope of the verification problems and
the prospective approaches to their solution. Often the task of creating a verification plan seems to
be intuitive, but the formalisation of this process is a good practice for improving the efficiency of
the verification procedure. The verification plan is the basis for formal property specifications,
testbench design, assertion based verification and functional coverage. A good overview of

verification planning and some methodological guidelines can be found in [108-109].

A verification plan is to be composed of the items that cover a set of properties that a device should
have to meet the requirements of the specification. The properties need to be associated with
methods that allow revealing these properties in the system. The methods, in turn, should be bound
to the relevant attributes allowing the proposed methods to be realised. The attributes are abstract
entities that allow the verification plan to be used independently from a particular device
implementation and for models of different levels of abstraction. Finally, the attributes need to be
associated with a set of implementation elements to bind the properties of the design to a particular
implementation. This final step is not needed for the verification of application-level properties, as
the application-level tasks can be isolated from the level of implementation with the transport stack

of verification environment infrastructure (see below).

Verification problems can typically be discovered by analysing a design specification in general and

model specifications at each abstraction level in particular. This analysis gives a feature set of a
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design and a number of derived corner case conditions. A verification plan is typically refined
during the design process as more design details appear. Thus, a verification plan composing is a

dynamic iterative process.

In addition to properties that are directly defined in a specification, a verification plan needs to be
complemented by implied properties. These properties are associated with the dynamic
characteristics of a system. They describe the situations that lead to the transitions between the
stationary modes and to exceptional situations. These properties are usually referred to as «corner
cases». Corner cases are effectively transitions between system states that mark substantial changes
in operational modes of the device. This is why corner cases are of special interest for verification

as they allow the delicate behaviour for a system in transient mode to be checked.

Attributes themselves can be divided into two types: determinative and subordinate. Determinative
attributes are the substances that determine the manifestation of the related properties. Auxiliary
attributes are those entities that help to observe manifestations of the properties. They are attributes-
markers. This division of attributes is important in dynamic and static verification as they play

different roles in different kind of verification realisations.

Formal verification

Static verification is a relatively new approach and is far less spread than the traditional dynamic
verification technique. Static verification basically includes model checking and theorem proving
methods. These methods rely solely on formal analysis to demonstrate that certain features
expressed as design properties in a specification language are implemented properly. Model
checking methods comprise an exhaustive exploration of all states and transitions in a model and
the search for a certain state. Theorem proving relies on mathematical and logical reasoning to

prove the correctness of a design.

The major advantage of formal methods is that they can provide the complete coverage of a given
property specification. Meanwhile, model checking approaches are bound by capacity constraints of
the tools with respect to the amount of design states. These constrains limit the application of formal
methods to designs of a certain complexity. To find more details on formal verification a reader
may refer to [110-115].

Dynamic verification

Dynamic verification is the verification procedure that is carried out by monitoring the changes of
the states in a system over time, which is aimed to cover all the characteristic properties of the
system specified in the verification plan. The state’s changes are driven by the external stimulation
of the system model by a verification program (testbench). The observed changes are called the
response of a system. Thus, dynamic verification is based on three basic concepts: stimulus,

response and coverage.
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In order to verify the correct functionality of a system, it is not necessary to check the response of a
system to all possible combinations and sequences of stimuli. This is explained by the fact that not
all groups and sequences of stimuli are relevant to the properties under examination. Even for the
relevant stimuli there are indifferent sets of values that do not make any difference in system
response. However even the number of meaningful combinations for complex systems can be so

numerous that the problem of automating the stimulus generation becomes imminent.

Constrained randomisation and directed stimulus verification

In case of complex stimuli combinations the generation of values and sequences of stimuli is
performed by randomisation mechanism. The underlying assumption is that if at a certain number of
random input combinations are processed correctly all other combinations are handled faultlessly as

well.

One remarkable feature of dynamic verification in contrast to the static technique is that design
features not foreseen in the verification plan can be unintentionally exercised. In particular,
intensive sequence randomisation creates unexpected conditions for pseudo-sporadic system events,
which often cannot be identified for the verification plan. Thus, random generation helps to

discover complex dependencies in a design, which cannot be deducted by a human.

However, not all inputs but those associated with determinative attributes of the verification plan
are typical candidates for randomisation. The entities related to subordinate attributes may also be

under randomisation to create uniqueness of identification markers.

The mechanism of constraint randomisation can improve the efficiency of the automatic verification
by a more intensive input generation in certain value or pattern ranges that are significant for the
manifestation of a given property. Constraint randomisation in the modern verification languages is
implemented using declarative syntactic constructions similar to the description style of functional
languages. They enable a designer to describe complex statistical regularities including their
dependency on other variables and parameters. This cross-dependent randomisation is defined by

equations or systems of equations, which are solved during runtime.

The more intensive the constraint randomisation is used and the stricter the constraints are, the
closer the verification process is to directed tests driven by pregenerated values and sequence

patterns. This type of verification is called directed stimulus verification.

Moving from lower to higher levels of abstraction there is a tendency to shift from random to

directed verification, due to the simplification of the combination search.

Response prediction models

The automated stimulus generation implies in turn the automated checking of the system response.
The generation of reference responses for comparison is performed by a reference model. The
reference model can be specifically designed or an already existing model of the device can be used.

In the latter case, such a model is called a golden reference.
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The advantage of using a golden reference is that it is much less likely to produce incorrect
reference response, since the correctness of the reference model can be presumed. In the case of a
specially created reference model the probability for incorrect responses is generally higher.
However, describing it on a higher level of abstraction greatly increases the reliability of the

reference responses.

A reference model can focus either exclusively on the correctness of the functional transformation
of data (important for data-dominated systems) or on the system operating details related to the
order and the time of data transformations (important for control-dominated systems, interfaces,
protocols, execution flows and data-path consistency). In the first case, the model is called the
transfer function model. In the second case there is no established terminology yet, but the term

checker® is likely to be adopted for this purpose.

Functional coverage
In the case of dynamic verification the question of verification completeness and thoroughness
measurement arises. The problem of assessing the verification quality is solved by the mechanism
of functional coverage of the implemented model. This mechanism provides means for the
registration and the statistical counting of the number of exercised system properties gathered in the
verification plan. The functional coverage is a set of behavioural patterns of a system,
corresponding to the situations where manifestations of examined properties are expected. Those

patterns are typically described as dependencies between the states of system over the time.

The mechanism of functional coverage allows feedback to a verification program for dynamical
change of its execution flow or for taking a decision on the successful completion or the aborting of

the verification due to the lack of functional coverage progress.

It is often that the application of property specification languages for the purpose of coverage
evaluation is a highly convenient solution, which becomes an increasingly popular modern

verification technique at the register-transfer level.

Assertion based design

The concepts of sequence® (relationship of states over time) and property (logical relationship
between system states) are the basics of modern property languages. They describe relationships of
states of a system or its individual components between and among each other, which allows an
engineer to directly address the design intent in a flexible and expressive way and not the

verification process arrangements.
In order to apply the properties to a system model, three basic operations are defined on properties:
assertion, coverage and assumption. Property assertion means that the design has to comply with

the rule formulated by the property. With the property coverage the manifestation of the system

The term is used in modern open verification library, the standard TLM and SystemVergilog to describe the modules aimed at
verification of temporal logic of a system. Meanwhile, the term has not yet found a precise definition.
*In particular, a sequence of states over time can be perceived as a state of a higher level, i.e. a macrostate.
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behaviour described by a property is registered. Property assumption is used to constrain possible

system behaviour to instruct static verification engines.

Despite all the obvious advantages of using formal specification of properties, modern specification
languages are not a universal verification instrument, because the level of abstraction remains
relatively low. The sequence and property specifications use Boolean operations on signal values
and are bound to clock domains. As a result modern languages do not allow a developer to build a
full-fledged verification model of a complex system exclusively. As practice shows, the most
convenient exploitation of this vehicle is use it at the register transfer level for flaw observation and
localisation and for functional coverage in combination with the classical verification technique at

the higher levels of abstraction.

Verification environment infrastructure

The verification environment itself is a complex system. The increasing complexity of digital
systems leads to a dramatic increase in verification burden. A complex verification environment
requires a developed infrastructure that lets an engineer concentrate on the verification task itself
and abstract from auxiliary underlying means. It allows the ease of maintenance and modification,
the ability for tests and verification environment components reuse. The object-oriented approach
augmented by the abstraction layering of the verification environment is the technique that

addresses these objectives.

A typical verification environment may be represented as a pile of the DUV integration, the
communication stack, the scenario layers and the layer of tests. Environment layering solves the
most important requisite for a complex verification task — focus on a problem. Each layer is isolated
by transactors that allow an easy exchange of the verification components at one layer without

influencing the rest of verification environment.

The verification environment nomenclature includes the following types of infrastructure
components: drivers, monitors, checkers, analysers, generators, coverage monitors, and testcases.
The first two types of components perform transaction disassembling and reassembling to forward
them down or up between abstraction levels. Checkers are responsible for the design properties
check within the same abstraction level. Analysers are components that perform the comparison of
the expected and the actual design response. Generators are the agents that generate various
behaviour scenarios (sequences) that are targeted to cover different corner cases. Coverage monitors
guard the verification progress. Finally, the testcases are the agents that generate device exercises

for different functioning mode testing.

The lowest layer of the environment is the DUV (device under verification) integration layer
represented by the transport layer. On the top of the DUV integration layer there is the transport
layer followed by the functional layer, the scenario layer and the testcase layer on the top of
hierarchy. The DUV integration layer implements means for device model integration into the

verification environment. The components of this layer are expressed at the same level of
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abstraction as the device model external interface. Important components of this layer are checkers.
The transport layer performs the translation of data objects on the higher abstraction level
(functional level) to objects of the lower abstraction level (integration level) and vice versa. This
layer necessarily contains drivers, monitors and optionally protocol checkers. The functional layer

typically contains analysers, the scenario layer generators and the testcase layer testcases.

Introduction of concepts of object-oriented design and specification properties allowed a significant
breakthrough in verification techniques. All major market participants focused their attention on the
development of methodologies for the design of the verification environment. In addition to
developing the concepts, the industry members make serious efforts in designing standard template

libraries for enabling the proposed concepts [116-118].

3.1.4.2 Timing verification

Although timing verification goes beyond the frame of the logical design, it is of special importance
for checking the functional correctness of a system, as signal propagation delays in real circuits
have a crucial effect on the design functionality. Like in functional verification the timing analysis
may be performed with dynamic and static methods [119-120]. The timing verification is applied to
netlists (gate-level models) of a design with delays assigned to each contributing element by EDA
tools during a back-annotation process. Those delays may be specified in a separate file (e.g. in the
Standard Delay Format [121]), so that the netlist file is not additionally modified. Those models can
be very accurate, allowing the specification of all critical timing characteristics for different types of
electronic components such as sensible signal pulse width, trigger setup time, signal hold time etc.
The functional correctness of the design in dynamic verification may be verified by applying the
same test cases as for functional verification during simulation. In static timing analysis process
back-annotated models are checked by comparing each path delays against a set of timing
constraint. Dynamic timing models are capable for a higher accuracy and are more universal
(applicable for both synchronous and asynchronous designs), static verification requires additional
effort from the designer for constraints specification. Static timing analysis took strong position in
timing verification and often dominates in FPGA development due to its high verification coverage
and high level of observability with sufficient accuracy. Meanwhile, considering how high can be

the cost of a flaw both approaches are normally used together.

3.2 GPU implementation optimisation

A CUDA program consists of execution sections of two kinds: sequential code sections are
interleaved with calls of massive parallel computing kernels. It is important to emphasise that the
parallel kernels require massive data parallelism; otherwise, the costs for organisation of
computations may exceed the profits from parallel execution. Furthermore due to the hardware

multithreading organisation of modern stream processors, the workload intensity of the thread cores
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influences the density of the processed data streams. The maximal utilisation of the available
bandwidth of the global memory bus indicates an optimal utilisation of stream processing systems.

Therefore, taking into account the peculiarities of stream processing architectures, mapping an
algorithm on a CUDA platform requires the identification of computation subproblems, which
satisfy the criteria of an explicit data parallelism, or can be turned into parallel algorithm without

loss in computation accuracy.

Parallel algorithms and algorithm transformation techniques can be found in many works, e.g.
[122-125]. In particular, a summary of parallel algorithm patterns for GPU computing can be found
in [96].
Even if massive parallelism is picked out, it does not guarantee high performance of the system, if
the massiveness of concurrent execution leads to a deficit of common resources, which can result in
access conflicts. Mechanisms for resolving massive access conflicts may be time consuming and
dramatically lower down efficiency of the parallel execution. Thus, a careful resource planning is
the central issue of a parallel programming methodology. Assuming architectural peculiarities of
stream processing systems one may consider three most obvious aspects to concern (in order of
priority):

e efficiency of global memory bandwidth utilisation;

» conflict-free multiprocessor shared buffer management;

* minimisation of SIMD execution path resulted from branch divergence.

Many performance sensitive aspects, such as local variables allocation, memory traffic planning,
kernel execution scheduling, etc., are not controlled by the developer but done by the compiler and
the underlying hardware dynamically. This makes a careful optimisation on assembly language
level not very effective for CUDA platforms. Meanwhile, a developer is able to assist the compiler
and hardware to optimise the task execution.

The optimal execution configuration for better application performance is the matter of heuristic
search and can be hinted by profiler information. More specific recommendations on the device

configuration may be found in technical documentation for a device [98, 126].

3.2.1 Global memory throughput optimisation

Achieving efficiency in global memory bandwidth utilisation implies the minimisation of the global
memory bus traffic and the maintenance of a constant data flow to hide the memory access latency.
One principle approach to reduce the traffic in stream processing systems is buffering the data to the
local multiprocessor memory. Data are loaded to shared memory, processed locally without
generating external memory bus activity and forwarded back to the global memory.

Another possibility is to exploit the cached memory spaces, the constant and texture memory, where

applicable. The texture cache has a special feature inherited from graphic applications. It may be
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configured to optimally operate with two-dimensional spatial locality, which can be helpful for

some general purpose applications.

Automatic variables of a thread are allocated by a compiler and could be placed either in register
file or in global memory (typically large arrays or structures). The later can influence an application
performance. That is why some local variables could be thought to be placed in some specific

memory types, e.g. in shared memory or cashed constant or texture memories.

There are two points that should be mentioned about the organisation of the memory transactions in

nVidia GPUs, which may seriously influence the performance of data-intensive systems.

The memory controllers typically operate with some definite formats of machine words. In
particular nVidia GPUs operate with 32-, 64-, and 128-bit words. This means that if data is not
aligned in memory to the borders of these words, it is possible that extra memory access cycles will
be generated. Therefore, one can increase efficiency of memory bandwidth utilisation by alignment

of data structures to the word borders.

The second point is in the way how memory accesses are generated for simultaneously executed
threads within a multiprocessor. The bandwidth of modern synchronous dynamic memory most
effectively used in burst accesses. To exploit this feature a CUDA device memory controller can
detect coalescing memory accesses within a group of simultaneously executed threads in a
multiprocessor and organise a single memory transaction of 32, 64 or 128 bytes. The extent of this

capability is dependent on the different hardware platform of NVIDIA.

A better memory layout for taking advantages of coalesced memory accesses can be achieved by
plain data structure organisation, e.g. by reorganising an array of structures into a structure of

arrays, which is a common technique for SIMD systems.

To maintain a continuous data stream between the global memory and the multiprocessors, the
multiprocessors should be inhabited with a sufficient amount of computation threads to hide the
memory access latency via mechanism of computation context switching. The main limitation for
the number of threads concurrently executed on a multiprocessor is the total amount of resources
shared by all threads.

3.2.2 Shared memory

The shared memory, as a resource common for all the thread cores in a multiprocessor, may cause a
concurrent access conflict. It is organised in several banks, in which the number of banks
corresponds to the number of threads simultaneously executed in a double core clock cycle, i.e. half
warp for CUDA device capability 1.x. If several simultaneously executed threads try to access
different locations in one bank, these access are serialised. Simultaneous accesses to different banks
are conflict free. Concurrent read accesses to the same location may be broadcasted. Concurrent
write accesses will generally lead to a single write by an undefined thread. Thus, special attention

should be paid to the organisation of data in the shared memory.
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3.2.3 Dynamic branching

Due to the SIMD organisation of multiprocessors an ideal algorithm for a stream processing
architecture is an algorithm that allows the same execution path for all threads in a warp. Thus, the
algorithm and its program implementation should be tailed the way that the number of branching
(including loop conditions) is minimal. Meanwhile, if dynamic branching is inevitable the following
guideline should be minded to minimise the cost of divergence:

e branches should be primitive, i.e. without subordinate branching nodes;

¢ branches should be short;

e alternative branch should be idle, i.e. should lead directly to a join point.
Those requirements can often be fulfilled by rebalancing the control flow graph of an algorithm and

operations drifting.

More detailed information on optimised application development on stream processing architectures
can be found in [79-80, 96, 99, 127-130].
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4.1 Functional analysis

4.1.1 Reference software implementation

The software sequential implementation [3] described below is the reference point for the parallel
GSC implemented on two massively parallel processing platforms. It has been used as a base for
performance and quality comparison, for the experiments with different algorithmic approaches in

different GSC processing phases, and for statistical measurements.

4.1.1.1 Data structure

The basic data element of the algorithm is a so-called code element (CE). A CE/’ provides an
efficient way to store information about a region (R;) at a hierarchical level i (HL(i)) and its relative
location in the hierarchical island structure. It contains information on the mean grey value of the
region, the number of covered subregions R;;s and their positions inside the island (7,) the region
belongs to. A code element CE; also contains the addresses of its subregions' CE;;s and the
addresses of its two parent regions' CE;;,;s in main memory. With these pointers the CE structure is
ready for building two-directional link lists, which represent hierarchical relationship trees. These
link lists form a so-called GSC database (DB) that represents the total hierarchical island
structure (Figure 9). The roots of the trees contain information on the mean grey value of the
segments of an image, whereas the leaves correspond to the coded regions R, formed by the pixels
that comprise the segments. A region’s CE does not have a fixed size in the software
implementation, as the number of subregions the region may cover is not limited. The number of
the newly produced regions in an island is not known a priori as well. This implies that the total
number of regions is not known in advance. For this reasons the database is operated as a dynamic
data structure, using an indirect addressing scheme to provide a compact and lossless storage form.
This indirect addressing is realised by the means of a sequential key table that carries the

topological information of the hierarchical island structure. Each island of each hierarchical level is

% The first subscript index for the GSC data element abbreviations always indicates a hierarchical level number, unless otherwise stated.



50 Chapter 4 Hardware implementation

represented with one entry in the key table. An entry stores the start address of the first region and

the length of the total region coding of an island in the region database.

Key Table Region Database
32 Bit 32 Bit 32 Bit Lowest Level Region Entry
- > R|Use|Positions |rSize
o C. I - Feature
¢ | [DBAddr,, | Size, Reg'_°" m1 Parent Addr 1
2 | [DBAddry,.| size . R:g;z: m2 Parent Addr 2
L DB-Ac ize . m3
§ ddrgm,|  Size mie RGO perd
© "
o Region o
8 me12| Vo ; f
T »{Region ok - Higher Level Region Entry
- i
- Region n.zz| | § R [Use[Positions | rSize
% Region .,y © Feature
— P
EEE =
% | [DB-Addr, .| Size ., egIon 4 !
I Region _, Pos [Subregion Addr 1
% ! Region |, Pos | Subregion Addr 2 o
Region  , Pos | Subregion Addr 3 (%
Region _ - =
Region ¢
™ Region 4y I Fj R = root bit
o 17} Use — absorption sign flags

Figure 9: Software GSC database structure

4.1.1.2 Implementation of the different GSC phases

The software implementation tries to form new regions inside islands by going sequentially island-
by-island through all hierarchical levels in the coding and linking phases. During the initial coding
phase similar and neighboured pixels are grouped into initial regions R,. The process is realised as a
recursive graph traversing applied to the neighbouring pixel graph of an island. The similarity
measure is defined by the grey value distance between two pixels, which has to be smaller than a
selectable threshold.

During the linking phase subregions R;; of a level i-1 are grouped (linked) to form regions R; of a
level i for all hierarchical levels. The linking is performed recursively in a similar way as in the
coding phase, except for applying the additional region overlapping criterion instead of using the
explicit pixel graph relationship to detect the neighbourhood condition. In an island /; of a level i,
comprising seven subislands 7;; of a level i-1, subregions R, are joint, if they are similar and
overlapping. To detect the overlapping condition every sub-subCE (CE:;) of a currently linked
subCE (CE.;) is accessed using downward DB pointers and checked for existence of a second
parent (upward DB pointer). If the second parent exists and the corresponding subregion is located
in the current island /; they are treated as overlapping regions. Therefore, to get the overlapping

subregion partner for similarity comparison the method needs two database redirection accesses.

Several linking strategies have been implemented for measuring their impact on the segmentation
quality. These linking methods differ in the region mean value computation, the linking starting
point in the island topology (the centre or a border node), and the direction of region growth. The

summary of the studied linking methods is given in Table 1.
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Table 1: Linking method summary
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The peculiarity of the Simple Linking method is that it is based exclusively on the similarity of the
original features of overlapping subregion pairs, without considering the intermediate mean feature
of the currently linked region as it is done in the other linking strategies. Therefore, this method
may lead to a so-called linking error, if the mean value constantly shifts from the initial region value

during sequential linking (chain effect).

The Centroid Linking tries to avoid this linking error by comparing the mean value of already joint
region against the value of a candidate subregion to be linked. The mean value of the region is

calculated as the arithmetic average of the included subregions.

A more sophisticated method for computing mean values is introduced in the Weighted Linking
where the contribution of a newly linked subregion is additionally determined by the size of the
subregion, i.e. the larger subregion has the higher feature weight in computing the new feature of a
region. The size of a subregion is determined by the number of sub-subregions it contains. The

introduction of this method increases the accuracy of linking.

The methods described before analyse the neighbouring subregions in a predefined search order.
The first candidate that matches the threshold condition in the clockwise search is linked to the
region first. In the BestFit Linking the growth direction method is further refined. The method
chooses the most similar neighbour (the lowest feature difference) to be connected first. Using this
method provides a higher separability of segments (less faulty connections).

Due to the chain errors the Simple Linking may lead to forming large fused segments. On the
contrary, the Centroid Linking and the Weighted Linking provide more differentiated segments. In
its turn the BestFit Linking improves the segment boundaries and, because of the ascending

neighbourhood feature sorting, leads to more accurate segment features.
The linking methods have been qualitatively rated with the multi class error measuring the correct

matching of classified segmented images with corresponding reference images [3]. The best results

were shown by the BestFit Linking approach, while the worst were shown by the Simple Linking.
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The experiments indicated as well that the start position for the linking procedure matters: starting

from the central node of an island is preferable.

Generation of segmented images is performed during the result generation phase by traversing the
hierarchical relationship trees from the lowest level regions R, up to the roots of the trees. When a
root is found the related segment feature or the segment label is assigned to the correspondent pixels
of a region Ry,. The image coordinates of the pixels are unambiguously determined by the
topological coordinates of the island 7, the region belongs to and the information on relative

positions of the region's pixels within the island coded in the region's CE,.

Region splitting is implemented in two generally different variants. The first approach is to perform
the splitting during the linking (two methods are realised in this way — the Simple and the Complex
Splitting). Splitting is initiated whenever a splitting condition is detected: the method tries to
separate all underlying subregions recursively down a hierarchical region tree. This approach
preserves the spatial contiguity by modifying region relationship information in the database. The
method is recursive and notably resource intensive. The second approach (referred to as the BestFit
Splitting) tries to avoid implementation overheads by ignoring spatial contiguity of segments and by
operating without database modification. Assigning particular segments to dubious initial regions is

done during the result generation by simply selecting the most appropriate route to a tree root.

The comparative evaluation of segmentation quality of the two approaches does not reveal an
unequivocal preference for one of them. Considering the qualitative aspect the approach in which
splitting is performed during the result generation may perform worse than those in which it is
performed during the linking. This can be reasoned by the fact that on higher hierarchical levels a
region can represent a very large area of a data set. Therefore, a simple assignment of subregions to
false segments without global view may lead to bad segment surfaces or even to spatially disjoint

segment fragments.

Nonetheless, in reality the segment fragmentation occurs relatively rare. As it could be seen from
the measurements, the number of decaying segments did not normally exceed 0.1% of all segments
in 2D. Moreover, the correction of the fragmentation may partially be carried out at a

postprocessing stage, e.g. during subsequent classification.

Additionally, the quantitative evaluation based on multi class error measurements for real scenes (as
opposed to artificial phantoms) even showed the results that are contrary to the theoretical

reasoning, giving the preference to splitting during the result generation.

The software model examines also approaches to pixel splitting and singularity correction. The need
for splitting pixels arises from the fact that two pixel regions of neighbouring islands may overlap in
one common pixel; hence, the pixel needs to be decided for one of the regions. This can be realised
by applying the similarity criterion to the original feature of the pixel in the initial image and the
features of the two rivals. The singularity correction also operates on features of pixels from the

original image, but it compares them with features of nearby elements of the result.
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The splitting methods described earlier only work on regions in the DB, thus R,s may still overlap in
pixels after the conventional splitting. However, the pixel splitting can be realised during GSC DB
generation by expanding the Simple/Complex Splitting to the pixel level resulting in deletion of the
dubious pixels from the less similar Rys in the DB. The alternative approach implies deciding
between rival segments during result image generation after the DB has been completely formed.

The measurements show the better segmentation quality when the second method is applied.

The need for correcting singularities appears if not all pixels are included in pixel regions in the
coding phase. Meanwhile, the classical task of segmentation requires an image to be fully covered
by segments. One possible approach to the problem is in eliminating singularities directly in the DB
guided by the GSC island topology. Alternatively, this problem can be solved after result generation
by assigning the segment features of most similar neighbour pixels to the singular pixels using its
features in the original image. Due to the less degree of freedom in neighbour analysis the database

method leads to worse quality results, having higher computation complexity at the same time.

4.1.2 Study premises

The primary intention for the research work on the GSC is to explore the potentials for
implementing it on high performance massively parallel computing systems of expansion board
class and images of up to 2048 pixel resolution with the value depth of eight bits. For examining
the scaling capacity of the GSC method for images of very high resolution the study is expanded on
the 40967 pixel images.

A device with programmable structure of FPGA type and a streaming processor of GPU type are

considered as the computing platforms for realisation of the segmentation method.

4.1.3 Algorithm analysis for computation parallelism

The GSC has a strong potential for parallelisation. At the coding/linking phase all islands of the
same level can be processed concurrently. Data dependency exists only between two superimposed
hierarchical levels. Therefore, the whole coding/linking phase can be seen as a pipeline, each stage
of which is correspondent to a hierarchical level of the GSC topological pyramid (GSC LP: GSC
Layer’® Pipeline) and consists of processes performing linking inside the islands of this hierarchical

level.

Nonetheless, even an approximate assessment of the volume of the total hierarchical data structure
for the claimed resolutions shows that implementation of the complete GSC pipeline in a structural
representation is not possible for the current integration level of ICs. Moreover, the stages of the
GSC LP correspondent to the lower levels of the hierarchy are not realisable on a die as a whole.
This generally means that each layer should be processed in parts. Fortunately, the process of

linking is similar for all islands throughout the hierarchy (except the pixel level). Hence, the same

*The term Jayer with respect to the GSC pyramid is introduced to convey connotations with the amount of data associated with each hi-
erarchical level, whereas the term /eve/ carries a sense of hierarchical relationship; in some context both terms can be equivalent.
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hardware can be used for implementing the layer pipeline without a significant reconfiguration®’,
while the intermediate results of the linking phase are to be stored in the GSC database on external
storage. Using the same hardware for linking different islands in parallel implies that the GSC DB

has to be a shared resource with symmetric access for all concurrent linking processes.

Therefore, the data stored in the GSC database should be protected from data inconsistency caused
by simultaneous access by different concurrent linking processes. This can be realised either by
arbitrating the memory accesses or by assigning each island in the hierarchy a specific data location.
Due to the complexity of the arbitration task for scalable massively parallel processing the second
approach is preferable for exploiting in the GSC implementation. This means that each hierarchical

layer in the GSC DB should be realised as a regular array with constant-length elements.

The linking can be divided into two classes. In the first one, the region® inclusion depends on
threshold condition satisfaction for two neighbours exclusively, noted as the Simple Linking above.
This means that the threshold criterion can be examined for all neighbour region pairs independent-
ly. The sequence and the starting point of linking do not influence the result of linking. This simpli-
fies the combinatorial function for concurrent region creation within an island and makes this class

attractive for structural hardware realisation for small spatial extensions, such as pixel islands.

The second class implies a stepwise region linking, interpreting a region as a chain of subregions,
for which a decision on subregion inclusion is taken at each step on the basis of an intermediate
region mean (Centroid, Weighted, BestFit Linking). In this case parallelisation can be efficiently
applied to simultaneous analysis of all possible neighbour candidates for linking at each linking step
in a chain. Simultaneous stepwise growth of several regions from different starting points in an
island is feasible as well (multithread linking); however, the starting point of growth influences the
segmentation quality, as mentioned before. Additionally, the problem of competing for subregion
absorption between any two linking threads may arise. As the experiments showed, the need for
conflict resolution between processes makes the approach inefficient at implementation. Moreover,

the longer runtime for single-thread linking can be compensated by processing islands in parallel.

The neighbourhood criterion, which is at higher levels defined as regions’ overlapping, is substan-
tial for the linking procedure. The initially proposed linking algorithm for the software implementa-
tion realises the overlapping detection of regions by analysing all the subregions of a region for
existence of a second parent. Thus, a linking process needs to have access to the islands of two
hierarchical levels below the current. This approach is not attractive for implementing on massively
parallel processing systems due to excessive data access®. The amount of data forwarded to a
linking process can be significantly reduced by retrieving only the specific information that is

exclusively relevant to the linking procedure (Appendix A.2.1). These data need to provide only the

This can be applied both to HW and to SW implementations as a program of an instruction-driven processor can be treated as a
configuration series for underlying hardware.

*For the pixel level islands pixels can be treated as primitive regions of the ground level.

*This approach leads to higher demand for local memory for data prebuffering, which becomes crucial in multiprocess execution
schemes, or to sporadic memory access to external storage otherwise.
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information about the overlapping subregion pairs within the islands of the current level (connec-
tivity data). Such detection of the overlappings can be performed during the linking in neighboured

islands on the previous hierarchical level by exchanging data between parallel linking processes.

To implement this interaction the concurrent linking processes can exchange the information about
the resulting regions via shared structures referred to as hierarchy relationship structures (HRS).
These structures correspond to the subislands /., being the overlapping nodes for adjacent islands /;
of the current level. An HRS can be best implemented in a form of an associated array with the
number of entries equal to the number of subregions R;; in a subisland /;;. If a subregion R;,
belonging to the subisland 7;; is linked to the newly created region R;, the information about this
region R; should be recorded to the correspondent entry in the shared structure in association with
the R;,. After both neighbouring islands /; are processed, the information in the HRS is analysed to
identify the overlapping region pairs (ORP)). The results are recorded on a global storage structure
that contains one list of all corresponding overlapping pairs per island /;;; of the next hierarchical
level. These lists are referred to as overlap-list structures (OVL;i;). At the same time, to make the
massively parallel processing of the HRSs efficient it is reasonable to allocate an individual storage
for each overlapping node in the lattice ensuring the data consistency in the common storage for
parallel access. The data structure for storing all the ORPs associated with an overlapping node in
the global storage is called an overlapping node entry (OLN). This implies that the connectivity
information for each next hierarchical level should be organised in a regular array of fixed-sized
overlap-list structures OVL;,; with fixed offsets to each overlapping node entry OLN;,;. The number

of overlapping nodes in a macroisland is fixed and equal to twelve as shown in Figure 10a.

Figure 10: Linking data-flow model
a) Fixed mapping scheme of overlapping nodes in a macroisland; b) Data-flow model of linking process

The linking procedure also has to establish relationship between the regions of two superimposed

hierarchical levels to form the forest of segments' trees. There are two possible types of the
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relationship: parent — child and child — parent, which are effectively equivalent for the parallel GSC
method. However, the parallel method on the regular GSC DB structure does not really require an
absolute addressing scheme to be applied for maintaining this relationship inside the GSC database,
as it exploits the topology of the relative placement of islands within the pyramid. In this case the
child — parent relationship can be described more laconic because it requires referencing a parental
region within a parental island only, while establishing the parent — child connection additionally
requires the child island to be specified within a parental macroisland. Moreover, processing
expenses for establishing child — parent connections are minimal as the same upward relationship is
effectively used for detecting overlapping pairs in the overlap-list creation process. Hence, the same
HRS structures can be used for all subislands /;; (including those that correspond to the central

nodes of islands 7;) in linking procedure for establishing hierarchical relationship between regions.

Summarising the theoretical reasoning above the linking procedure coupled with the overlap-list
creation can be represented as the following data-flow model shown at Figure 10b. A linking
process takes the overlap information stream of OVL;s in and produces two data streams for two
adjacent levels: the region information for the current level R; and the child — parent region
relationship information for the next lower level in the form of upward region pointers (URP;,).
These input and output flows of different linking processes are independent within a single GSC LP

stage. At the same time the output flows of a single process have no feedback to the process.

The overlap-list generation process consumes the output flows of two linking processes of two
adjacent islands /; and generates an output stream with the connectivity data for linking on the next
upper level (OLNs for OVL;:;s). Such output streams are also independent within an island layer.
Equally, the overlap-list generation processes have no feedback dependencies on their own output

streams.

After the GSC DB is formed, there exit two possible approaches to generating a segmented result.
They are the upward and the downward tree traversing. The result generation phase can be realised
as simultaneous segment formation by traversing hierarchical region trees concurrently from the
leaves up to the roots in the GSC pyramid. However, for high resolution pictures the simultaneous
traversing of all upward traces in the forest is not practicable. Thus, the leaves labelling has to be

done in parts by a limited number of concurrent processes.

One feasible approach to the parallel leaves labelling consists in assigning sets of nearby leaves to a
pool of traversing processes for root tracking. This approach may benefit from the topological rela-
tionship of islands in different hierarchical layers, as the data from the upper layers may be
scheduled for prefetching and shared among the whole pool of processes due to the persistence of
the spatial locality of islands throughout the hierarchy. This may raise efficiency of data access.
However, the data scheduling and data distribution among the processes throughout the whole
hierarchy is a complex task due to reconvergent structure of the pyramid. Additionally, due to a
wide variance in the trace lengths from the leaves to their roots, the problem of efficient load

balancing across the total pool of tree traversing processes arises. The dynamic leaves distribution
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among the processes, when a new leaf is assigned to a process directly after the process has finished
its previous search, might increase the overall performance. However, the dynamic approach is
bound to the problem of arbitrating the leaves’ distribution among the processes. Moreover, the in-
dependent parallel forest processing without an intermediate process synchronisation makes the data
access policy eventually inefficient: many traversing processes may enter the same traces multiple
times lacking for data sharing capability as the data scheduling for the total pool becoming un-
realisable in the dynamic scheme (in contrast to synchronised leaves distribution, where neigh-
bouring processes may plan accesses to the upper level tree nodes and share the data). Taking it all

together it can be seen that the bottom-up approach is not attractive for parallel implementations.

An alternative to bottom-up tree traversing is the result generation by downpropagating the root
values to leaves. Downpropagating a root value by tracing a complete hierarchical relationship tree
in a single pass by a dedicated process is not favourable for parallel implementations due to the
recursive nature of the algorithm. Alternatively, the downpropagation can be realised in a layer-wise
manner, in which all values from an upper layer are propagated down to the next lower layer at each
iteration. This approach benefits from a plain data scheduling and distribution scheme as it works
with two neighbouring layers only, which makes the topological relationship patterns between
parental and child islands rather simple. The problem of dynamic load balancing is not relevant for
this method, as the processes do not stay idle for long if they have no current data to process.
Although this method does not solve the problem of maximal computing capacity utilisation over
the whole hierarchy, it makes load balancing more efficient due to a significantly smaller quantum
of computation (a single island versus a tree). The obvious downside of this method is the need for
write operations on global memory to the correspondent regions for downpropagating the values.
Nonetheless, the systematic layer-wise downpropagation reduces the number of accesses to global
storage almost twice compared to the bottom-up approach as experimental results showed. Together
with its computation simplicity this makes the downpropagation approach most favourable in view
of performance efficiency. Moreover the method has the qualitative advantage in comparison to
upward traversing approach as the decision for a parent is made based on more global segment view

(i.e. closer to roots).

During result generation the initial content of the GSC database can be modified with down-
propagated segment information (the GSC DB modlification implementation) or a separate tempo-
rary island-oriented data array can be used to store downpropagated segments as an option (the
temporary segment layer implementation) depending on the memory resources available. Region
hierarchical relationship information does not need to be retained after segment assignment and can

be removed or overwritten in the case of the GSC DB modification (GSC DB decay).

In general® a downpropagation process, viewed as a data-flow model, consumes two types of data

streams from two adjacent hierarchical levels: one from a current level (the target for assignment)

“ A special case appears when processing higher resolution images with the particular data format used in the HW GSC implementation.
See Section 4.2.2.
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with region features and parental pointers and one from the upper level with propagated segment
values. It produces one outgoing stream for the current level with the propagated values, which may
(but not necessary have to) modify the GSC database. The data flows into and out of the processes
are independent within one hierarchical layer (a downpropagation stage). Equally, the input and the

output streams of a single process are decoupled.

4.1.4 Data organisation

For raising efficiency of parallel processing each hierarchical island is assigned a fixed location in
the GSC database for storing data associated with the island. This allows the linking and the result
generation processes to work on individual islands*' without data contention and may give benefits
of direct addressing for data access scheduling. To fix the position of an island in the GSC database
the size of island data structures should be predefined. This implies determining a static number of

regions inside an island and using static data structures for region representation.

As the number of pixels in a pixel island is seven, with minimum two pixels per region a pixel
island may comprise three regions at the most. The theoretical maximum of regions in an island of
the next higher level is nine®. The theoretical number of regions in islands of all other higher levels
is excessively high. That is why experimental data were used for defining the optimal number of
regions for representing an island at these levels with regard to implementation efficiency and

segmentation accuracy. The statistical analysis showed that a number of twelve is appropriate.

The data abstraction for region description known as a code element needs to include a feature
value and two upward parent pointers. As the topology of the island structure and regularity of the
GSC database unambiguously identify both parental islands, the two parent pointers need only to
identify parental CEs within these parental islands. Additionally, due to the fact that a linking pro-
cess uses overlap lists for region creation, there is no need for maintaining bidirectional links
between CEs of superimposed levels. Hence, the parent — child pointers do not need to be imple-
mented on the higher levels. However, the parent — child relationship is required at the lowest level
of the hierarchy for determining pixels covered by regions. Again, the topological determinism of
the GSC hierarchical structure helps to identify a region's pixel without using its absolute image co-
ordinates. Hence, to benefit by more compact region coding CEs of the lowest level need to include
a structure that unambiguously defines the positions of the region pixels inside the pixel islands.

The connectivity information for the linking is collected in a regular island-oriented data array.
Each element at an island location is a list with the capacity of 36 overlapping subregion pairs
(ORPs). The list is divided into 12 groups (OLNs) of three to four pairs, which correspond to the 12
overlapping nodes. The fixed number of the overlapping pairs was defined on the basis of statis-

tical data as well. The first subregion in a pair always belongs to the north-west-most subisland.

“I'The term island indicates both the topological element of the hierarchical island structure and the aggregate of data associated with it, as
well as a particular data structure for representing the data.

“The number is derived from the number of overlapping nodes, the number of islands in a macroisland, and the maximal number of
regions in a pixel island.
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Hence, the position of a subregion in the overlap-list structure unambiguously defines which sub-
island in the island this subregion belongs to. Every region in a pair must be described by its fea-

ture, its region weight (the number of subregions it covers), and by a region index inside its island.

The segment-assigned regions — the basic data elements for downpropagation process — grouped in
islands can be represented with segment labels and segment features (optionally) propagated from
upper levels. The structure for storing segment data should be compliant with the data organisation
within a hierarchical layer in the GSC DB.

Additionally, for labelled image generation the structure called a segment key table can be
introduced for extended segment characterisation and fast feature lookup. The absolute addresses in
the table can be used as label identifiers, while its entries can contain information about image
segments (segment features and optional segment characteristics such as segment coordinates and

segment area).

4.1.5 Functional executable model

An executable model based on the above propositions and implemented by means of SystemVerilog
and SystemC modelling languages helps in validating the introduced parallel computation ap-
proaches and in assessing the computation quality. It is used as a basic model for further hardware
system refinement and as a reference for verification of subsequent detailed system models of the
FPGA- and the GPU-based designs.

Used for gathering statistical information the functional model reveals substantial knowledge about
the GSC cursorily discussed above. The most significant information derived from the statistical
measurements for particular algorithmic implementations is investigated further together with the

results of the profiling of cycle accurate models in Section 4.2.5.5.
4.2 Architectural model

4.2.1 Computation platform

An FPGA board was specially designed for prototyping the hardware realisations of the GSC. This
board contains two independent DDR-SDRAM banks and two independent ZBT-SRAM banks of
external random access memory. The core of the board is a Xilinx Virtex II-Pro FPGA. A PCI bus
is bridged to a local board bus (1960 Local Bus compatible with extended functionality) by PLX
PCI 9656 chip to interface the FPGA with a host system (see Figure 11a). The DDR-SDRAM banks
are realised as two socketed DIMM modules (up to 1 GB) with 266 MSamples/sec. The data buses
of these modules are operated at 220 MHz maximum to provide double-word 128-bit data at 110
MHz at the FPGA ports (about 1.6 GByte/sec per channel). Two additional ZBT-SRAM (zero bus
turnaround) memory banks (up to 8 MB) can be used for fast and random data access at 110 MHz
via 128-bit data buses. All four banks achieve an overall data bandwidth of about 6.4 GByte/sec.
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The onboard system operates on 128-bit memory words as the architectural data unit (no masking is
available for write operation on memory banks); hence, the capacity of each SRAM bank can be
treated as 512K of addressable memory words, whereas the capacity of each DRAM bank is 64M
words. For integration to industrial applications an external camera can be connected directly to the

FPGA board using a Camera Link interface. The manufactured board can be seen at Figure 11b.

ZBT-SRAM ZBT-SRAM
8MB 100MHz | | 8MB 100MHz

Tatiice
ispClocks510.
Programmable
Clock

R
Xilinx Virtex Il Pro
FPGA

XCV2P70 or

XCV2VP100 DDRSORAN
e

128 Bit
128 Bit

Camera Link
Interface
N
N
@

g
]
i3

PCI 32/64 Bit
@ 66MHz

L
a) b)

Figure 11: FPGA platform
a) FPGA board diagram; b) AE100Pro expansion board

The multibank architecture of the platform is highly beneficial for the parallel GSC as it can be seen
from the functional analysis. Data of two adjacent hierarchical layers can be placed separately, thus
maximising the total memory throughput of the system and reducing the spread of memory accesses

inside a bank. The latter makes the memory access pattern more predictable (linear access).

A user front-end software, which runs on a host PC, controls the system on FPGA via the PCI
interface and carries out any required preprocessing of the image data. The segmented image data

are transferred back to the application software for further processing, visualising, and storing.

4.2.2 Hardware data-structure layout

The initial 8-bit greyscale image is packed into 128-bit memory words by 16 lined pixels per word
and stored in the onboard memory for segmentation. The result image is either a grey value image
of the same size or a labelled image of the same layout, but packed in the memory by four 32-bit

label pixels in a word.

The GSC database (see Figure 12a) is split into arrays of island data structures (IS) of a fixed size
to represent each hierarchical layer of the GSC pyramid. The absolute address of an island data
structure is determined by x, y-coordinates of the correspondent island in a layer. A layer is stored
column-wise in memory to improve the efficiency of buffering schemes as explained in the next

section. Each island data structure contains an array of CE structures for regions’ description.
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The number of CEs in an IS is fixed and dependent on the hierarchical level number » (4 for (#=0)%,
8 for (n=1)", 12 for (n>1)). Each CE contains a region feature component coded in 12-bit fixed
point format for improving the GSC’s accuracy and two parent pointer components of four bits
each. The parent pointers are also used to identify invalidity of a CE when assigned an out-of-range
value. CEs of the lowest level have an additional region position component to identify pixels
covered by a region. It is represented by a 7-bit flag vector with each bit corresponding to a pixel's
position within its island (see Figure 12b). Thus, the IS of the lowest layer can be packed in one
memory word, while the /S of the secondary lowest layer fits in two, and the IS of the upper layers
fits in three memory words. The CEs of an island are organised in compact component arrays as

shown in Figure 12¢, which is done for traffic reduction as explained in the next section.
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Figure 12: Hardware GSC database

Each of twelve OLN entries within the overlap-list structure consists of a fixed number (three or
four depending on the GSC configuration) of ORPs and is stored in a single memory word (see
Figure 13). Every region in a region pair is represented by a 12-bit region feature, a 4-bit region
index and an optional 3-bit region weight for weighted linking. The lifetime of an array of overlap-
list structures for storing complete connectivity data for a hierarchical layer i referred to as an
overlap-list layer” expires after processing two superimposed hierarchical layers i-I and i.

Therefore, an overlap-list layer can be treated as a temporary data object in the linking phase.

During result generation by downpropagation with GSC DB decay the contents of the GSC DB are
gradually replaced layer by layer with downpropagated parental 12-bit segment features and 20-bit

“This number is greater than the theoretical number for a pixel island. This excess is explained by implementation peculiarities of the
linking method at the lowest hierarchical level, as shown in the correspondent section of the work.

*The theoretical limit of nine regions per island is rarely achieved in statistical measurements, hence the number of regions in the sec-
ondary lowest level islands is limited to eight for uniformity in labelled data organisation.

# The term layer is further specialised to refer to a particular data organisation matching topology of islands arrangement at a certain HL.
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Figure 13: Hardware Overlap-list layer

segment labels assigned to all valid CEs in island data structures. The layout of the DB is not im-
paired as the new data structures for representing labelled islands can be packed in the same number
of memory words that the original /Ss fit in. Alternatively, the same data structures can be stored in
a temporary island-oriented array that retains the data organisation of a particular hierarchical layer
in the GSC DB. This approach can be used for increasing memory throughput in the system as
discussed in the next section. The lifetime of an array of the labelled island data structures for repre-

senting a hierarchical layer 7 is equal to the processing time of two superimposed layers 7 and i-1.

Although the proposed data organisation is tempting for the parallel GSC, with the growth of image
resolution over 2048 the 20-bit label format can theoretically become insufficient for enumerating
all the image segments. An approach to solving this problem yet retaining the established IS sizes is
to use the ISs for downpropagating extended 32-bit segment labels exclusively while storing related

segment attributes in the associative segment key table.

The addressing scheme used in the parallel GSC is based on island coordinates inside a layer lattice;
moreover, each GSC process operates on an aggregate of island-associated data seen as a unit from
the inside of a process. Thus, data streams to and from external global memory are regarded as
streams of island-associated data structures, often called simply islands. As it can be seen from the
data-flow analysis, the linking process does not ever operate on entire code element structures.
Hence, for convenience of description of further GSC models the compact component arrays within
the island data structure are treated as separate data units and are referred to as an island structure
of region features (IS") and an island structure of parental pointers (IS”). To refer to separate
components of a CE in these structures, the CE" and CE” abbreviations are used to identify the re-
gion feature field together with the region position vector if applicable and the parent index pair,
respectively. A separate position vector is denoted by CE”. To draw analogy with island data struc-
tures in the GSC database the overlap-list data structure is referred to as an overlap-list island or
an OVL-island structure and is denoted by OVLS, while the overlapping node entries in an OVLS are
denoted by OLN® with superscript ¥ indicating a particular fixed size data structure in the hardware

implementation. Overlapping node entries are also referred to as overlap-list nodes for short.
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In the result generation phase the parallel GSC operates on the complete linked island data struc-
tures incorporating both CE"s and CE"s and the island-associated data structures with downpropa-
gated segment information. To differentiate these island data units the structures of the first type are
referred to as region islands (island structures*) and the structures of the second type as labelled
islands (island structures) and are denoted by IS and IS, respectively. To distinguish code

elements with assigned segment features they are denoted as CE* (labelled CEs).

4.2.3 Data-stream model

The substantial constraint for computing performance of the given platform is the throughput of its
external memory channels. That is why the following targets were given priority in the performance

optimisation strategy:

e optimisation of memory channel bandwidth utilisation, i.e. maximisation of the traffic

density;
e general reduction of external memory traffic.

Performance of the GSC processing units strongly depends on data access efficiency. The efficiency
of data accesses is bound to the ability to minimise or to mitigate data latencies in data transactions
between processing units and external storages. These latencies are characterised both by
propagation delays of memory commands and data words inside data paths within an on-chip
system and by intrinsic timings of memory ICs. These data latencies may come up to significant
delays, which could directly influences performance of a system. An efficient solutions for
compensating the latency impact on the system performance can be found in pipelining
computations or in designing a multilevel hierarchical memory subsystem with caching
mechanism*’. The first approach is the best choice for implementing data driven computations,
which the parallel GSC method belongs to. Hence, for attaining maximal performance in the GSC
implementation the following formula should be kept in mind: to achieve peak productivity of a

pipeline a constant and dense data-flow through it needs to be maintained.

Efficiency of a pipelining scheme is strongly dependent on the capability of memory channels for
handling transaction concatenation. Transaction concatenation allows a system to maintain dense
data flows to and from its processing units. This capability depends on the efficiency of data-path
organisation inside communication subsystems on a chip and on the characteristics of the
architecture of external memory devices. Maintaining dense data flow is a special challenge for
SDRAM architectures, for which access to memory cells is only available within an open row of a
memory bank array, while activation and deactivation of a row consume tangible time. Moreover,
the data latencies vary for different memory operation types [69, 131]. This means that fully random
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access to DRAM generally reduces traffic density in memory channels, while sequential® memory

“The phraseme island structure hereafter refers to data structures and can denote any type of data structure associated with a lattice node.

#7Computation pipelining is not opposed to hierarchical memory subsystem design, however, due to well-schedulable data flows the buff-
ering mechanism in pipelined systems is much less complicated.

*To be more precise memory access operations need to be within the same row not necessarily to subsequent locations.
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access together with command concatenation techniques and a rational SDRAM bank policy ensure
maximum bandwidth utilisation. This peculiarity of SDRAM architecture leads to the idea of using
this type of storage as burst-oriented memory, which implies memory traffic scheduling, i.e. ex-
ploiting buffering and prefetching schemes as an intermediate layer in a memory subsystem and
avoiding stochastic memory activity on SDRAM®. ZBT-SRAM architecture is free from these limi-
tations. Although it essentially has some data access latencies, these delays are uniform for all loca-
tions and operation types. Hence, these devices provide real random access to their memory arrays
with perfect transaction concatenation capabilities. The weakness of these memory devises in com-
parison with SDRAM with regard to the GSC is that they have relatively small capacity to accom-
modate all global data of the parallel GSC application. Thus, the questions of proper data allocation,

traffic optimisation and scheduling are of a special importance for the parallel GSC design.

Traffic scheduling is feasible for the GSC due to topological orientation of the method and
regularity in the proposed data organisation. The scheduling task becomes relatively simple
provided that the auxiliary data for the linking, the overlap-list generation, and the downpropagation
processes are stored in on-chip memory close to or inside the correspondent functional blocks,
which removes the irregular traffic from external buses. This is especially important, if several
processing blocks work in parallel, as the traffic tends to become random without a special
synchronisation technique applied. In the case of an application-specific hardware design using a

high-capacity FPGA a flexible on-chip data-storage organisation becomes practicable.

4.2.3.1 Linking

General traffic reduction in the GSC implementation can be attained by sharing data already loaded
on the chip and reducing both the number of transactions and the data volumes for storing

intermediate computation results in external memory.

To realise these two concepts efficiently it is reasonable to process the GSC layers row-wise in
island by island order. Moreover, it is desirable that several adjacent island rows (block of rows) are
processed concurrently, which enables data sharing among neighbours along the x- and y-axes. For
the linking phase this scheme together with compact storage of CEs in ISs (see Figure 12b) allows
the system to avoid read-modify-write operations on subislands /S;, in the external DB, as the link-
ing operation at a layer i does not require modification of region features CE, /" at the underlying
layer i-1, and equally parent relationship data represented by URP;;s for each subisland /;; can be
first gathered from both parental islands /; in an internal HRS buffer before storing it to the DB.

This scheme, in which complete parental information for subislands is generated in a single pass, is
beneficial to implementation of overlap-list generation as well, because together with data of newly
linked regions CE"; parent pointers URP;; can be forwarded directly to overlap-list node processing

elements from the local bufter without the need for intermediate storage in external memory.

“In those systems where random memory access is inevitable the most universal approach to maximise memory throughput is insertion
of caches or buffers built on static memories between processing units and DRAMs. This approach treats DRAMs as a burst-oriented
memory as data from DRAMs are prefetched to SRAM buffers in solid blocks.
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Meanwhile, this processing scheme requires adjacent blocks of island rows to overlap in one island
row. Otherwise, subislands in this border rows cannot be filled in with the parental information of
their second parents located in the adjacent (lower) island rows, which is essential for the direct
generation of overlap-list nodes OLN®.,, (see Figure 14). Thus, the border island rows are linked for
only obtaining the parental information without writing CEs (IS*; and IS”;,) to the GSC database.
These rows will be linked again during processing the next block of island rows. This relinking does
not influence the region result as the linking is a deterministic process provided that the starting
conditions are preserved. The need for the row overlapping generally increases the amount of data
being passed over the external channel, but the specific share of this traffic in the overall generated
data flow significantly decreases with the growth of the number of rows per block. Nonetheless, the
row overlapping approach is still more advantageous with respect to overall traffic volume and
implementation resources compared to the approaches, in which the intermediate results are stored

in external memory.
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Figure 14: Row-wise linking layer processing

Island processing within a row is performed sequentially island by island resulting in a coarse-
grained linking pipeline with data granularity equal to one island structure (OVL®). It is an efficient
processing scheme, which can provide a continuous data stream through a processing unit keeping
utilisation of implementation resources minimal. Island processing inside a row block is synchronis-
ed column-wise. A column of islands is referred to as an island slice (see Figure 14). Ultimately,
this means that row blocks are processed by a sliding window scheme with the window width of
one slice. This scheme allows linking processes in adjacent rows and columns to form their

complete HRS structures at the corresponding overlapping nodes (marked with orange crosses
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at Figure 14) immediately on the chip using minimal local storage. Island processing within a slice
can be performed either by a single linking processor (column serialisation) or by a single-
dimensional array of parallel processors. The latter approach is preferable for upper hierarchical
layers (HL> 1), because the linking method at these layers implies a state machine realisation, which
may take a notable number of clock ticks to complete linking. Moreover linking processes at these
layers operate on large data structures and, thus, implementation of internal data stream switching

within the linking pipeline may become excessively resource demanding.

The architecture of a linking processing unit, which realises the linking pipeline, is shown at
Figure 15. The figure illustrates an implementation model of the hardware linking unit configured

for processing a block of three island rows.
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Figure 15: Linking Unit pipeline

The linking processing unit consists of an overlap-list OVLS; prefetch buffer, a single-dimensional
array of linking processors also referred to as linkers, an array of linked regions CE"; grouped in
islands' IS";s together with a matrix of subislands' 1S”;;s filled with parent relationship URP;, data
forming an active linking zone, two correspondent islands' IS"; and subislands' IS”;; output buffers,
an overlap-list node OLN®., generating block, and an output buffer associated with this block.
Connectivity data of islands /; in OVLSs are shifted from the overlap-list prefetch buffer into the
linkers for generating regions CE"; and assigning parent pointers URP,, to correspondent subregions
CE":.;. When linking is finished in all linking processors the contents of the active linking zone are
shifted to the correspondent IS”; and IS”;; output buffers, so that some 1S”;;s still remain inside the
active linking zone to be supplemented with parent pointers from the next island slice. The data
shifted out from the active zone to the output buffers can be offloaded to the GSC DB. While the

data are streamed to the external memory, the overlap-list node generating block analyses the data
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in overlapping node positions (marked with orange crosses at Figure 15) in the underlying subisland
layer and region data of the correspondent parental islands to build up overlap-list nodes OLN®;., for
islands of the next hierarchical level. These data are placed to the correspondent output buffer and
streamed out from this buffer to external memory. It is practical to process all overlapping nodes in
the overlap-list node generating block in parallel®® by several OLN generators for all OLN®..;s to be
complete before all correspondent IS”;s and 1S”; ;s have been offloaded. This parallel scheme also

minimises resource utilisation for routing the data within the block.

Although the mutual coupling of data streams to and from linking processors and OLN generators is
relatively loose, it is reasonable to organise prefetching and oftloading data using synchronised
buffers to improve the scheduling of the traffic. To simplify the memory access patterns the island
layers are laid out column-wise in external memory so that the island structures can be loaded and

stored from/to sequential locations in the physical memory.

Pipeline architecture can be characterised by the maximum intensity of data flow attainable through
each stage of a pipeline separately and the intensity of its incoming and outgoing data traffic as the
outer constraints for a processing unit in general. This characterisation helps to identify critical
sections of a design and to concentrate on particular problems of their implementation to improve
the overall pipeline performance. The maximum throughput of the linking unit with the proposed
architecture equipped with a single multiplexed external channel can be achieved, if the maximum
processing time in the linking processor array, as the slowest processing stage, is less than the
aggregate time needed for filling up the prefetch buffer and for emptying all the output buffers. If
the unit has several memory channels for different up- and downstreams, the maximum throughput
can be achieved if all stages of the pipeline are balanced to be able to maintain maximum possible

data flow through the slowest channel.

One overlap-list structure OLV*; (12 memory words) in the upstream generates one island structure
of region features IS”; (one or two memory words depending on the HL index), four island structur-
es of parental data 1S”;; (1x4 memory words), and three overlap-list nodes OLN®..; (1x3 memory
words) in the downstreams of the linking unit. Assuming that the OLV"; layer array is not replicated
in external storage, i.e. the upstream can be sourced from only one memory bank in the given archi-
tecture, the upper throughput limit for the linking unit is the throughput of the channel canalising
the OLVS; upstream as the total data volume generated by processing one OLV?; is less than the data
volume of a OLVS; to be uploaded. All the offloading data streams can be reasonably directed
through a single downstream channel thus. Considering the throughput of the linking stage it should
be noticed that the time of linking is a stochastic value that generally depends on image contents.
For the linking stage not to become a bottleneck in the pipeline the linking latency can be hidden in
the parallel linker scheme by increasing the number of rows in the row block, thus raising the time
needed for filling the prefetch buffer. The number of rows for the balanced configuration of the

linking pipeline can be defined by profiling the linking unit with images of different scene types.

**Provided that the whole linking unit works in a single clock domain.
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4.2.3.2 Coding

Coding is a particular case of linking. Thus, it can inherit the general principle of computation
organisation realised in the linking implementation to improve performance and optimise resource
utilisation. Coding at the lowest hierarchical level differs from linking at all upper levels in the way
it establishes relationship between the basic elements of the layers. During coding this relationship
is established based on relative spatial location of pixels in the image. Technically to perform
coding at the pixel level initial islands need to be extracted from the image and all predefined
connections within the islands should be analysed for similarity for elementary regions to be form-
ed. After initial regions are formed the same spatial relationship is used for establishing connections
between newly formed regions. The procedure for overlapping detection at this level is principally
analogous to the procedure at the higher levels except that pixels in the image are treated both as
overlapping nodes and as common subregions (i.e. subislands of one subregion). Figure 16 shows
the structural scheme of a pipeline processing unit that realises coding. The main differences in
structure of the coding unit compared to the linking hardware pipeline are the pixel-buffer front end

and absence of the parent-pointer output buffer.
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Figure 16: Coding Unit pipeline

For extraction of pixel islands memory words of adjacent pixel lines are loaded to the pixel prefetch
buffer. As one memory word of a pixel image contains several pixels, the pixel prefetch buffer rep-
resents a rectangular fragment of the image. The number of pixel lines covered by the buffer should
be sufficient for extracting an integral number of pixel island rows. When fully filled, this buffer is
shifted into the pixel island extraction zone, where the islands’ pixels are selected and forwarded to
the coding processor array. Coding the pixel layer is performed in blocks of pixel island rows in the

same slice-wise manner as in the general linking scheme. Realised in the front-end of the coding
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unit such data organisation allows generating a dense flow of pixel islands fed to the array of coders

working in parallel.

The results of coding are written to shared local storage realised as an array of coded regions (both
CE"y and CE")) grouped by islands IS") and a two-dimensional array of URP, pairs in pixel
positions. Both are shifted out to the output buffers upon island slice completion. In contrast to the
general linking implementation the coding unit does not generate a stream of parent-pointer data for
the underlying hierarchical layer, as there exist no true subregions, so the vertical relationship have
to be coded in pixel regions themselves therefore. The generation of entries for overlap lists at this
layer is a trivial operation, as two regions of adjacent islands can overlap only in a single pixel.
Thus, the coding unit produces only two outgoing streams of coded region islands ISy and of

overlap-list entries OLN®;.

Processing one island in this architecture generates an upstream of 0.25 memory words of pixel data
and a downstream of 1+3 memory words, one for the coded islands IS”, and three for the overlap-
list nodes OLN®;. As it can be seen the potential bottleneck of this pipeline is the back end of the
coding unit, hence it can be reasonable to distribute the output traffic to two different external
channels separately for the IS") and the OLN®; data elements. It can also be sensible to route pixel
data and coded island structures through a single multiplexed channel, as it should not shift the
balance in the coding pipeline. Considering the throughput of the coder stage it should be noticed
that structural parallel implementation of the coder can guarantee deterministic coding time, which

can be down to one clock per island minimum as it is discussed later in Section 4.2.5.1.

4.2.3.3 Downpropagation and result image generation

Processing island layers during result generation by downpropagation is performed in a similar
pipeline scheme to that realised in the linking processing pipeline. Adjacent island rows of labelled
island layers and the correspondent rows of underlying subislands as the targets for segment
features downpropagation are grouped in blocks for processing. The blocks have special
arrangement of the rows of two superimposed layers, which guarantees that complete parental label
information for all subislands IS*; to be labelled in a block can be found in the labelled islands
IS, of the upper layer covered by this block. In terms of the topology of the GSC a block consists
of an even number » of subisland /; rows, covered by m=n/2+1 rows of labelled islands /;:; these
rows of superimposed islands are disposed towards each other in the way that the first row of
subislands /; in the block is a middle line®' for the islands /., in the first row of labelled islands 7.,.
This means that to cover a layer i completely adjacent blocks must overlap in one row of labelled
islands 7;.; (Figure 17).

Within the block island processing is performed in a sliding window scheme, so that subregions to
be labelled in IS, can share the label data of parental regions in adjacent IS“.; using minimal local

storage resources. The processing window slides slice-synchronous in both superimposed layers.

*' The middle line here means the line connecting the central nodes of the labelled islands in one row.
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One island slice corresponds to one column of labelled islands 7S, and two coherent columns of

subislands /S; in the underlying layer.
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Figure 17: Row-wise downpropagation layer processing

The architecture of a processing unit that realises the proposed computation scheme is shown at
Figure 18. It represents a downpropagation unit pipeline configured for labelling subregions in a
block of six subisland rows. The downpropagation unit consists of two prefetch buffers for
uploading IS“%; and IS, island structures, one matrix of IS, structures for parental information
lookup, a twinned matrix of subisland structures holding 7S*; and IS*; for label downpropagation, a
single-dimensional array of labelling processors, and an output buffer for offloading labelled
subislands IS%. The data are shifted through this pipeline slice-wise realising the sliding window
scheme for processing island blocks. The single-dimensional organisation of synchronous parallel
processors is justified by the same performance and resource consumption reasons as those deduced

for the linking unit design.

It is convenient to consider one labelled island and the group of the underlying subislands having
this labelled islands as the first parent (marked with the same colour at Figure 18) as the basic data
aggregate for the downpropagation processing unit. This aggregate is associated with a single label-
ling processor. Thus, the density of the upstream generated for processing one such group is
3x(m+1)/m+12 (HL>2), 3x(m+1)/m+8 (HL=2), or 2x(m+1)/m+4 (HL=1) memory words depend-
ing on the index of the hierarchical layer HL under processing. The first term in the sums indicates
the contribution® of a labelled island 7S";.; and the second figure is the number of memory words
for all subislands IS in the group. It is important to note that the upstreams of IS“;s and

correspondent /S5 can be routed through two different channels as adjacent layers of the DB can

2The fraction that modifies the sizes of the labelled island structures /S" in the formulas indicated the contribution of a labelled parental
island in the border row of the island block.
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be placed in different memory banks; thus, the upstream throughput can be limited by only the
subislands' channel. Equally, the traffic density of the IS*; downstream for the downpropagation unit
is 12 (HL>2), 8 (HL=2), or 4 (HL=1) memory words per group™.
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Figure 18: Downpropagation Unit pipeline

The region labelling by one labelling processor within one subisland group can be performed either
fully parallel for all regions and all subislands or in a sequential manner. In the case of sequential
region-wise processing labelling a single subisland requires 12 (HL>2), 8 (HL=2), or 4 (HL=1)
clocks provided both parental islands are directly available to the processor. Therefore, for the fully
sequential labelling processor (both subislands and their subCEs processed in series) not to become
a bottleneck in the downpropagation unit pipeline, the unit should be configured for processing at
least eight subisland rows in a block to hide the processing latency, provided that the upstreams and
the downstream are decoupled and do not share the same bandwidth. If the subislands under
processing should be modified in the same DB storage locations, i.e. the channel bandwidth of a
memory bank, in which the current subisland layer is stored, is shared by the upward IS*; and the
downward IS"; streams, the number of rows in a pack can be halved. Alternatively, to eliminate the
problem of the processing latency the labelling processors can be configured to operate on all
subislands in the group in parallel while keeping the sequential processing organisation of their
subregions intact. In this case the resource consumption for the labelling processor implementation
increases approximately linearly with the increment of the number of processing elements for
sequential subisland labelling within the labelling processor. Full parallelisation of subregion
labelling inside these processing elements is not practical as it does not improve the throughput of
the complete unit, yet requiring significantly more hardware resources for realising full data

connectivity and implementing replicated computations.

**During processing the lowest hierarchical level segment labels can be directly assigned to the image pixels with no need for labelling
ISys in the GSC DB. The last figure is computed for the generation of the 32-bit label image and accidentally coincides with the number
of memory words hypothetically to be overwritten in the GSC DB in the case of the IS, level modification.
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The assignment of unique labels to newly detected tree roots is a special concern in the parallel pro-
cessing scheme. Issuing a key can be performed either under the scheme of centralised distribution
of the label numbers, which leads to the hardware complication and the shared resource contention,
or by assigning an own unique label number space for each processor, which leads to the growth of
the memory size for allocating the segment key table. The latter approach is more attractive for the

parallel GSC implementation on the FPGA due to sufficient storage available in SDRAM banks.
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Figure 19: Image Generator scheme

The label and the feature image generation is performed after labelling regions at the lowest
hierarchical level without storing the updated island structures IS") to external memory. To perform
image generation an island slice is mapped to the arrays of label or feature pixels. When the arrays
are fully inhabited, the data are shifted out gradually to output buffers and then streamed out packed
in memory words to external storage after the output buffers are complete (Figure 19). It is impor-
tant to note that the pixel blocks generated by such scheme overlap in one pixel line, which is shar-
ed by adjacent island blocks. That is why the upper pixel line should be loaded to the image genera-
tor for updating the pixels. This can be done by storing and loading the line to and from external
memory or by organising a ring buffer (queue) of memory words for storing this line on the chip.

The last solution is preferable for performance reasons as it simplifies and reduces external traffic.

4.2.3.4 Performance improvement strategies

Considering the particular organisation of the processing pipelines and the data-stream models
deduced from it, the GSC implementation can be quantitatively assessed for performance. In the
described system architecture the application performance will directly depend on the amount of
data moved over external channels. Thus, the performance estimations can be based on the model of
the data traffic generated by the parallel GSC, taking in account different bandwidth utilisation
ratios of the external channels. This model is referred to as the Parallel GSC Traffic Model and is

adduced in Appendix A.3°*%. The most optimistic scenario assumed in the traffic model of a data-

**The Traffic Model does not take into account the overhead of the traffic introduced by the overlapping of row blocks as it depends on
particular configurations of the processing units (the number of rows in a row block).

5 The Traffic Model does not take into consideration the traffic to/from the label key table as it is image dependent and can be assessed
only by profiling the target image.
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driven system for the model simplification is that the external traffic is perfectly scheduled and
concatenated and thus any processing unit in the system can receive or send a portion of data on
every clock tick. The performance rate assessed under this assumption corresponds to the maximal
possible performance of the system and can be treated as a measure of efficiency for data traffic

organisation in a particular system implementation.

The analysis of the Traffic Model of the parallel GSC shows that the major bulk of the traffic
volume is generated while processing the lowest hierarchical layers. Therefore, it is reasonable to
focus on revealing the opportunities for traffic optimisation at these layers to improve the overall
application performance. A substantial effect of such optimisation can be observed when the coding
stage of the GSC LP is integrated with the subsequent linking stage, i.e. the traffic between these
two stages does not leave the die. The effect of this integration can be seen at Figure 20. The figure
shows the number of memory words transferred during the linking phase at each HL to and from
external storage for a separate (navy bars) and a joint (orange bars) processing of the first two
layers. This layer processing integration results in a reduction of 3.88 to 3.98 times of the total
external traffic in the linking phase. The redundant data volume in the separate processing approach
is explained by the need for load-modify-store operations while updating the parent pointers CE”) in
the IS, structures and by the need for an intermediate load-store operation for passing the
connectivity data between the two lowest layers. The integration of the coding and the linking
pipelines is feasible for hardware implementation as the coder array does not generate a large
amount of connectivity data per island /; for the next linking stage® and the coded island structures
1S, are relatively compact to be temporarily stored in the on-chip buffers for subsequent URP;s

assignment in the linker array.

memory words
28000000
® 1st and 2nd separately

= 1stand 2nd single pass
24000000

20000 000
16 000 000
12000 000

8000 000

4000 000
I n level number
0 —_
o 1 2 3

4 5 6 7 8 9 10 11 12

Figure 20: Memory traffic per linking level (in memory words)

The structural scheme of a processing unit for the joint processing is shown at Figure 21. This unit
is called an Initial Linker. The initial linker pipeline is effectively a concatenation on the coding and
linking units. After initial coding the region connectivity information is forwarded directly to the

linking processor array and the coded island structures are shifted into the linker’s update buffer for

¢ Each overlapping node is represented by a single overlapping region pair only.
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parent-pointer assignment®’. A prerequisite for configuring the initial linking unit is that the number
of pixel lines in the front-end buffers should be sufficient to extract an integral number of
macroisland /; rows for the linking stage. The initial linking unit shown at the figure is configured

for coding five pixel island rows and thus for linking two macroisland rows of the next HL.
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Figure 21: Initial Linker Unit structural scheme

Although linking at different layers is performed based on the same principles, the overlap lists for
the secondary lowest and the upper layers differ in complexity (one against three ORPs per
overlapping node, respectively). Thus, the linking processors in the initial and general linking units
can have different implementation for performance and resource optimisation reasons. Therefore,
the initial linker can be realised either as an independent hardware unit with specialised linking
processors or as an extension of the general linking unit with the coding stage integrated as an add-
on with the generic linking pipeline. Thus, in the latter case the Extended Linking Unit need to have
two front ends — one data path for pixel data prefetching and coding and one for overlap-list

structures loading.

As regards the application performance, the first approach is preferable for the reason that each
separate linking unit can be tuned individually for the optimal pipeline throughput. This primarily
implies the individual configuration of the set of external channels that conforms to the demands on
external traffic organisation of each linking unit type and the adjustment of the sizes of the internal
processor arrays for balancing the stages of the pipelines — the processing of a single overlap list is
performed generally faster on the secondary lowest layer than on higher layers due to the difference
in the number of ORPs in the overlap lists. The second approach allows hardware reuse and saves

the resources of the die, although it complicates the data-flow switching in the front end of the

In fact CE"ss are not affected by the linkers, so the CE"ys are just shifted through the pipeline of the unit and are glued eventually to-
gethher with their CE”, counterparts in the output buffer.
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Extended Linking Unit. Meanwhile, increasing complexity of the unit can be critical for imple-

mentation on a particular hardware platform as it endangers observance of the timing constraints™.

Allowing for the gain obtained by applying the joint processing approach in the linking phase in the
GSC model the system generates the traffic indicated by the layer profile at Figure 22. The graph

reflects the traffic distribution over the linking and the result generation phases.
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Figure 22: Accumulated traffic per GSC level (in memory words for 4096° image resolution)

As noted above, the utmost performance of each processing unit depends on the configuration of the
external channels. In particular customising the units for operating in a single channel configuration
makes the processing time of the units dependent on the total traffic volume generated by them.
Moreover, channel multiplexing may negatively influence the channel bandwidth utilisation in
cases of fragmented memory access to the same SDRAM banks. At the same time, data-flow sepa-
ration allows eliminating the contribution of the traffic in the alternative parallel channels to the
total data forwarding time and thus to the overall processing time. Hence, the upper performance
limit for a processing unit is defined by the slowest channel®. The effect from the data-stream
parallelisation for the GSC can be seen in Table 2 and Table 3 built on the basis of the Traffic
Model. The tables reflect the change in the application performance in different GSC phases
depending on external channel configurations of the processing units. The tables provide the totals
of only the memory accesses that contribute to the processing time in a given configuration (figures
in brackets estimate the processing time for the external channels with a sample rate of a 0.1 mem-
ory word per 1 ns or I00MHz data sampling).

Table 2 shows the data traffic of the total linking phase for different image sizes. The single
channel configuration is considered to be the reference (LS — Linking, Single channel).
In the parallel channel configuration type-A (LA) the upward and the downward data streams are

separated into two channels. In this case the traffic bottleneck of the general linking unit is the

*Extended Linking Unit was not implemented on the given Virtex II Pro FPGA due to this reason.
**The slowest does not mean a difference in bandwidths of channels but reflects the specific volume of data that should be moved through
one channel comparing to another.
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overlap-list input channel, whereas the output channel can be totally neglected in the performance
estimations due to its lower traffic density. However, it is important to note that the output stream of
OLN®..;s and the input stream of OVLSs need to have different target and source memory banks.
Otherwise, both data streams share the same physical channel and the OVLS; traffic adds to the pro-
cessing time. Thus, overlap lists of adjacent layers should be stored in different memory banks. On
the contrary, for the initial linker in this configuration the bottleneck is the output channel, which
multiplexes the traffic of IS, IS”;, and OLN®, structures. Overall, this parallel configuration gives

a 25% reduction in the processing time of the linking phase compared to the basic configuration.

Table 2: Linking Phase traffic for performance estimation (in memory words)

4096’ 2048’ 1024° 512’ 256°
16840940 4226257 1064630 270235 69 632
Single Channel Configuration LS (168.41ms)| (42.26ms)| (10.65ms) (2.70ms)|  (0.70ms)
12 626 044| 3167 338 797 278 202 066 51910
Parallel Channel Configuration LA (126.26ms)| (31.67ms) (7.97ms) (2.02ms)|  (0.52ms)
8417391| 2111581 531537 134 725 34617
Parallel Channel Configuration LB (84.17ms)| (21.12ms) (5.32ms) (1.35ms)|  (0.35ms)

The parallel channel configuration type-B (LB) realises the idea of minimising the impact of the
output traffic of the initial linker on the overall performance. It splits the output traffic of this
processing unit into two downward streams with similar data-flow intensity and routes them into
two output channels: IS, structures via one and IS*; and OLN®, structures via the other channel. In
this case only the coded pixel islands' data are considered in the performance model. The
parallelisation of the downstreams for the linking at upper levels does not have an impact on the
performance but can be realised as a compromise solution for the extended linking unit. Overall, the

LB configuration may give another 25% increase in the overall performance for the linking phase.

Table 3: Result Generation Phase traffic for performance estimation (in memory words)

4096’ 2048’ 1024° 512° 256°
17860 693| 4473932| 1122883 282 938 71857
Single Channel Configuration PS (178.61ms)| (44.74ms)| (11.23ms) (2.83ms)| (0.72ms)
10510393 2633779 661 549 166 951 42 529
Parallel Channel Configuration PA (105.10ms) | (26.34ms) (6.62ms) (1.67ms)|  (0.43ms)
7354397| 1842202 462 359 116 500 29 585
Parallel Channel Configuration PB (73.54ms)| (18.42ms) (4.62ms) (1.17ms)|  (0.30ms)

Table 3 shows the traffic generated in the result generation phase relevant to the GSC application
performance for different configurations of the downpropagation unit channels. The maximal
performance of the downpropagation unit is achievable, if all three data streams are decoupled: two
separate input channels for the /S%;.; and the IS*; upstreams and one output channel for the IS

downstream. It should be noted that, if downpropagation is realised by updating island structures in
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the GSC DB, i.e. the source of the IS, upstream and the target of the IS*; downstream are in the
same memory location, both streams will use the same physical channel of a memory bank, which
doubles the counted traffic. Thus, it is reasonable to use a dedicated data structure for the
intermediate storage of a labelled layer and to allocate this data structure in a different memory
bank other than the source bank for the IS; upstream. Moreover, two adjacent layers should have
different allocations for their intermediate storage to prevent data inconsistency by overwriting due
to the larger dimensions of the lower layer. Additionally, these data structures are recommended to
be placed in different memory banks, as the upstreams of IS", structures and the downstreams of
IS%; structures have to share the same physical bank channel otherwise. This situation is equivalent
to the configuration in which all sources and targets of the same layer are placed in different
memory banks, but the downpropagation processing unit has only a single input channel for both
upstreams. The traffic model for this situation is referred to as the parallel channel configuration
type-A (PA). The configuration with fully decoupled streams is described by the parallel channel
configuration type-B (PB) model. This model takes into account the traffic of only a single stream
of subislands (eqaully IS%; or IS%) per layer for the performance estimation as the most dense data-

flow for the configuration.

As it can be seen in the table, the realisation of the PA configuration can increase the downpropaga-
tion performance by 41%, while the introduction of the PB configuration may save up to 59% of

computing time for this GSC phase in comparison with the single channel configuration (PS).

Processing images of resolutions higher than 2048 pixels generally requires change in data
organisation for the segment labels' downpropagation, as the feature and the label data together do
not fit into the conventional island data-structure format. In this case the allocation for one IS*-
structure in the external memory can be extended by one extra memory word, or alternatively, the

segment features can be stored and looked up in the segment key table.

The first approach benefits from the plain traffic scheduling scheme, but loses in the constant stor-
age and traffic overhead. The traffic increase is 16%, 13%, and 19% for the PS, PA, and PB config-

urations, respectively.

The second approach should lead to the problem of scheduling the traffic of the segment keys as the
label features cannot be retrieved from the segment key table until labelled parental islands have
been loaded to the downpropagation unit. However, the relative weight of the key table traffic in the
overall traffic is highly dependent on the image nature (number of segments and fractality).
Moreover, this traffic can be seriously reduced by exploiting the spatial locality of the image seg-
ments. It can be beneficial to cache the segment features of the parental regions in the downpropa-
gation unit, as they will be reused likely for the region labelling in the neighbouring islands while
the processing window slides over a layer. To decrease the common resource access contention and
raise the bandwidth efficiency of the data channel to the key table, it is reasonable to implement the
two level caching scheme: the first-level feature caches are to be placed in the labelling processors,

and the second-level cache is to be shared by all labelling processors in the downpropagation unit.
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In this segment key table scheme the downpropagation unit requires two additional up- and
downstreams for key-table entries to the shared data resource in an external storage. The up- and
downstreams can share one common external channel of the downpropagation unit, as both streams
are eventually routed through the same physical channel of a memory bank. The key table traffic
should preferably not interfere with other regular streams to the SDRAM banks as the access
operations to the key table are completely random and thus may seriously affect the linear access
pattern for the island structures. If this decoupling is not feasible, a special attention should be paid

to the traffic planning of a multiplexed channel to provide slots for the access requests of each kind.

4.2.4 Application memory space mapping

Considering the results of the data-dependency analysis of the GSC method in Section 4.1.3 and the
data-flow intensity estimation in the data stream model in Section 4.2.3, the GSC global-memory
data structures are mapped to the onboard memory in a way that allows minimum data-flow
interference. To avoid physical channel multiplexing, the data stream distribution across the
memory banks in the hardware implementation is performed dynamically depending on the current
hierarchical level index and the image resolution. In general the SRAM devices are used as external
buffers for temporary storage of data structures for data exchange between the GSC hierarchical
levels, while the DRAM, having a higher storage capacity, is used for application lifetime data
structures such as the GSC DB and the segment key table (if applicable).

The initial pixel image is temporarily stored in one of the two static memory banks (base
configuration) or in one of the dynamic memory banks (for resolutions higher than 2048%) and is
overwritten with other temporary data by the running GSC application®. The GSC DB is distributed
between the different DRAM banks so that the data of two neighbouring hierarchical layers are
always located in different DRAM devices and the IS, layer is always stored in the opposite bank
to the DRAM bank containing the initial image if the image is loaded to DRAM. Temporary OVL®
arrays are placed in the SRAM devices inside two memory allocations made for data of different
hierarchical layers. Two OVLS arrays of two adjacent hierarchical layers are always placed to the
opposite SRAM banks®'. The temporary OVLS arrays are constantly overwritten by OVLS arrays of
higher hierarchical levels. In the base configuration the OVLS array generated by the initial linker is
always placed in the opposite SRAM bank to the one used for the initial image storage. In the case
of the higher resolution images the OVL® arrays of lower hierarchical levels are placed in DRAM.
The OVLS, array is always placed in the same DRAM bank in which the initial image is located.

During the downpropagation IS" arrays are stored in SRAM. Similar to OVL? arrays IS* arrays of
two adjacent hierarchical levels are placed in opposite memory banks and are overwritten

subsequently. For the higher resolution images the arrays of IS"s are stored back to the GSC DB

%The singularity correction is found not practical for parallel implementation and thus is performed as a post-processing stage of the seg-
mentation, while the pixel splitting is performed in a simplified scheme. Thus the image does not need to be longer retained in memory.

' The OVL®, layer for pixel images of 2048” and higher does not fit into a single SRAM bank in the current device configuration. For this
reason the total SRAM address space is distributed unequally between the two overlap-list layers' allocations — 1.5 SRAM bank are re-
served for the one and 0.5 SRAM bank for the other OVL® layer buffer.
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overwriting the original unlabelled islands. The segment key table is placed in the DRAM bank that
is opposite to the bank that contains the IS, layer of the GSC DB for the current resolution. Result

images are always stored in DRAM in the same bank together with the segment key table.

The above data allocation scheme allows a complete separation of all data streams into different

physical memory channels for image resolutions up to 20482,

Because of the dynamic bank switching the current addresses of the initial and the result images in
the board address space are made visible in the application register set of the device. Thus, the pre-

cise manipulation of the input and the output data is delegated to the client software at the host side.

4.2.5 Architectural executable model

The data-stream model is implemented as the further refinement of the functional model in several
steps. Firstly, the functionality of the GSC executable model referred to in Section 4.1.5 is partition-
ed into the architectural units described above to build a transaction level model (GSC TLM) to
analyse the interaction of the architectural components in dynamics. Secondly, the coding, the link-
ing, and the downpropagation methods discussed in Section 4.1.3 are timed (cycle accurate) to
gather statistics on the execution latencies and to analyse the contributory operational features by
profiling the system with specific data sets. These data can be used to infer an optimal configuration
of the processing units, i.e. the number of the parallel processors to balance the stages of the pipe-
lines. To build the timed models the precise computing algorithms are mapped to a number of com-
putation steps (time slots) with each step matching an estimated computing power allocation that is
presumably realisable in one clock cycle on the target hardware. Finally, the GSC TLM is supple-
mented with the transactors between the TL core of the model and the bus cycle accurate models of
the external memory devices® to exercise the system in the precise technological constraints of the
hardware platform and in particular to test the influence of different channel configurations on the
channel bandwidth utilisation. The results of the timed simulation of the GSC executable model are
discussed in the subsections below, and the impact of the hardware platform on the application
performance are discussed in Section 4.3.4, where the results of the simulation of the GSC TLM

refined by introducing the timed interface model of the communication subsystem are reported.

4.2.5.1 Coding algorithm

The functional analysis showed that the impact on the segmentation result quality of the linking at
the lowest hierarchical level HL(0) by different sequential and parallel structural methods is difficult
to assess objectively, and thus an indisputable favourite cannot be distinguished among the
approaches. At the same time a manual graph colouring test on a group of people showed that the
subjective human perception for the corner cases of hexagonal graph colouring differs significantly.

Besides, the difference in the final segmentation results of different linking methods used for coding

2 A preimplemented DDR SDRAM controller core is used in the on-chip system. For this reason one type of BFM (bus functional model)
transactors interfaces a gate model of the core and not the DDR SDRAM bus directly.
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initial region is generally compensated by the global-view nature of the hierarchical algorithm.
Thus, in choosing an appropriate algorithm for coding the focus is set to the performance and the
resource efficiency of the coding method. Parallel structural methods applied to the pixel sets attract
by their potential for inexpensive parallelisation and pipelining, which guaranties a short and strictly

predictable processing time. Hence, a parallel structural method is preferred for the coding stage.

a) region growth each step in all b) complete set of basic subgraphs
directions within one growth step from each seed

c, d, e, f) minimal hexagonal graph coverage by basic subgraphs
(indexed from left to right)

Figure 23: Hexagonal graph coverage for parallel structural coding

The coding is based on the concurrent growth® of regions from different seeds (potentially seven).
Obviously, the combinatorial functions for encoding all possible region subgraphs associated with
each seed are rather complex to be realised in one clocking slot due to a large number of partial
sums for computing the region averages. Thus, the coding is split into a number of time steps. Each
step realises concurrent single-edge distance growth of all regions in all possible directions from all
current (included in the previous step) vertexes of the regions’ subgraphs (Figure 23a). Since the
inclusion depends exclusively on the feature distance of adjacent vertexes, all vertex connections in
the graph can be established before the growth starts. Defining the subgraphs of all the vertixes
considered at the first inclusion step as basic subgraphs (Figure 23b) and the regions built in this
step as basic regions, the further linking can be interpreted as stepwise merging of the basic
regions, subject to common vertex detection. The hexagonal graph is excessively covered with the
basic subgraphs, as seen at Figure 23b. The minimum number of noncyclic basic subgraphs having
no common edges is four; all possible combinations are shown at Figure 23c-f. The preferable vari-
ant for implementing the coding is the one in which the number of edges in all basic subgraphs is

three (Figure 23c), which is justified by the following rationales focused on the hardware resources:
a) Avoiding common edges in basic subgraphs eliminates duplication/sharing of the hardware for
evaluating the threshold condition in the case of a parallel processing of the basic subgraphs.

b) The need for reducing the number of basic subgraphs is tied to the fact of existence of the

maximum possible number of unique basic regions and to the problem of the mapping of coded

%The term growth does not imply here a time-ordered sequence of computing steps but relates to data propagation in a data-dependency
tree of a combinatorial function that describes the logic of subgraph vertex inclusion.
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regions to some fixed hardware resources. As this maximum number is three, all initial seeds can
eventually produce three unique regions at maximum, all others being either duplicate or empty.
The complexity of the task of selecting these unique regions increases with the total of region
candidates. This leads either to complicating the priority encoding combinatorial scheme for parallel
unique region detection or to a higher number of cycles for sorting the candidate region list. At the
same time the four noncyclic subgraphs are the minimum vertex cover of the graph that guarantees

that no potential result region is omitted at the coding stage.

¢) An optimal edge distribution among the basic subgraphs minimises resource utilisation for
computing region averages in two ways. Firstly, the edge distribution influences the total number of
partial sums needed for the total island coding, provided all four basic regions are formed in parallel
(28, 32, 42, 58 partial sums for configuration c, d, e, and frespectively). Secondly, even if the basic
regions are computed in series reusing the same hardware, the maximum number of edges across all
basic subgraphs significantly influences the complexity of the routine for the partial sum selection
or the complexity of a combinatorial selector scheme in the case of parallel partial sums opting (7,

15, 29, 49 partial sums for the largest subgraphs in configuration c, d, e, and frespectively).

The method of parallel structural coding is realised by two timed algorithms for hardware imple-
mentation. The first represents a coding pipeline with the initial data latency of five clocks and the
subsequent output rate of one coded island per clock (the pipelined coder). The first stage realises
data loading and does not perform any computations. At the second stage all basic regions are form-
ed in parallel generating pixel position data and the averages for all basic regions. At the third stage
each basic region is compared against all the others to detect common pixel positions and is merged
with the respective regions. At the fourth stage the merging repeats to join the basic regions not im-
mediately overlapped but having common basic regions in between. The total averages for all four
resulted regions are computed at this stage as well. The last stage is dedicated to forming a special
Region-to-Position Export Table (region export table) for the subsequent linking process. The third
and the fourth stages of the pipeline can be merged together, or alternatively, the computation

burden can be redistributed between them, subject to the hardware implementation constraints.

The second algorithm represents a coder implementation with reuse of hardware resources (/e
sequential coder). It realises a two stage pipeline, each stage of which is a state machine that
processes the basic regions one after another. At the first stage all four basic regions are coded in
series and the resulted data representing a whole pixel island are passed to the next stage of the
pipeline. At the next stage each basic region is merged with the others in parallel at every clock and
the region export table is formed at the last clock. The initial data latency of this implementation is

10 clocks and the subsequent data output rate is five clocks.

From the performance viewpoint, none of these two coding implementations have any significant
influence to the total throughput of the initial linking pipeline. In the case of the first implementa-
tion the grounds for this are evident — the pipelined coding of this type can provide a constant flow

of coded islands with the maximal data rate. The second implementation can potentially cause stalls
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in the total pipeline. The processing at the next linking stage of the initial linking unit can complete
within five clocks (see Section 4.2.5.5), and for oversegmented images with poorly populated over-
lap lists the occurrence of such cases can be considerably high. However, the simulation of the
architectural executable model with realistic data sets indicated that the increase of the processing
time for a whole image does not exceed 3% in comparison to the pipelined coder. This is explained
by the fact that the latency of the next linking stage is defined by the maximal processing time
across the array of linking processors, which entails smoothing effect. Introduction of the timed
memory the TL model relaxes the coupling of the stages inside the pipeline even more — the output
stage becomes slower than the coding stage (see Section 4.3.4 for the modelling results for external

channels), which makes the coding stage insensitive for the throughput of the initial linker pipeline.

The number of regions formed with the parallel structural coding approach is equal to the number of
basic regions®. Hence, at least one of the resulted regions is duplicated (or empty). This in principle
implies that the duplicated regions should be eliminated both to reduce the storage space in external
memory and to avoid region recomputation at the result generation phase. However, the excessive
regions are left in the coded island structures to be filtered later at the stage of overlap-list entity
creation as well as in the result generation phase. This is done without the danger of irrationally
using the external memory in the particular hardware implementation as the hardware data format
for the lowest level islands can accommodate up to four coded regions. The ambiguity problem in
linking pixel regions is resolved by using a priority scheme to assign a region index to a pixel

position when creating Region-to-Position Export Tables.

The Region-to-Position Export Tables generated by the coding processors are data structures intro-
duced to the initial linker scheme for instantaneous exchange of connectivity data within the groups
of seven neighboured islands /, constituting macroislands /, for linking at the subsequent linking
stage. Each export table consists of six entries that correspond to the outer pixel positions in an /.
Every entry or a region descriptor of these export tables contains information about the region
which the position belongs to. It includes a validity flag indicating that the position is covered by a

region in the island, the index of this region within the island, and the average feature of the region.

4.2.5.2 Linking algorithm

Due to higher complexity of the elements in a lattice of higher hierarchical levels the parallel
structural approach for region growing is substituted with a potentially less resource-demanding
sequential linking based on traversing Macroisland Overlap Structures. The traversing is performed
using the topology knowledge of overlapping regions within a macroisland, which drastically hasten
sequential linking.

The Macroisland Overlap Structure used in the initial linking pipeline consists of seven Region-to-
Position Import Tables (import tables), which correspond to seven coded islands within a macro-

island (Figure 24). The import tables are used in combination with the correspondent coded island

*The basic region is a structural unit associated with a basic subgraph and thus can be empty.
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structures to provide complete information on the regions and their connectivity inside a macro-
island. The import tables are counterparts to the Region-to-Position Export Tables. Having the same
structure they represent the regions of the neighbour islands occupying the correspondent outer
positions of an island. The region data is taken from the correspondent export tables constituting a
macroisland (region descriptors are exported at the overlapping points of a macroisland to the
import table structures). The validity flags of the region descriptors within an import table form an
overlap position vector analogous to the position vector in the CE structure of coded islands (CE").
This vector representation allows a simple mechanism for detecting region overlaps by trivial vector
operation on the overlap position vectors and the position vectors of CEs of correspondent islands.
Each entry in the import table of an island is associated with the index of a neighbouring island
within the macroisland and the index of the correspondent overlap position, i.e. pixel (or generally,
lattice node) position, inside this neighbouring island. All the indexes together form a transition
lookup table of a macroisland to provide a navigation scheme for traversing. This transition lookup
table together with the position vectors and region indexes from the region descriptors provide a
complete connectivity graph of the regions in a macroisland enabling the topology aware linking.

Coded Island

Region-to-Position
Import Structure

Island Position Transition Graph

Position Associated Region Export
Element (validity, feature, region #)

Coded Island
Region-to-Position
Export Structure

Topology-Aware Region Overlap

Structure
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ol1]1]olo]o]0 3 2 N / TR# - transition region number,
- TI# - transition island number,
Coded Pixel Island ~N—_ -~ TP# - transition position number)

Figure 24: Pixel-region macroisland overlap structure

The initial linking is realised as a state machine for traversing macroisland connectivity graphs and
a LIFO (last in, first out) stack for storing information on branching points of macroregion trees for

rolling back when the top of a branch is reached. The algorithm for tree traversing is as follows:
a) find a start point of a macroregion linking tree (root):
» take a valid (nonempty) region that has not been included in any macroregion;
e initialise the macroregion feature with the feature of the current region (seed region);
* assign a new region index to the new macroregion;

e if there are no valid regions left or a certain limit in the number of macroregions is

reached, the macroisland linking is complete;
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b)

<)

d)

select candidates for transition from the seed region:

detect all overlapping (candidate) regions in the neighbour islands using the CE” of the

current region and the overlap position vector of the import table of the current island;

test all candidate regions against the merging threshold condition using the region

features from the imported region descriptors and the CE of the current region;

if such regions satisfying the linking criteria exist, select one candidate region
depending on the chosen analysis method (clock-wise in the current implementation)
and prepare for transition;

if there is no region to transit to, check if there is a branching point record in the linking

tree stack:

e ifthere is a branching point record, prepare for roll-back;

» if there is no roll-back possible and the current region is the root region (the
macroregion has not been formed), discard the macroregion and find a new
start point;

e if there is no roll-back possible and the current region is not the root (macro-
region is complete), increment the region index for the next macroregion

assignment and find a new start point;

prepare for transition to the selected candidate region:

mark the overlapping point associated with the selected candidate (transition point®) as
visited in the current island to exclude a transition through the same overlapping point
in the case of a branching roll-back (unset the validity flag in the region descriptor of

the import table);

mark all overlapping points covered by the seed region as visited in all neighbour
islands to exclude looping in the macroregion linking path (unset the correspondent
validity flag in the region descriptor of the import table of each neighbouring island);
assign the parent macroregion index to the seed region;

assign a new macroregion feature as the mean of the current macroregion feature and
the newly linked region;

if the seed region has more than one candidate, write the seed region index and its
island index within the macroisland to the LIFO storage (branching point record) to roll

back when the top of a linking tree branch is reached;

mark the current region as linked and transit to the next seed region;

prepare for rolling back to the branching point region:

mark all overlapping points of the current region as visited in the neighbouring island to

avoid branch or tree gluing;

% 4 transition point or a transition position is the position of an overlapping point within an island.
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* assign the parent macroregion index to the current region;
* mark the current region as linked and roll back to the branching point region;
e) transit to the next seed region:
» identify the next seed region using the transition island index and the transition region
index associated with the transition point from the import table;
e set the region as the seed region and select candidates for transition;
f) roll back to the branching point region:
¢ identify a new seed region using the region and the island indexes stored in the LIFO;
e remove the branching point record from the LIFO storage;
e set the region as the seed region and select candidates for transition.
The search for a new root candidate is realised by a separate process working in parallel to the
linking. The process goes through all regions in all islands starting from the central island until it
finds the next nonempty region — there the process blocks. If this region is being included in the
currently linked macroregion, the search is triggered to continue until the next candidate is found.
The linking algorithm described above implies that the decision for the next transition can be made
in one time slot as the analysis of all transition candidates (and LIFO state) can be performed in
parallel for all overlapping points. Depending on hardware implementation constraints this
potentially results in one or two clocks per transition. The executable model is built with the

assumption of one clock per transition for the initial linking.

Ovl.  Checkregion Belongs Belongs Check region
List index in to " to index in
index  (Ovl.Ent#+side) Island # Left Right Island #  (Ovl. Ent#+Side)
0 2L,5L CE# feature feature CE# 4 1L,3L
O 1 OR,3L 4 CE# | feature feature | CE# 3 4R,8L
6 2 OL,5L CE# feature feature CE# 0 3R,4L,7L,10L,6R
B 47e <€‘§%'ﬁ'5; ? 3 0R1L 4 | CE# | feawre | feature | CE#| 0 | 4L7L10L6R2R
fgfgf‘%\\?‘:}' ft%?f‘\‘ O 4 |7L,10L,6R,2R,3R| 0O CE# | feature feature | CE# 3 1R,8L
[L8 0 1 5 oL2L CE# | feature | feature | CE# 6L.9L
. 6 5R,9L CE# feature feature CE# 0 2R,3R4L,7L,10L
7 [10L,6R,2R,3R,4L| O 2 8R,11R
8 1R 4R 3 2 7R11R
9 5R,6L 1 10R,11L
10| 6R,2R,3R4L,7L 0 1 9R, 1L
1M 9R,10R 1 CE# feature feature 2 7R,8R
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Figure 25: Overlap-list topology relationship

The linking at higher levels is analogous to the initial linking. Changes in the algorithm are related
to the difference in the representation of connectivity data in Macroisland Overlap Structures. The
Macroisland Overlap Structures for the linking at higher levels are based on the OVLS structures
stored in the external memory. Although an overlap list does not contain explicit information on

spatial location of overlapping regions, the layout of the data aggregate allows restoring the
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topology of macroislands (Figure 25). This makes the algorithm of topology-aware traversing

applicable to the higher level linking.

The Macroisland Overlap Structure in this case consists of a number of Region Transition Tables,
which correspond to seven overlapping islands within a macroisland. These transition tables are
equivalent to the import tables for the initial linking and similarly guide the traversing in the linking
process. Each transition table contains a number of entries corresponding to the overlapping posi-
tions within an island. Each of them contains a number of overlapping region pairs®. The pairs are
spatially oriented — the left-hand elements describe the regions belonging to the island associated
with the transition table, and the right-hand elements represent the transition target regions in the
neighbouring islands. A single region having several overlaps with regions in neighbour islands
appears in the transition table of its island several times. Thus, the search for transition candidates
is based not on the region position matching but on the matching of the registered index of a seed
region against the indexes of left-hand regions in the transition table, which is the only conceptual
difference between the linking algorithms. In contrast to the initial linking the linking process at
higher levels also records positions of the islands within a macroisland the linked regions belong to.
This information is registered in the CE"s of newly created macroregions and is subsequently used

exclusively for ranking ORPs while generating OLN®s as described in the next subsection.

The peculiarity of the root search in the higher level linking is the traversing order. During the ini-
tial linking the search goes through all regions within an island and then similarly over all islands
within a macroisland. In the higher level linking the search goes through all first pairs at each
transition position of an island and then proceeds with the next island. After the complete round
through all islands the search repeats with the next overlapping pair index. This search order is justi-
fied by the fact that the overlapping pairs are arranged by the region weights during OLN® genera-

tion to improve the quality of linking and to increase the efficiency of the root search process.

The higher number of potential transition candidates and the necessity of region identification by
index definitely increase the complexity of candidate selection, but do not make a parallel hardware
implementation impracticable. For the cycle accurate simulation two variants of the sequential link-
ing executable model for hardware implementation under optimistic and pessimistic assumptions
are built. In the first version each linking step is realised in one clocking slot. The timing assump-
tions for the second version are two clocks per forward transition step (the first clock is used for
parallel feature comparison and the second for prioritised selection) and one clock tick per roll-back

transition step, i.e. the situation in which the seed region has no further transition options.

4.2.5.3 Overlap-list creation algorithm

Creation of overlap-list entries is the final processing stage of either linker pipeline. It is performed
at several overlapping nodes of the lower level lattice in parallel using the data from the output

buffers of the linking stage. In general the OLN® creation process consists in filtering and sorting the

% This number naturally corresponds to the number of ORPs in the OLN® structures in a given GSC implementation.
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overlapping region pairs in HRSs by sequentially traversing the subislands' region lists in the onchip
buffer. The algorithm uses the parental data in the subisland structures and the feature and the posi-

tion data of the parent regions found in the correspondent parental island structures (Figure 26).
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Figure 26: Overlap-list entry creation

The need for a pair sorting is conditioned by the restricted number of overlapping region pairs in the
OLNS structure. To select the most valuable pairs and to increase the efficiency of linking at the
levels above the algorithm arrange pairs by their region position weights (ORP ranking). At HL(2)
the ranking and filtering procedure also aims to exclude repeated and empty regions from coded
islands®”.

The overlap-list entry creation algorithm for higher levels consists of a number of steps or pipeline
stages for sequentially processing all ORP;s within an HRS after initial loading of respective ISs to
the local memory. Each pipeline stage is executed in a single clock slot. The algorithm steps are:

a) Stage one — loading local buffer:

e locally load the data of respective subislands IS”;, (overlapping point islands) and
associated parental islands IS"; from the linker output buffers to each separate OLN®
creation unit (OLN generator);

* load the first index pair CE”;; from the IS;; to an index pair register,

b) Stage two — merging condition check and pair weight assignment:
e check if both parent indexes are valid in the index pair register (overlap condition);
*  check the merging threshold condition for the features of parental regions CE"; indexed

by the index pair register (current ORP;);

" The priority encoding scheme used for export table generation at the last stage of the coder pipeline does not allow duplicate regions to
appear in any region descriptor. Thus, duplicate region cannot be linked to a macroregion and thus be assigned any parent pointer.
Hence, the parent index pairs of such regions in overlapping point islands are empty.
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* seta validity flag if both merging conditions are satisfied;

* assign a weight to the current ORP; depending on the number of positions occupied by
the correspondent parental regions CE";

* record the validity flag, the parental region indexes CE”;,, the parent features CE®; and
the pair weight to an intermediate data structure (overlap candidate register),

* load the next index pair CE”;; from the IS”;, to the index pair register,

c) Stage three — overlap candidates ranking:

* compare the pair weight in the overlap candidate register against the weights of ORP;s

already placed to the overlapping node structure OLNS:., (seen as a list of ORP:s);

*  if the weight of the candidate is greater or equal to the weight of a pair in the OLNS,,,
shift the allocated pair and the pairs below down in the list OLNS,..;

«  place the candidate pair to the respective released position in the OLNS.., list.

As it can be seen, although the OLN creation unit has an internal pipeline organisation with the data

forwarding rate of one OPR per clock, a complete OLN® structure is processed with a constant

latency equal to the number of regions in the overlapping point islands of the correspondent

hierarchical level plus two clock cycles for initial data loading and data forwarding through the

internal pipeline.

4.2.5.4 Downpropagation process

Islands within labelling subisland groups (Section 4.2.3) are processed by the labelling processors

in parallel. Each island is processed sequentially region-wise with the processing tempo of one

clock per region. The algorithm for labelling is the following:

at the first clock a labelling subisland group of IS®s and four associated parental islands

IS*;.; are loaded to the shared memory of the labelling processor;

at the second clock each subisland processing line (processing element) is loaded with a
subisland's CE"; and its two parental CE*..;s indexed by the related CE”; in a dedicated reg-
ister (first loaded at the initial step and subsequently updated at each processing clock);

at the third clock the subisland region CE"; is assigned the segment label and feature of the
most similar parental region CE";,;; if the region has no parents a new segment key is
generated and the feature of the region becomes the segment's feature;

the second and the third steps are repeated for every region in a subisland until the region-
per-island limit is reached or an empty region is first detected indicating the end of the
region list of an island (except for the lowest level islands in which an empty region may

appear at any region position).

To generate a unique segment key in the parallel island processing scheme the segment index space

is evenly divided among the labelling processors. Each processor is initially assigned a starting
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address of its key space. Within a group keys are distributed dynamically under a round-robin
discipline. This means that if a new segment key needs to be generated for a region, the

correspondent subisland processing line is stalled until the arbiter issues a new key to it.

Newly generated segment descriptors (segment key and feature) are sent to the segment key table®™.
This is done with the same round-robin arbitration scheme: when a key is granted to a processing
line the segment descriptor is put to a constant length queue. Segment descriptor queues from all
labelling processors are forwarded to a single external memory channel using another round-robin

arbiter. The queues are used to smooth out the collision effect resulted from the channel sharing.

This processing scheme implies that the time of an island processing at maximum is equal to the
number of regions per island 7S; plus two clock ticks for the intermediate data buffering and a
surplus of clock ticks conditioned by arbitrating the segment key generation and the multiplexed
channel granting. All together this results in a data-dependent stochastic number within a certain

range, which is the subject of the model profiling.

Image generation is done during the downpropagation at the lowest hierarchical level. A group of
pixel processors works on IS%s in columns mapping features and segment labels of their CE*ss to
certain positions of pixels in the pixel output buffers using respective CE’s. To eliminate the need
for dedicated hardware for resolving the conflicts at common pixels of neighbouring islands every
pixel processor works in two phases. At the first step the values are assigned to the three upper-left
and the centre pixel positions. The remaining three positions are filled at the second step. These two
steps are made in different clock slots introducing a latency of two clock ticks to the stage of the

pixel buffer populating.

4.2.5.5 Simulation results

Built on precise algorithms the executable model is simulated for profiling the implementations on
variety of data sets. To estimate timings of application specific computation blocks special statistic
counters are integrated in the architectural model to record time (in clock ticks) between different
process synchronisation events. Using these statistics data distribution histograms of processing

times are built. Three parameters are used for quantitative evaluation of a standard processing time:

a) a distribution sample number Tk corresponding to the processing time of a processing unit

in clock ticks that covers 95% of all sampled processing time trails (4:
k
Y 5.<095
1 b
where p, is a normalised occurrence frequency of each processing time sample in a distribu-
tion, and 7 is a sample number corresponding to the number of clock ticks in the histogram);

b) a distribution sample number 77 corresponding to an utmost processing time sample » with
its probability higher than 1% (n: V p,;<0,01,i€[n:m] , where m is the maximum

number of clocks in a processing time distribution);

“Having an impact on the application performance and the resource consumption this mechanism is optional for images below 4096
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¢) aweighted mean 77 of a unit's processing time in clock ticks
Tt:(z pf*i)/z pi
1 1

where p; is an occurrence frequency of a processing time sample, and i is a sample number.

s

A special problem with system profiling is the selection of sample data sets. The quantity of sample
data sets does not necessarily influence the quality of the sampling. Realistic extremes of the
observed parameters cannot be necessarily found within even a vast number of test images. At the
same time artificial (phantom) images specially synthesised for the study of corner cases are not
representative for the analysis of a system operating on verisimilar data. Thus, it is desirable to

define a set of characteristic features of an image relevant to a parameter under study.

To define characteristic image features relevant to the linking processing time a correlation analysis
of spatial distribution of

¢ the number of linking clocks,

» the regions formed per island,

e the total region chain length, and

» the overlap pairs per island
is done for various hierarchical levels and merging thresholds (see Appendix A.4 for profiling data).
The analysis indicates increasing time of linking in the areas with higher fragmentation (fractal®
global elements or detail intensive areas with element sizes comparable to the size of the hierarchi-
cal island) and high gradient areas (such as segment edges). At the same time in the areas of over-
segmentation (the size of regions noticeably lower than the island size at a specific HL) the linking
time drops appreciably. Thus, the linking time for these areas decreases with rising the HL index.
Extreme values for the linking time are strongly related to the new roots search when an overlap list
is highly populated with overlap pairs, but the linker does not produce long region chains (massive
regions). This situation characterises highly fragmented areas. If this fragmentation corresponds to

the global fractality, the effect of fractality persists through all hierarchical layers.

The labelling time is obviously correlated with the number of regions within an island. Higher
numbers correspond to fractal, highly detailed or gradient areas. The surplus of processing time
related to new segment generation is typical for highly detailed areas with the size of elements com-
parable to the islands' size. For this reason higher processing time values are observed in that areas

in contrast to fractal or gradient areas for which segment features are propagated from levels above.

With the above characteristic features a number of images are selected for processors' profiling. The
statistics parameters for assessing the elapse time on these data sets are shown in Table 4 together
with the derived number of the processors to completely cover the latency of the processing stages

in the respective pipelines”.

%The term fractal is not used here in a strict mathematical sense but to denote the shape of an edge line of an object having a specifically
long border with the background or other elements per square unit or otherwise a winding edge line combining large and small curves.
"The estimation already assumes the maximum bandwidth utilisation rate for different external channels discussed in Section 4.3.
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Table 4: Expected values on elapse time of the Processing Units (in clock ticks)

Tk Tn Tt Number of

Processors
Linking Iclk/linking step (HL=1) <24 <17 <12 >3
Linking 2clk/linking step (HL=1) <27 <28 <20 >4
Linking 1clk/linking step (HL>=2) <20 <20 <14 >1
Linking 2clk/linking step(HL>=2) <34 <34 <22 >2
Downpropagation (HL=1) <10 <11 <7 >2
Downpropagation (HL=2) <11 <14 <8 >2
Downpropagation (HL>=3) <15 <15 <9 >2

The distribution characteristics of the elapse time for different processing units indicate that the
latencies of the processing stages in the pipelines of different processing units can be completely
hidden by increasing the number of processors in their processor arrays up to a certain reasonable
number, which balances the front-end or the back-end buffering stages and the processing stages.
Of a special importance is that the General Linker, which cannot to be realised in a one clock per
linking step scheme in the target device due to timing violations, can be harmlessly implemented
with repartitioning the computations of a linking step into two clocking slots. Starting from the
number of linking processors equal to three, the difference in the performance of both solutions

becomes negligible, which is proven by simulation”.

4.2.6 Preimplementation resource estimation model

For preliminary evaluation of the realisability and estimation of the resource consumption of the
system in certain configurations a GSC HW Resource Model is built (Appendix A.5). The outputs of
the model together with the results of the cycle accurate models help to steer the implementation of
the architectural units in cost’/performance space and to define the share of each particular solution
in the resource budget of a given device. The model is based on the calculation of the on-chip
storage amount required for the realisation of each architectural unit. It especially focuses on the

data aggregates that will presumably require on-chip flip-flop memory for their implementation.

Such model benefits from the notable simplicity of its realisation, maintenance, and modification at
the preimplementation designing stage. The model realisation requires only the structural analysis

of the architectural blocks without a functional analysis of data transformation in the data paths.

This approach is justified by the fact that an explicit assessment of involved combinatorial resourc-
es requires manual conversion of high level functional operations into Boolean algebra expressions
and putting forward a hypothesis on mapping this logic onto architectural primitives of the target
device the way it is performed by a particular EDA tool during the RTL synthesis. Each time an

alternative solution is introduced, the laborious procedure needs to be carried out over again.

"' The difference does not exceed 1% for the processing time of one hierarchical layer.
2 As the amount of hardware resources for particular implementation.
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To lend credibility to the model without a laborious manual translation of the functional operations
into the architectural primitives the model is constructed relying on the following RTL design

assumptions:

e the RTL implementation of the system conforms to a high-speed synchronous designing
rule, which primary implies even distribution of registers in the data paths with moderate
complexity of combinatorial logic in between to meet the timing constraints of a design;

» the target device comprises combinatorial resources and flip-flop memory evenly distribut-
ed in the device, which is normally achieved in the modern FPGA architectures by design-
ing the functional blocks with practical balance of the logic-to-register ratio to conform
with synchronous design requirements at up-to-date technological level.

Table 5 shows the flip-flip resource consumption and the share in the overall resource budget of the

Xilinx Virtex XC2VP100 device for the processing units in various processing configurations.

Table 5: Processing Unit resource estimation (in bits of register memory)

Down-
rows in Coding Lowest Level General Initial Linking Extended propagation
a block Unit Linking Unit | Linking Unit Unit Linking Unit Unit

2684 3228 9778 11510 19962 14024
2 (2.94%) (3.54%) (10.71%) (12.61%) (21.86%) (15.36%)
3984 5296 15717 17530 31161 26320
3 (4.36%) (5.80%) (17.21%) (19.20%) (34.13%) (28.82%)
5284 7364 21656 23550 42360 38616
4 (5.79%) (8.06%) (23.72%) (25.79%) (46.39%) (42.29%)
6584 9432 27595 29570 53559 50912
5 (7.21%) (10.33%) (30.22%) (32.38%) (58.65%) (55.76%)

Provided that about 10% to 15% of the die is reserved for supplementary infrastructure, the linking
and the downpropagation processing units may not exceed four island rows in a block in their
processing configurations, and the preference for realising the linking phase is given to the extended
general linking solution for the implementation on the given device, all other operational constraints

being met.

4.2.7 On-Chip infrastructure

The complete System-on-FPGA is shown at Figure 27. It consists of the auxiliary on-chip infra-
structure (peripheral and interconnect resources) described below and the application specific
blocks discussed in Section 4.2.3. The peripheral controllers are marked in grey, the interconnect
resources in pink, and the GSC components in blue. The black arrows indicate the data paths and

the blue arrows the control stimulus for arbitrating the application.

The on-chip infrastructure provides external interfacing (E/F) and on-chip communication (OCC)

functionality. The EIF components realise the signal level peripheral interfaces with the onboard
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devices and provide an application interface of the board to the host system. The OCC subsystem
realises data connectivity in the on-chip system and provides flexible data-stream routing to the

architectural components.
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Figure 27: System on the FPGA chip

The OCC infrastructure is realised as a configurable network of point-to-point data channels
between the network agents. The data connections are established between active (transaction
initiating) and passive (transaction serving) clients of the network. The OCC is designed to meet the

following requirements:
* simplicity of client module connection;

» case of modifying configuration of the on-chip system to allow reusing the interconnection
infrastructure in other projects and to enable fluent modification of the system for

experimenting with configurations in the HW GSC implementations;

e conformity with GSC-specific demands for both sufficient performance and facility for

integrating the particular application.

To satisfy the partially contradicting demands stated above the communication subsystem is based
on the principles of modularity and parametrisability. It consists of a module providing transport
medium, port components for traffic management, and interface transactors for integrating the net-
work agents to the network. To relax contention problems for common resource accesse, the switch

architecture is preferred to the bus architecture for the on-chip communication.
A scalable switch matrix is the core of the OCC. It provides point-to-point links between any two

components connected to the switch's ports. The number of ports, either active (4P) or passive

(PP), is easily adjusted by parameterisation. This assures ease of introducing new end-point
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components to the system. However, the switch matrix architecture becomes significantly resource
intensive at a certain number of end points. Therefore, for frugal resource utilisation a flexible
tunability is enabled in the design. The parameterisation allows an individual connection mapping:
for each active port in a configuration the number of destination ports can be specified; equally,
each channel connected to the port can be defined either as an up, as a down, or as a bidirectional
connection. Advantageous is that the design can be configured with a single structure of configura-

tion map parameters, which makes reconfiguration of the system highly automatic.

The interconnection matrix ports perform transaction routing and channel arbitration in the OCC.
The interface of the active ports is common for all ports of this type, while the passive ports can
have either a unified interface or an interface specific to the peripheral controllers connected to
them. The latter is the result of integration of the passive ports with the interface transactors for the
peripheral controllers of two different types (/7-71, I7-T2). The integration is performed for mini-
mising the data-link latency. Alternatively, the interface transactors as standalone components can
be connected to the passive port modules with the unified interface. The availability of the unified
passive ports gives an advantage for integrating new passive components without the need to modi-
fy the communication system kernel. The presence of the interface transactors as standalone compo-
nents of the communication system can be seen as an extra level of platform-specific system adap-

tation. Selecting the type of a passive port is also an option in the configuration map of the OCC.

The peripheral controllers of the E/F infrastructure are the next layer of adaptation of the commu-
nication system to a specific hardware platform, which integrates the off-chip devices at one side
and the inner part of the system on a chip (SoC) at the other side. These components are realised to
be efficient for a wide range of applications, yet at the same time they simplify the signalling
protocols of standard IC devices for application-specific components by pulling up the level of the
data abstraction towards the application level. The system on a chip contains four types of
peripheral controllers: a Local Bus controller (interfaces the PLX PCI chip), memory controllers
for ZBT-SRAM and DDR-SDRAM interfaces, and a CameralLink controller.

The EIF infrastructure also realises the mechanism for interaction between an application running in
the host system and the application executed on the FPGA board. It acts as a bridge between these
two systems being an active agent in the OCC subsystem and a subordinate part on the onboard bus.
This application interface functionality resides in an add-on to the Local Bus controller in an
Expansion Board Interface (EBI) block.

The EBI block contains both the application specific and the auxiliary system elements. Beside the
Local Bus peripheral controller core it includes the Device Interface Unit (DIU), which offers the
hardware interface for the firmware located on the host and acts as an interface transactor between
the Local Bus core and the Switch Matrix. The application specific unit is the Application Specific
Register Set (ASRS) storing the application specific information for configuring the GSC parame-
ters. It interacts with an Application Control Unit (ACU), which performs the arbitration of the

overall application via a control link.
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4.2.8 Clock domains

Due to the timing constraints of the external interfaces, the on-chip system must operate at least in
three different clock domains. One domain is associated with the Local Bus board-level interface,
which is restricted to operating at a clock frequency of 66MHz. The second domain is conditioned
by realisation of the double data rate interface of the dynamic RAM. The third domain is the
clocking domain of the system kernel, which can be further subdivided into the main kernel domain
and subordinate domains to clock the processor arrays inside the linking and the downpropagation

units at a multiple of the kernel clock frequency to perform faster sequential computing.

4.3 Interface and communication model

Signal level interfaces play a significant role in system design. On the one hand they determine
characteristics of the data streams circulating in a system, thus inducing the system’s qualities at the
higher abstraction level. On the other hand the interfaces predetermine the interior design of the
components of a system at the lower implementation level. From the point of view of the SoC
design, peripheral interfaces act as technological constraints imposed by the silicon devices
employed in a platform. Interior interfaces of an SoC are relatively free from restrictions on
signalling protocols they realise. These interfaces are design for customising the SoC for particular
applications and introduce a number of different adaptation layers (from application specific to
generic and technology specific) to the SoC infrastructure to gain flexibility and reusability of the

system’s components.

4.3.1 System Interfaces
The FPGA interfaces three types of silicon devices considered in the design of the computing
system. They are PLX PCI-to-Local Bus Bridge, DRAM, and SRAM devices.

The Local Bus interface is a synchronous burst-oriented bus interface with a frame and a strobe sig-

nalling control and a wide range of data transaction management mechanisms including:
e suspended, split, and aborted transactions,
*  bus holding,
e transaction timeout and recovery,
* interrupt and direct memory access.

The System-on-FPGA operates in a slave mode, while the onboard PLX PCI chip acts as a bus

master and an arbiter. Detailed information on the signalling protocol can be found in [132].

The DDR-SDRAM interface is a typical interface to synchronous high-capacity dynamic RAM with
a separate column/row addressing and a programmable burst length for atomic memory access
transactions. The specific feature of the interface is a source-synchronous double-rate data sampl-
ing. The details on the DDR-SDRAM interface can be found in [133].
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The ZBT-SRAM interface is a specific synchronous interface to the fully addressable array of static
memory cell. The interface is designed for burst atomic transactions of a signal controlled length
(within the range of up to four memory locations with turnover). The peculiarity of the ZBT (Zero-
Bus Turnaround) interface compared to a conventional synchronous RAM is the absence of idle
cycles between read and write access operations. This allows the full utilisation of the available

bandwidth of its low latency data channel. The details on the interface can be found in [134].

The interior interface that can be treated as a precondition for the HW GSC system implementation
is the interface of the reused DDR-SDRAM controller IP core [135]. The core has a generic user-
application interface with separate command and data buses. The interface of this core significantly
simplifies the communication with the SDRAM devices, which have a complex signalling control

protocol.

Two interfaces were specially designed for the given infrastructure subsystem: an interface to a
ZBT-SRAM-Controller core and a Switch Matrix interface.

The requirements to designing the ZBT-SRAM-Controller interface are formulated as follows:

* to simplify the interface of the silicon device, which bears the technological peculiarities of

the memory IC, yet keeping the maximal throughput of the ZBT-SRAM interface,
* to make the interface more friendly to computation systems, yet keeping it generic,

e to provide full control on data flows assuring data consistency.
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Figure 28: ZBT controller interface cycle diagram

The first aim is achieved by excluding ambiguity in the signals' function (one signal — one
function). The second is fulfilled by providing a simple burst mechanism without alignment or burst
length constraints using a burst frame signal (brst_n). The third is achieved by introducing a
handshaking mechanism that guarantees both sides of the communication function with their own

data-forwarding pace without data dropping.
A memory transaction via the interface consists of two subsequent phases: transaction initialisation

(by a validity signal vid n for access addresses on an address bus addr and an access type signal rw)

and subsequent data transfer (via two unidirectional data channels data in, data out). The second
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phase may follow the first one in an arbitrary number of clock ticks, subject to the handshake con-
trol (using two controller driven data ready signals dout rdy n, din_rdy n and a client-side signal
ubusy). Transactions are atomic, meaning that a transaction that is initiated first is completed first.
The initialisation of the next memory transaction is irrelevant to the completion of the previous.
This means a memory operation may be initialised each clock cycle regardless to the completion of
an operation issued before (transaction are pipelined). Figure 28 illustrates the principles of the
interface functioning. The complete interface specification of the ZBT-SRAM controller can be

found in Appendix A.7.1.

The interface of the Switch Matrix active ports is maximally adapted for the needs of the applica-
tion. It provides a mechanism for atomic transactions of a fixed length of one to four memory
words. The GSC data are mapped to these transaction atoms. For the Switch Matrix component
reuse in alternative on-chip applications the upper limit of the transaction length can be adjusted by
a parameter. The length of each transaction is determined by a field in the transaction descriptor,
which additionally includes a destination port identifier, a transaction direction flag (read or write),

and an address of the first transaction word in the memory space of a passive Switch Matrix client.

The key characteristic of this interface is that it consists of three independent data-asynchronous
channels: a transaction descriptor channel and two data channels for upward and downward data
streams. Together with a simple handshake mechanism (channel request and channel grant signals)
these decoupled data channels provide a maximum flexibility for the data-flow organisation inside
processing units connected to the Switch Matrix, since their interfaces mimics the interface of a
queue — the most simple and popular dynamic data element for data-flow organisation in a
computing system. The up and down data-stream channels are additionally equipped with signals
for data streaming: a channel forward grant signal indicates the channel availability in the following
clock cycle. This signal can be used to assist a data-flow control FSM (finite-state machine) in a

client module to maintain continuous data streams.

The passive port interface is analogous to the interface of the active ports of the Switch Matrix
except for the direction of data streams in relation to the request and grant signals in the respective

channels. The detailed description of the Switch Matrix interfaces is given in Appendix A.7.2.

4.3.2 System network traffic and data buffering scheme

At any time of the GSC execution there is only one active agent in the system's network. This is
why the traffic inside the Switch Matrix is fully defined by the buffering policy of a GSC processing

unit and the channel connection configuration of the particular unit.

The GSC processing units have several connection schemes to the Switch Matrix. Depending on the
chosen configuration their up and down data streams can be routed through a single Switch Matrix
channel, or separated into two channels for the whole incoming and the outgoing traffic apart

resulting in a full-fledged data-stream pipeline, or combined in a way that all channels are nearly
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balanced with respect to the data flow intensity with the most dense data flow being routed through
a dedicated channel. Alternatively, one configuration provides a dedicated channel to each data
stream, which is used if all the GSC processing units share common Swifch Matrix's connections.
The choice of one configuration is the matter of the compromise between the resource availability

and the data throughput in the communication subsystem.

The buffering control scheme deployed in the computation units is layered and relies on modular
organisation of control components, which simplifies assembling and maintenance of the system in
various configurations. At the lowest level (close-to-buffer layer) the control scheme realises an
aggressive data policy trying to maintain a constant input or output stream to/from each buffer in
portions (bursts) of buffer sizes. The next layer (layer of data streams) is responsible for batching
buffer bursts. It is required for protecting the communication subsystem from overflow conditions
and for multiplexing or demultiplexing data within a group of data streams of the same direction
that share a common Switch Matrix connection. The highest control layer (layer of stream groups)
manages the data streams at the level of the application preventing logical deadlocks in the GSC

processing units.

It is important to note for further simulation analysis that in the present system it is not possible to
organise an uninterrupted upstream to a read buffer even in a separated channel configuration. This
is explained by the fact that the DDR SDRAM controller has no feedback signal for the data paths'
control. This means that in some operating conditions, when the system cannot accept data from the
IP core, the data must be dropped, implying a transaction recovery procedure. To keep the infra-
structure simple the control logic of the buffers does not allow initiating new memory transactions
until the input buffers are free or the output buffers are complete. This entails a certain read data

latency being appreciable for the GSC application performance as shown in Section 4.3.4.

4.3.3 Interface temporal logic and bus functional executable models

To isolate possible integration level mistakes the interfaces between the architectural blocks of the
system are constrained with signal-level temporal assertions. All the signal protocols deployed in
the system are translated to temporal logic interface descriptions using the SystemVerilog Assertion
(SVA) syntax executable during simulation. These temporal logic rules guarantee the interface com-
patibility of any first introduced modules and assure the model consistency in cases of partial

system rearrangements or reimplementation of the system's components.

A cycle accurate interface model of the complete communication subsystem is introduced to the
GSC TLM as the further refinement of the HW GSC model. This bus functional model of the
communication subsystem allows evaluating the impact of the precise signal level interfaces on the
GSC performance taking into consideration particular organisation of the on-chip communication
infrastructure and implementation parameters of internal elements of its components (sizes of inter-

nal queues, arbitration policy, influence of register balancing” in the data paths, etc.).

" Register balancing is a design technique to meet the timing constraints of a design by (re-)placing auxiliary registers in its data paths.
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To realise the model, the components of the communication infrastructure are implemented as func-
tional (behavioural) models. Such models are built on virtual modelling objects referred to as trans-
action channels and interface the surrounding environment by the mechanism of function calls to
realise the communications: the encapsulated channels use function import and export calls for
interacting with adjacent functional modules. The calls emulate the signal-level bus activity with
cycle accuracy inside the modelling channels and mimic the communication system's latency

introduced by each component of the communication system.

From the perspective of hardware implementation, introducing the bus functional model of the com-
munication subsystem with dedicated virtual channels contributes to the gradual transition of the
description of the total system from the functional to the register-transfer level, as a function call
interface at either end of a virtual channel can be easily substituted with a signal level interface for

the channel to become a bus functional to cycle accurate transactor for connecting with RTL blocks.

4.3.4 Modelling results

After the complete translation of the model components into the time domain, the precise through-
put of the GSC application and the influence on the GSC performance of the system's infrastructure
can be measured. Figure 29 shows a typical profile of the application execution time for the proces-
sing of various hierarchical layers depending on the processing power of the GSC processing units.
It can be seen that the performance progress is rapidly exhausted with the increase in the number of

array processors inside the units. This is explained by the influence of the system's infrastructure.
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Figure 29: Level processing time for different number of linking and downpropagating processors in a
processing unit (as an example of a 256° image processing)

A number of data-channel parameters are measured for the communication subsystem using statis-

tics monitors integrated in the communication components to estimate the impact on the application
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performance. The measurements show that the throughput of the DDR SDRAM controller interface,
which is about 0.49 data samples per clock, and the data latency for read access bursts at the active
agent ports, which amounts to 10 clocks for reading data from the external static memory and about
18 clocks for retrieving data from the dynamic memory banks, are critical for the GSC application.
The relatively low throughput of the DDR SDRAM controller is explained by the fact that it is pre-

configured for accessing the SDRAM devices with the minimum selectable burst length.

The influence of data-link parameters™ of the communication infrastructure is best illustrated by the
bandwidth utilisation ratios for various data streams in the external channels of the GSC processing
units. Figure 30 and Figure 31 show the dependency of this ratio on the number of array processors
in a unit for all incoming and outgoing streams at different hierarchical levels for the linking and the
result generation phases. The yellow colour denotes the critical data streams which limit the
throughput of the GSC processing units' pipelines. Thus the data for the initial linker (Figure 30,
upper row) indicate that the most dense data flow of coded islands IS, to the GSC DB rapidly
exhausts the bandwidth of a SDRAM channel with the increasing of the amount of output data from
the linking processors. The less dense downstreams of overlap-list entries OLN?, and linked islands
1S, just follow the curve of the limiter. The opposite tendency is demonstrated by the pixel up-
stream profile, which indicates a drop in the bandwidth utilisation ratio with the increasing in the
number of the linking processors. This effect is typical for the upstreams if they do not act as the
limiting factors. This is explained by the fact that the overall incoming traffic decreases with the
increasing in the number of island rows in a row block due to the decrease in the overall number of

overlapping island rows.

The linking performance at higher hierarchical levels is constrained by the incoming traffic of the
overlap-list structures OVL® (Figure 30, middle and lower rows). As it can be seen, the data stream
of this type saturates the bandwidth of a channel of the SRAM device the overlap-list array is stored
in. The other data streams having lower data density simply follow this curve. It is worth noticing
that the saturation curves have positive inclination towards higher numbers of the array processors.
This results from the initial delay in arrival of read packets at the front-end buffers of the GSC pipe-
lines: as noted in Section 4.3.2 the front-end buffers do not maintain uninterrupted upstreams. The
specific weight of these gaps in the total traffic through a channel determines the behaviour of the

utilisation ratio over the number of processors parameter.

The same fundamental rationales for explaining the characteristics of the external data streams
apply to the downpropagation unit. The limiting factors for the performance of the unit are the
throughput of the SDRAM core's interface and the initial latency for the read buffer packets
constraining the upstreams of subislands /S from the GSC DB (Figure 31).

A significant practical value of the presented data is also in that the bandwidth utilisation graphs
distinctly indicates which data streams can be multiplexed in common communication channels

without affecting the throughput of the GSC processing units.

™ Parameters characterising a data connection in a communication system such as data access time, specific data-flow density, etc.
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4.4 Register-transfer level implementation

In developing the synthesisable models a special attention is devoted to tunability and portability of
the design. A design technique based on modular structural description of the system at the level of
functional units is adhered in the RTL implementation. By adopting this approach the coarse
architectural blocks of the system are realised as structures built on generic functional units, such as
storage, computation, and data-path control components, glued with customised RTL logic describ-
ed in the procedural language style. These units realise operations of a higher functional level than
the logic design primitives such as multiplexers, encoders, counters, and similar do; at the same
time, they remain aloof from particular application algorithms being common functional compo-
nents. Thus, the functional units can be seen as application customisable but not as application spe-
cific components of the system. Elaborating flexible general-purpose functional units requires
firstly determining design patterns common to a number of application specific blocks, secondly
exploring their generalisation capabilities for a wider range of applications, and thirdly providing

the measures for maintaining the tunability of the components that realise these design patterns.

Compared to the plain unimodular RTL description which realises structuring by means of proce-
dural constructions, the modular structural approach benefits from a higher level of representation,
which, what is practically significant, particularly results in less space for intrusion of design faults.
This is technically explained by the fact that the design description to realise higher functional pre-
cision relies on the functional units designed as regular components and reused in many architec-
tural blocks and thus requires concentrating on only integrating the components and realising appli-

cation specific functionality.

Equally important is that the realisation of the abstract operations is optimised at the signal level for
a predicted scope of applications: in contrast to design for high-level synthesis intended for attain-
ing comparable abstractness, the abstraction of the data manipulations with this design technique is
not achieved by abstracting the operations from their realisation, but by extensive parameterisation
of the generic functional units at RTL. However, the design of the functional units requires appre-
ciable initial investments in elaborating the tunability and proving the reliability of the components.

At the same time, structural description at the level of technological primitives is practically avoid-
ed in design, as the low level representation leads to lower maintainability and flexibility in intro-
ducing changes to the design. Exceptional are the cases in which the architectural elements of the
target device are difficult to infer from generic description by current synthesis tools. The examples
are DCMs and DDR registers in I/O blocks of the FPGA.

Amongst others the following parametrisable functional blocks are designed:

* handshake controlled queues with a parametrisable data width and queue depth and an op-
tional forward write/read operation grant signals, which can be realised with either built-in

RAM blocks or distributed memory and configured for the first word falls through policy;
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* a stack memory with a flexible data width and stack depth, which can be realised using
either on-chip RAM blocks or distributed memory and can be configured to operate in sev-

eral modes of data guarding (handshake control, overwrite exception, no data protection);

» a fully associative cache with one or two data tag ports and a selectable data replacement

policy, which can be implemented with either built-in RAM blocks or distributed memory;

e serialiser/deserialiser control components designed to be integrated with buffers of adjust-
able buffer depth to control data uploading/offloading from/to data channels with a simple

handshake control mechanism;
e configurable data channel multiplexers/demultiplexers for atomic data transaction handling;

e overwrite register guard circuits, which operate in either a handshake or a posterior

overwrite-fault-firing mode, for protecting data in registers of arhythmic data flow paths;

e a signed/unsigned integer pipelined multiplication core”, which takes two operands of
selectable widths as inputs and outputs the result with the initial latency in ticks equal to the

multiplier width, provided that the control signal for stalling the pipeline is deasserted;

* asequential signed/unsigned integer divider with reminder correction, which takes operands

of adjustable width and is equipped with various operation control and indication signals;

» apipelined signed/unsigned integer divider, which is implemented as an automatically con-

figured array of sequential dividers;

* common arithmetic and logic operations, such as a distance against threshold comparator
(absolute value of difference), which are implemented to speed up the operations most com-

monly used in the GSC and are specially optimised at the Boolean logic level;

* nested loop index counters with a selectable number of nested loops and variable index

ranges used specifically for data element indexing with regard to the GSC topology.

In implementing the functional units the use of automated IP core generation is rejected to avoid
any gate-level description produced by design automation tools (typically in a vendor specific
format™). Although the automated core generation can significantly reduce the initial development
time, it limits the portability of the design by restricting it to a particular device architecture family.
However, to benefit from exploiting the hardware cores of the FPGA architecture (in particular
RAM and DSP blocks) the RTL models are implemented in such a way that the hard core primitives

can be inferred from the functional description by a synthesis tool.

Ubiquitous parameterisation of the constituting components provides flexible tunability of the
application-specific and the infrastructural components and thus allows fast modification of the HW
GSC implementation and reusing the on-chip auxiliary subsystems. Together with the technologi-
cally independent description this makes the design portable between various hardware platforms
such as FPGAs and ASICs.

> The soft core can be used when hard-core multipliers are not available in the target FPGA platform.
7 Generated IP cores (firm cores) are usually optimised at the gate level and are realised in a form of netlists for a particular architecture.
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4.4.1 Application-specific blocks

4.4.1.1 Coding Unit

Due to the relative inexpensiveness of a coding unit realisation the pipelined coder is chosen for
implementing in the FPGA (Figure 3277). The coder gets an island of pixels extracted from the pixel
buffer and a threshold feature as input to form four basic regions (BR) associated with four fixed
pixel positions as discussed in Section 4.2.5.1. Depending on the threshold condition satisfaction the
pixel positions of the basic regions are set in respective bit-flag vectors (POS V), and selector keys
are generated to identify the edge pattern in each basic subgraph. All possible partial sums (4Fs) are

reckoned in parallel, and the selected sums initialise the basic region features by using 8-to-1 muxs.

At the next stage all basic regions are checked for common pixels using bit operations on the
position vectors to form the Linkage Table (LT) identifying which basic regions will contribute to
which resulted CEs. The position vectors of the basic regions are propagated unchanged to this
stage. All partial sums of the basic region averages are calculated and registered to be selected and
assigned to the correspondent CE"s at the next pipeline stage. At the final stage of the coding the
export tables are formed. To do this every pixel position correspondent to the outer pixels of an
island is checked for region occupancy in all CE”s. Considering that the same pixel can be included
in several duplicate CEs, a priority encoding scheme is used to select the first occurrence of a bit set
in the correspondent position to avoid region ruptures during subsequent linking. The correspondent

CE indexes and the region features are assigned to the region descriptors of the export table.

It is important to note that for computing the feature averages of the regions (CE"s) the division
operation is not used explicitly, instead the digit capacity of the CE" is extended from 8-bit integer
for pixel features to 12-bit fixed point format, realising virtual division to increase the accuracy. It is
also notable that the pixels in which the basic regions overlap contribute to a resulted average twice,
shifting the averages to their features. This effect can be interpreted as a merit of the coding
realisation as it shifts the average to the feature of a central point of a region graph compensating a

possible chain effect.

The given design is operable at 148MHz and requires 1.8% of CLB slices (1% DFFs’™) of the target

device for the implementation.

4.4.1.2 Linking Unit

The Linking Processor is realised as a stack machine (Figure 33) for traversing the Macroisland
Overlap Structures using the stack as the memory for storing branching points of a region tree
(Return Stack). The goal of this linking stack machine is to reduce the traversing time of a tree. For
achieving this all transition points of a current island are analysed in parallel to reduce the time for

making a transition decision. To do thus all features of the candidate regions are compared against

For shorter notation the first subscript indexes in Figure 32 and Figure 33 indicate the indexes of region associated variables within ISs.
" DFF stands for D-type flip-flop
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the current macroregion feature forming a threshold condition bit mask. This mask is compared to a
position vector of the seed region, an overlap position vector indicating the regions’ connectivity
from the Macroisland Overlap Structure, and a bit mask of the closed transition points being
modified during the linking™ (see Section 4.2.5.2) to form a region transition mask. In the case of
the Initial Linker the seed region’s position vector is taken directly from the correspondent CE of a
coded island (CE"), while in the General Linker this vector is formed by comparing the index of the

seed region with the region indexes in the import table of the current island.

Current Subisland’s
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Using the region transition mask as a selector key after priority encoding, one candidate is selected
for transition. Due to the fact that each overlapping point in a Macroisland Overlap Structure of the
General Linker contains three region descriptors the total combinatorial logic for candidate
selection becomes too complex to realise this scheme in a single clock step implementation. That is
why the logic is split up using intermediate state registers, in contrast to the Initial Linker
implementation, which is realised with one clock per linking step. As shown before the two-stage
linking scheme does not influence the General Linker’s processing time in certain configurations.

To reduce the signal propagation delay in the combinatorial logic the digit capacity of the compara-
tor which test the absolute feature difference against the threshold is reduced under the following

assumption. Realistically, the range of the merging threshold value does not exceed a certain frac-

™1In fact the closing of transition points is realised by unsetting bits in the overlap position vectors, so the two last bit vectors are combin-
ed in the present implementation.
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tion of the range of the region feature to avoid oversegmentation. This means that it is sufficient to
compute the difference of the region features in only some least significant bits, comparing the most
significant bits only for equivalence. Moreover, the threshold condition for overlapping regions is
always checked in the previous linking stage during OLN creation; thus, checking the threshold
condition during tree traversing is needed only to avoid the chain effect. In practice this means that
it is not necessary to compare all most significant bits of the features but only a few bits higher the
threshold range digits. The limit of the threshold range is defined as a divisor for the range of
feature values in the linking processors. Being a compile time parameter, this leads to the reduction
of combinatorial logic in particular hardware implementations.

The Initial Linking Processor and the General Linking Processor designs are operable at 129MHz
and 112MHz and occupy 2.7% and 8.7% of CLB slices (1.5% and 8.2% DFFs) of the target device,

respectively.

The Overlap-Point Processors load the input data from the output buffers of the linking stage and
process the overlap pairs sequentially to arrange them by their weight in the resulted OLN
structures. It is important to note that the overlap points in the underlying island lattice are arranged
in a constant pattern within island slices and this pattern repeats over two adjacent rows of linked
islands. That is why to avoid dynamic routing of IS%; and IS”:; to the Overlap-Point Processors
array, which leads to complication of the Linking Unit hardware, it is reasonable to configure the

Linking Units to process an odd number of island rows in the island row block.

The Initial Overlap-Point Processor and the General Overlap-Point Processor designs are operable
at 116MHz and 129MHz and occupy 0.5% and 0.6% of CLB slices (0.5% and 0.6% DFFs) of the

target device, respectively.

4.4.1.3 Labelling Processors

The Labelling Processor consists of four equivalent processing lines correspondent to four sub-
islands in the labelling island group. The labelling algorithm described in Section 4.2.5.4 is imple-
mented in a form of pipeline for processing the CEs of the subislands in series (Figure 34). The

pipeline stages are as follows:
» cach subisland processing line is loaded with a new subisland region CEj;
*  two parent regions CE";indexed by the child's CE”; are loaded,;
 the distances between child CE”; and each parental region CE";, features are calculated;

* the subisland region CE; is assigned the segment label and the segment feature of the most
similar parent region; if the region has no parents a new segment key is generated and the
feature of the region becomes the segment feature.

At the higher levels the pipelines are fed with CEs until all regions of an IS%; are forwarded to the
pipeline or the first empty region is met. At the lowest level all four CEys are forwarded to the pipe-

line as an empty CE does not mean the last CE in an IS%,. Moreover, the lowest level processing
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Figure 34: Downpropagation Unit single lane pipeline
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requires filtering of the duplicate coded regions not to produce false segments in the resulted image.
To exclude this kind of CEs each processing line of the Labelling Processor records the region
positions CE”, of the processed CEs in a single position vector register. If the current CE matches at
least in one position of set bits with the position vector register, this CE is treated as duplicate and a
segment label is not assigned to it. It is notable that to identify a coded region unambiguously it is
sufficient to check only its four pixel positions (the central and its three equidistant outer positions),
which is used to reduce the hardware resource consumption for the processing line implementation.

This pipeline implementation extends the processing time of one island by two clocks due to the
insertion of two additional processing steps to meet the timing constraints of the design, although it
does not influence the overall performance of the Downpropagation Unit if the number of labelling

processors in the processor array is higher or equal to 4.

The processor design is operable at 127MHz and occupies 6.6% of CLB slices (6.2% DFFs).
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Figure 35: Labelling pipeline with out-of-order execution

The second type of the Labelling Processor is designed for processing images of the higher
resolutions for which the segment features are stored separately in the segment key table. This type
of processor relies on two level segment feature caching to reduce the latency of stochastic data
access to the key table by exploiting the spatial locality of segments in images. The first level cache
(24 entities, dual-port) is placed in each island processing line, while the second level cache (64
entities, single-port) is shared among all four processing lines in the processor. This caching scheme

showed relatively high efficiency of 0.64 cache hit per key table read access for these low cache
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capacities (for cache efficiency measurements refer to Appendix A.6). The second level cache plays
an important role in the caching scheme introducing 41% of efficiency gain in comparison with the
scheme equipped with only the first level cache. Its significance increases for highly segmented
fractal images. It is important to note that the increase in the cache capacities beyond the given

values within a reasonable capacity range leads in notably slow increasing in the caching efficiency.

The scheme of the labelling processing pipeline of the second type is shown at Figure 35. This pipe-
line exploits the mechanism of out-of-order execution to smooth out the pipeline stalls caused by

missing segment features in the local cache.
The labelling processor has the following pipeline stages:
* at the first stage the pipeline is loaded with a CE”; and its index within its 7S%;

e at the second, two parental segment labels are extracted from parantal 7S“.;s, and a new
segment label is generated and forwarded to the label queue to be written to the segment

table, if the parental pointers in CE”; are not valid;

» at the third stage the parental segment labels are forwarded to the dual-port label cache of
the first level (L1) to get the features of parental segments; the labels are also checked in a
Repeated Label Access Address look-ahead table to avoid a repeated access to the segment
key table in the case if the segment information has already been requested from the

external storage, but has not yet arrived to the label feature cache;

* in cases of a cache miss all information from the previous stage is pushed to a Label Cache
Miss CE-info queue for intermediate storage until the parental segment descriptors (segment
features) are delivered from the second level (L2) cache or the external storage at the fourth
pipeline stage; while the CE with cache-missed labels is hold in the queue, the next CE can

be processed (out-of-order execution), if the associated data are ready for it;

* when the parental segment descriptors are delivered at the next stage, the CE's data are
retrieved from the queue, the parent features are compared with the child feature, and the
correspondent parent segment is chosen for downpropagation; the CE"; is stored to a write-
back buffer dependent on the CE's indexes forwarded together with the CE's data through
the pipeline; the segment information is stored in both the L1 cache and another look-up
storage called a Repeated Label Access Cache (12 entities, dual-port), which is required for
the CEs that have been already forwarded to the Label Cache Miss CE-info queue.

The design of the Labelling Processor of the second type is operable at 103MHz and occupies
18.1% of CLB slices (16.7% DFFs, 3.5% RAM). Due to insufficient resource capacity of the target
device this design has not been integrated to the HW GSC system for the final implementation.

To simplify the logic for assigning pixel features and labels an additional pixel decision stage is
added to the /mage Generation Block of the Downpropagation Unit which realises the final stage of
the segmentation. At this stage the block forms the pixel island by sequentially processing coded

regions and assigning the CE" values to corresponding pixel positions of the pixel islands depending
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of the position vectors of the coded CE's. This stage requires additional four clocks for the pixel
islands to be filled. This latency does not influence the performance of the Downpropagation Unit
as it is fully covered by the latency of the Labelling Processor stage. The image generation back-
end of the Downpropagation Unit pipeline in the configuration of four island rows for one row
block is operable at the clock rate of 118MHz and occupies 14.2% of CLB slices (9.9% DFFs).

4.4.2 On-Chip system infrastructure

4.4.2.1 Expansion Board Interface Unit

As mentioned in Section 4.2.7, the communication of the host system with the board (device) is per-
formed via an Expansion Board Interface module, which provides a direct access to the onboard
memory through the on-chip communication subsystem and realises the application-level interface
of the device. The EBI module encloses a Local Bus (LB) slave controller for serving the external
bus and a Device Interface Unit, which processes the transactions received from the LB controller
and redirects them to either the OCC system via an active Swifch Matrix port or to an application

specific register file.

The LB controller and the DIU are connected by asynchronous queues built on on-chip RAM
blocks. The opposite ports of the queues are clocked by two different clock signals asynchronous to
each other, which guarantees secure data transition from one clock domain to the other. For
generating the two signals the design uses internal FPGA DCMs. The clock from the Local Bus

clock domain is used as the carrier for the external bus.

The Local Bus slave controller consists of a number of complex finite state machines interacting
with each other. The FSMs generate the response for the external stimulus of the Local Bus and
realise the control of three streams of data: a stream of transaction descriptors and up- and down-
transaction data streams. The data of all the three streams and the output LB control signals are
registered in 1/O blocks of the chip close to the die's 1/O pins to conform to the fully-synchronous
design practice, which improves the efficiency of automated layout and raises clocking frequency

limits of the design.

The DIU at the other end of the asynchronous queues directs the transaction flow to either the OCC

system or Application Specific Register Set depending on the target addresses of the transactions.

The ASRS consists of a number of 32-bit registers, which contain both general device and GSC
specific information. The general device information registers are a device status register, exception
code interrupt registers, and memory descriptor registers needed due to the difference in local on-
chip and Local Bus memory space sizes. The GSC specific registers contain application operational

information, e.g. image dimensions, thresholds, application status, exception interrupt codes, etc.

In cases of local memory access requests the DIU realises a sophisticated mechanism for the data

packets conversion due to the difference in data word width of the Local Bus and the OCC system.
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For efficient utilisation of the bandwidth of the OCC channels the DIU performs the
packing/unpacking of 32-bit Local Bus data words into/out of 128-bit OCC data words in cases of
linear access pattern detection. Additionally, the D/U can provide a buffering mechanism for
accumulating the traffic in both directions. In particular the internal logic of the module can detect
consecutive write-read access to the same memory locations, the data for which are present in the
buffer. In this case the data are read from the buffer directly without forwarding the request to the
OCC subsystem provided that the content of the onboard device memory has not been locally

modified. This caching mechanism can be disabled by a parameter setting.

4.4.2.2 Switch Matrix

A set of hardware queues, which form a communication channel network, is the core of the commu-
nication matrix. Depending on parameters setting these queues can be realised either on the FGPA
hard-wired RAM blocks (if available) or using conventional distributed logic resources. The queue-
based channels are connected to the end-point ports of the Switch Matrix. The active port modules
perform routing of the incoming transaction streams to different communication channels attached
to the ports, while the passive port modules realise arbitration of the incoming channels, both
maintaining data links of different end to end connections intact. The arbitration policy is defined
by a parameter setting.

Both types of ports have similar realisation of data streams control based on interacting FSMs and
transaction request queues. Each port module has separate queues for up and down data-stream
transaction requests, which are filled with transaction descriptors (channel identifier and transaction
length) at transaction acceptance and are emptied when the correspondent transactions have been

served (i.e. the requested amount of data is forwarded to/from a correspondent data channel).

4.4.2.3 Memory peripheral controllers

The ZBT-SRAM Controller core is built on an FSM that realises the coupling of the internal (on-
chip) and the peripheral (off-chip) interfaces and provides a flexible data-flow control. To assure
operating at high clocking rates, the address and the data signals as well as the output control
signals are registered in the flip-flops of I/O blocks.

For secure operating the DDR controller cores their output control signals, the address, input, and
output data are registered in I/O blocks as well. For the double-rate data transmission the design

exploits the specially coupled flip-flops of the I/O blocks clocked in opposite phases.

4.4.3 Low-level verification aspects

For the functional verification of the RTL implementation of the design a special attention is paid to
the reliability of the elementary functional units as the basic building blocks of the system. Each

functional unit has been subjected to a thorough verification procedure indispensable for reusable
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components. The stimulus-response verification approach is complemented by assertion-based
models and guided by functional coverage. The temporal logic property models have a twofold
application purpose. In addition to the verification of standalone components, the temporal logic
models accompany the RTL implementation blocks in the integrated system through verification
tests at higher structural levels. This allows guarding the system functionality locally and ascertains
that all critical features of individual components have been properly exercised during the stand-
alone verification, thus providing a feedback to the verification plan if a component feature should
have been overlooked. One considerable advantage of the temporal logic constraints for the func-
tional verification of the integrated system is that the temporal logic guards can be easily switched

on and off without the need for changing the verification environment of the design.

At the higher structural level special attention is devoted to the verification of the on-chip infra-
structure elements and the communication subsystem as a whole. The elements being reusable
components designed with generic application intent, the range of their operational conditions and
configurations can be significantly wider than the GSC application imposes. Thus, the communica-
tion infrastructure requires an exhaustive verification policy. The stimulus-response dynamic veri-
fication used to realise this policy focuses on two intrinsic functional features of the communication
system: correct traffic routing and lossless data forwarding between active and passive
communication parties. A verification scheme based on common memory access patterns is applied

to testing the components of the communication system for these purposes.

In this scheme the active verification components resided at one end of the communication channel
generate memory access transaction traffic, which is served by the passive verification components
at the opposite end. The passive verification components realise the elementary storage function,
allowing an active verification component to check the consistency of the data moved through a
single communication component, a part, or the whole communication system. The main challenge
for the verification with this scheme is the exhaustive traffic pattern generation (including multiple
source/target combinations, where applicable) as well as the verification coverage. To increase the
verification efficiency, the data paths in the communication subsystem are strictly constrained by
the temporal logic checks (based on SVA) used locally in the communication components and the
interface rule checkers between the components. This approach helps in localising sources of the
functional problems. The common verification scheme for the communication system benefits from
reducing effort investments in creating the verification environment, as the most verification
components can be reused for verification of various components of the communication system.
This requires only replacing one type of signal level interface transactors between the verification

environment and a DUV with the other.

The application functionality is checked against the models implemented at the higher abstraction
levels. Similar to the verification of the communication subsystem the data paths of the data
processing units are guarded with temporal logic constraints, although the assertion-based

verification does not play the same important role here, as the application specific units are subject
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to more often conceptual modifications. Thus, the temporal logic guards are mainly located in the
reusable components of the functional unit. A special procedure is introduced for stress testing of
the application level interface as the concluding stage of the logic design verification to verify

secure reaction of the device in cases of unconventional behaviour from of the host application.

The postimplementation verification is focused on the observance of timing constraints and the cor-
rectness of the synthesis. The gate-level functional simulation is applied to ascertain the synthesis
correctness as the synthesiser is not guaranteed to properly translate any high-level language con-
structions. The design being synchronous (except for three cross-domain data paths realised by
asynchronous queues), the timing constraints check is mainly realised with the post place-and-route
static timing analysis. The gate-level back-annotated timing simulation is held exclusively for veri-
fying the peripheral controllers to confirm the correct functionality of the on-chip communication
subsystem integrated to the total onboard system taking into consideration the signal delays at the

board level.

4.4.4 System-on-Chip synthesis and layout summary

The configuration of the system is chosen so that a maximum number of the processing cores can fit
in the FPGA resource budget: a three Linking Processor array for the Initial Linker, a three Linking
Processor array for the General Linker, and a three Labelling Processor array for the
Downpropagation Unit. The interconnection matrix was configured to support two memory chan-
nels per processing unit for up- and downstream data traffic to keep resource consumption of the

project moderate. The results of synthesis after profound logic optimisation are shown in Table 6.

Table 6: Synthesis results (with percentage of hardware resource budget of Xilinx XCV2P100)

Operable
D-Flip-Flops LUTs Block RAM | DSP Blocks |  Frequency
(MHz)

Initial Linking Unit 19031 (20.84%) | 24413 (26.74%) 16 6 108.484
General Linking Unit 21360 (23.39%) | 17414 (19.07%) 16 7 107.028
Downpropagation Unit 28880 (31.63%) | 31607 (34.61%) 32 10 105.667
System Infrastructure 6898 (7.55%)| 5375 (5.89%) 116 0 131.010
Complete On-Chip System | 77222 (84.57%)| 80176 (87.80%) | 180 (40.54%)| 23 (5.18%) 102.135
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5 GPU implementation

5.1 Overview

5.1.1 Function partitioning

Based on the functional model analysis in Section 4.1, the GSC was partitioned and mapped to the
Compute Unified Device Architecture (CUDA) for the GPU implementation of the algorithm. The
application is represented as a number of sequential invocations of CUDA kernels executed on the
computing device. Massive parallelism is exploited for the island processing of each hierarchical
level in all stages of the GSC pipeline, while all stages exchange the data via the global device
memory. Figure 36 represents the general architecture of the GPU-GSC application.

The GPU-GSC application starts with the allocation of necessary global memory segments on the
device for the GSC data-structures and the copy of the initial image from the host to the device. The
first stage of the application pipeline — the Coding — takes the pixel image as input and generates a
down stream of coded regions to the GSC database. These regions are taken by the Pixel-Level
Overlap-list Creation kernel and are analysed for overlapping at certain nodes in the pixel lattice
with the results stored in the Overlap-list Array structure. This data structure is further reused by all
subsequent stages of the Linking phase. Next the Initial Linker kernel generates the upstream of
overlap lists and produces the downstream of newly linked regions for the hierarchical level one and
the parental pointers for level zero to the GSC database. The higher level Overlap-list Creation uses
both the parental information of regions from the underlying hierarchical levels i-/ and the region
information from the current hierarchical level i to form the overlapping pairs in the Overlap-list
plain. The next Linking stage is similar to the [Initial Linking except for some functional
modification inside the kernel due to the difference in the overlap-list length of the lowest and
higher hierarchical level, which is discussed below. The last two stages are sequentially repeated
until the application reaches the top of the hierarchy.

The subsequent Result Downpropagation phase consists of repeated calls of the Downpropagation
kernel for the higher levels of the GSC pyramid and a finalising call of the Downpropagation &

Result Generation kernel for the lowest hierarchical level. Finally, the result images are transferred
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to the host. The Downpropagation kernel takes the regions with parent pointer information and the
segment information of the parents from the GSC database and updates the regions with the
segment information propagated from above. The Downpropagation and Image Generation kernel
does not update the lowest hierarchical level in the database but propagates the segment values

directly to the pixels of the result image.
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Figure 36: GPU GSC application structure

The principal difference in the computation organisation at the application architecture level
compared to the FPGA implementation is that the Overlap-list Creation is realised as a separate
stage of the GSC processing pipeline, getting its input data from the oft-chip global device memory.
This is explained by the intention to load each multiprocessor of a CUDA device with a higher
number of islands to be processed in parallel to maintain solid up- and downstreams in the device
memory channel. The alternative implementation, in which the overlap-list generation was
combined with the preceding Coding/Linking stage, indicates a significant drop in the overall
performance. This drop is caused by an increasing demand for shared memory resources to store the
intermediate results of the Coding/Linking stage, which puts a restriction on the number of CUDA

threads executed concurrently on each SM.

5.1.2 Global memory data-structure layout

Applications executed on streaming architectures are strongly dependent on the data-flow
organisation to and from the processing units. Memory controllers of GPUs are destined to maintain
solid data streams to keep the processing resources maximally busy. As the synchronous DRAM,

being oriented to burst accesses, is the main storage of CUDA platforms, an application with an
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appropriate data layout in the global device memory can benefit from a maximum utilisation of
DDR SDRAM channel bandwidth.

Considering CUDA as a SIMD-like architecture, the optimal layout of data in the global memory is
if the data elements accessed by load and store operations within a thread block are placed
continuously in the memory space, so that the memory controller can pack the data executed by
thread warps in bursts (i.e. generate coalesced memory transactions). In practice this means that
those arrays of compound data units being processed by concurrent threads, and whose size exceeds

a memory word, are better to be sliced into plains of their constituent elements.

Island Structure of N CEs CE of the CE#1 plain Array of Features of all CEs in an ISk[n,m]
FEATURE | Pos _ |P1|P2 FEATURE | POS |P1[P2] ceafeemn] - eem |
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Figure 37: Data layout for a hierarchical island level in the GSC database
N — number of regions in an island; POS — region position bit vector; P1,P2 — parent pointer

Figure 37 illustrates the appliance of this principle to the layout of the region data for one
hierarchical level in the GSC database. The data organisation scheme in Figure 37a is the typical
layout for the sequential code execution without thread parallelism. Each hierarchical island is
represented as an array of N CE structures placed sequentially in memory. This layer organisation is

referred to as an array of structures.

As the CE structure can be represented in a compressed form that fits into a 32-bit memory word,
the array can be effectively regrouped in N plains of CE structures, so that all CEs with the same
indexes in the island structures are placed serially in memory forming a plain of CEs (Figure 37b).
This data layout is better optimised for GPU memory accesses, but places the additional
requirement for packing and unpacking the CE structure fields on the GPU using bit-wise
operations, as GPU registers are 32-bit words. Moreover this scheme (referenced to as a stack of

compact data-structures) has two disadvantages for the memory channel utilisation.
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During the linking phase a region of the underlying hierarchical level is updated with parental
information, which does not require the modification of the whole CE (see Section 4.1). Meanwhile,
the SDRAM memory array is only 32-bit word addressable making a partial byte modification only
available with a byte masked write operation, which requires a full memory word transaction. This
leads to a nonoptimal utilisation of the memory channel. The same is true for read operations while
detecting overlaps during the Overlap-list Creation. It requires only the parental information from

the lower level and the region feature and region position information from the upper level.

Moreover the parent pointers in a CE are updated by two different linking threads, which can reside
in two different thread blocks. Thus, if both parent indexes are packed in one byte the parent index

update operation will generally be a read-modify-write operation.

These problems with the partial data modification can be eliminated by regrouping island arrays of
CE structures either in arrays of similar CE subfields (features, position vectors, and parent
pointers) placed linearly in memory and forming several subfields' plains as shown in Figure 37¢®
or applying layout scheme shown in Figure 37d. In this later scheme a hierarchical level is
represented as a set of N (or N*2 for parent indexes) plains for each element of the CE structure
with the same CE indexes within the island structures. The first scheme is referred to as subfield
plains and the second referred to as a stack of subfield plains (or simply a stack of plains)

The overlap-list data structure was organised in similarity to the GSC DB layout with the number of
plains being correspondent to the number of overlapping pair entries. The principle difference with
this data organisation is that overlap-list entries can be read and written as single data units without

the need for partial field modification.

The data format of the elementary data units that comprises the various data structures of the
application are described in Table 7.

Table 7: Elementary data unit types

Unit name Intrinsic data type (compact/mem.word size) Data representation
pixel feature unsigned char (8-bit) scalar
region feature unsigned short (16-bit) / int (32-bit) scalar
region position unsigned char (8-bit) / int (32-bit) bit-vector
parent pointer (index) unsigned char (8-bit) / int (32-bit) scalar
overlap-list pair feature unsigned short (16-bit) / int (32-bit) scalar
segment label unsigned int (32-bit) scalar

All elementary data units of the GSC data structures were implemented both as the most compact
data formats (unsigned char / unsigned short) and the format corresponding to a CUDA memory
word (unsigned integer) to test the influence on the kernels' execution performance in various

optimisation schemes.

% Although this scheme has the same disadvantage as layout type LoS-A4 for data organisation in global memory it can be useful in some
cases for overcoming bank conflicts in shared memory of GPUs.
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5.1.3 General optimisation strategies

During the GPU-GSC design a number of kernel implementations were realised to measure the
influence of different optimisation approaches to the application performance. These measurements
were done using specialised hardware counters available within the CUDA profiler. In general the

application optimisation steps can be grouped into the following categories.

Global memory optimisation (addressing scheme and data compaction)

Although the positive effect of an appropriate global memory layout to the device memory channel
traffic is intuitive, it is difficult to estimate its influence to the overall kernels' performance. This is
based on the fact that a different data organisation in the global memory may affect the data

manipulation procedure inside a kernel (e.g. data extraction or local storage reuse).

Memory architecture peculiarity exploitation (texture and constant memory mappin.

The data that do not need to be modified by a kernel can be mapped to cacheable texture and
constant memories residing on-chip close to the processing units. This can release some shared
memory resources occupied by input data arrays, thus allowing a higher occupancy of multipro-
cessors. However, the cacheable memory accesses are generally slower than schedulable coalesced
accesses to the global memory, due to the additional layer in the memory subsystem between the
SDRAM and the processing units. The compromise between the higher processing load and the data

loading efficiency is examined in this optimisation step.

Shared memory lavout (addressing scheme and data volume optimisation)

The shared memory layout, including the addressing scheme and elementary data-type selection,
has its impact on the overall performance of a kernel arising from the need for resolving possible
bank conflicts. Another important characteristic of a kernel is the size of the shared memory
required by a thread block, which determines the number of threads that can be executed on a single
multiprocessor. This size depends on data organisation used in a kernel for the internal representa-
tion of data and the shared memory reuse capability. A careful planning of a kernel algorithm may
increase the utilisation efficiency of allocated shared memory resources, yet influencing negatively
the maintainability of the code. The influence of the memory layout and memory reuse approaches

in the GSC kernels is studied at this optimisation stage.

Kernel control-flow optimisation (execution path and branching minimisation)

When the memory resources allocation is done, the fine tuning of the execution flow of the kernels

can be performed. The optimisation progress of the control flow is examined at this point.

Operation-level optimisation (exploitation of intrinsic GPU functions)

Bit operations are intensively used in the GPU-GSC implementation. The CUDA environment
offers a set of specialised API functions that are fine tuned for the ISA of the target GPU. This al-

lows some basic operations described with the means of high-level programming languages to be
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performed in hardware in an optimal way. The efficiency of the kernel optimisation at the operation

level is tested in this phase.

Block size parameters selection

The block dimensions define the portion of computation resources utilised in a single multi-
processor and may influence data traffic in the device memory channel. This is expressed by the
occupancy, which describes the ratio between the number of warps running and the maximum
number of warps that can run concurrently on a multiprocessor. On the other hand the block size is
restricted by memory resources reserved by the block. In this tuning step the influence of the block

configurations to the different GSC kernels is examined.

5.2 Kernels' implementation

All GSC pipeline stages are implemented in an algorithmically similar way to the FPGA hardware
implementation (Section 4.4.1). Only the linking kernel algorithm has been slightly adapted to the
peculiarities of the GPU hardware to minimise the divergence in the control flow of the parallel
threads.

5.2.1 Region coding

The processing stages of the basic Region Coding kernel implementation are schematically
represented in Figure 38 below. Each CUDA thread is assigned to process its own region island,
having a private copy of a pixel island and a region data-structure in the shared memory. The

Region Coding kernel realises the triplet coding algorithm suitable for SIMD-like architectures.

In the first step a thread prebuffers a number of pixels comprising a pixel island from the global
memory. The addresses of the island pixels in the global memory are defined by the central pixel
coordinates, derived from the CUDA thread indexes, and the relative displacements to the central

pixel of the surrounding pixels stored as a lookup table in the constant memory.

In the next step the pixel pairs comprising the four basic regions are examined whether they satisfy
the linking condition and the correspondent bits are set in the region position vectors provided
merging condition is satisfied. The pixel pair indexes for each basic region are stored in a lookup
table in the constant memory as well as the correspondent pair position bit-masks. Thus, base region
population is realised as a single pass over the index pair array performing a bit-wise operation on

each region position flag vector.

The regions are glued in the next step, if a common position is detected by using bit-wise operations
on pairs of region position vectors. This is done in two passes over the array of region position
vectors. After all base regions are populated the kernel searches for equivalent regions and sets

duplicated regions to null.

When all regions are unique, each thread checks the positions set in every region and sums up the

features from the correspondent cells of the pixel island array. The averages are computed by a
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floating point division of the feature sum by the number of the positions in the regions followed by
a normalisation of the result to be compliant to a 12-bit fixed point value representation. The region
island structure is sent to the global memory afterwards. The algorithm is attractive for GPU
implementation as it is almost free from divergence in the control flow for all parallel threads,

except for the section in which an average is calculated.
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Figure 38: Coding kernel processing flow

The alternative implementations differ from the basic one in the way how the threads manage the
pixel island data. As the pixel islands are arranged in an overlapping structure, the same pixels
stored in the shared memory can be reused by neighbouring threads. This approach may benefit
form a pixel traffic reduction and lower shared memory occupation. The later can lead to a higher
occupancy of a multiprocessor. To test the efficiency of this approach a correspondent Region
Coding kernel is implemented. In the first processing stage this implementation buffers a block of
image pixels to the shared memory with the rest of the Region Coding pipeline remaining the same.
To avoid pixel reloading during pixel buffer filling each thread in a thread block should load a
unique set of pixels. In the implemented kernel each thread fetches four pixels in the bottom-right
segment of an island creating a local copy of a continuous segment of the pixel image. Although the
advantages of this approach look obvious, the implementation has a number of disadvantages.
Firstly, pixel address computation in the shared memory becomes more complex, as pixel
coordinates need to be computed using the displacement LUT. Moreover a common pixel buffer
can generally increase the number of bank conflicts, influencing the performance negatively.
Another downside of this implementation is that the pixel islands at the upper left borders of a
thread block are not complete. This means that thread blocks must overlap in one column and one

row of islands, reducing the effective number of islands processed by a single block.
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Figure 39: Relative performance graph of Coding kernel implementations C1-C20

A solution free from the latter problem is in mapping the pixel image array to the texture memory
without an explicit buffering operation, thus setting the shared memory free from pixel data. The
required pixel data can still reside close to computing resources due to the caching mechanism. To
increase the caching efficiency the pixel image is mapped to a 2D cache that is specially adopted for

data with spatial locality.

The efficiency of different approach described above can be seen in Table 8 and the relative per-

formance of the implementation approaches (identified by numbering) is shown in Figure 39 below.

The basic implementation is realised using different addressing and data compaction schemes in the
global and shared memories to measure the influence of the global memory traffic organisation, the
warp serialisation effect due to related bank conflicts in shared memory, and impact of the shared

memory occupancy on the kernel performance.

The first group of implementations (C1-C4, marked yellow in Table 8) is characterised by the lay-
out of the CE data-structure subfields, in which the structure subfields are grouped in arrays of the
same subfield types laying in sequential positions in memory (row-wise organisation). At the same
time CE subfields of different types are grouped in different plains representing a structure of plains

at a higher data-abstraction level (subfield plains as defined in Section 5.1.2).

The next group of implementations (C5-C9, marked red in Table 8) is characterised by organising
CE data-fields in arrays of plains of region features and position vectors grouped by CE indexes
within the island data-structure (stack of plains layout) in the global memory. In this case the total
arrays of correspondent CE data-fields are seen as a column-wise layout of islands' CEs keeping the
structure of arrays organisation in a higher data-abstraction level view (refer to Figure 37d). C5-C8
have stack of plains organisation also in shared memory. This column-wise addressing scheme may
be beneficial for the shared memory data layout as it allows private data of a CUDA thread to be

placed in one memory bank, potentially reducing bank conflicts within a warp.

The implementations in both groups vary in data format for pixels, region features and position

vectors both in global and shared memories. C1 to C4 indicate that the global memory traffic
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volume does not seriously influence the kernel performance. The more important factor for this

group is the shared memory occupancy, which increases using compact data types.

Compared to the implementations of the first group, C5 shows a positive influence of the data lay-
out in the global memory on the global memory traffic by increasing the coalescing access rate as
indicated by the global store column of the table (gst 32b, gst 64b, gst 128b)*'. C5 and C8 compared
to C6 and C7 indicate a positive effect of the application of bank conflict resolving schemes (see
Warp Serialised column of the table). Meanwhile, it can be seen that a column-wise organisation of
data is not universally applicable. C6 and C7 show that the utilisation of small data types can
destroy the conflict-free organisation, since 8- or 16-bit data of adjacent threads can be found in the
same memory words of the shared memory. This leads to a dramatic decrease in performance
regardless of an increasing occupancy due to data compaction. In this case the row-wise array
layout in the shared memory is more favourable as shown by C9. A compromise between shared

memory occupancy and bank conflict-free layout is addressed in the next implementation group.

The third group of implementations (C10-C12, marked green in Table 8) represents different com-
binations of the data organisation in the shared memory mixing row-wise and column-wise layouts
of the different private data structures of a thread, but keeping the layout in the global memory like
in the second group. The best performance result is achieved with C12, in which only the region
position vectors are organised in column-wise arrays of 32-bit elements, the other arrays having
row-wise layout. This is explained by the fact that the region position vectors are accessed most

intensively in a constant access pattern, while the region feature access pattern is data-dependent.

The forth group (C13-C15, marked blue in Table 8) represents a principally different approach in
the organisation of the input data, in which a block of pixels becomes a common resource for a
number of adjacent threads. As it has been noted before this approach suffers from a more complex
address computation, which can be noticed by comparing the number of issued instruction
(Instructions column in the profiling table) in C12 and C13, notwithstanding a significant reduction

of the incoming pixel traffic (g/d 32b).

Mapping the pixel image to the texture memory significantly reduces the bank conflict rate related
to the common pixel block accesses in the shared memory as indicated by the profiling data of C14.
At the same time the efficiency of the texture cache is relatively high (zex cache hit and tex cache
miss columns of the table) which allows a relatively low latency of pixel data access like in the case
of shared memory utilisation.

The profiling data of the kernel implementations described above are recorded for constant thread-
block configuration of 8*8 threads per block. The last group of implementations (C16-C20, marked
light blue in Table 8) illustrates the influence of thread block resising to the performance of the
fastest kernel C14. As it can be seen block resising does not seriously influence the overall perform -

ance, resulting to about 8% fluctuation in kernel performance.

8 Refer to CUDA Compute Visual profiler manual for detailed description of profiling counters [136].
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5.2.2 Overlap-list creation

The CUDA threads of the Overlap-list Creation kernels are associated with the overlapping points
in the lattice of a hierarchical level. Each kernel detects possible overlapping regions in its lattice
node and stores the overlapping region pair information in correspondent entities of an overlap-list
structure for subsequently linking the regions at the next hierarchical level. A generalised
processing pipeline of an Overlap-list Creation kernel is show in Figure 40 below.
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Figure 40: Processing flow of Overlap-list Creation kernel

Each thread operates on its private copies of the data structures. In the initial processing phase a
thread loads the parent index pairs of an overlap point and the complete region information of the
two parent islands that overlap in this point into the shared memory. Provided both parent indexes
are present, the two parent region features are tested for similarity. The features of two similar
regions, or their average, are placed into an overlap-pair candidate table. To each candidate a weight
equal to the number of positions that the parent regions occupy in their islands is assigned. The
weighting is needed for selecting the most solid overlapping regions, as the number of overlap-list
entities for each overlap point is limited to three. After the overlap-pair candidate list is complete,
the pairs are ranked by their weight, by reordering the elements of both the overlap-pair candidate
list and the correspondent index pairs. It is sufficient to only raise the three heaviest candidates, as
the others will be neglected. After sorting the list, the three overlap-list entities, comprising pair

feature(s) and constituent region indexes are sent to the global memory.

The Overlap-list Creation kernel has two particular realisations for the two levels at the bottom of
the hierarchical pyramid. The Overlap-list Creation kernel for the pixel level lattice detects the
prerequisite merging condition by analysing the region position vectors of two overlapping islands.

If two regions of these islands cover the same pixel, the regions can be tested for similarity.
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Dependent on the overlap-point pixel coordinates the correspondent bit-flag indexes in the position
vectors for both islands are stored in a compact LUT placed in constant memory. The detection of
common pixels is performed by bit-wise shift and mask operations on all regions in both islands to
detect the particular presence of the flag. As a position vector is unique within an island, the kernel

does not need any reduction of overlap-list pairs.

The Overlap-list Creation kernel of one level higher than the pixel level differs from the general
processing scheme in the way the overlap-pair candidates are selected. The maximum possible
number of valid regions in an overlapping point island is three, so data space for one region in
island data structures is left empty by the Region Coding kernel. During the reduction phase the
Overlap-list Creation kernel detects one empty slot in the candidate list and moves the last of four
candidates to the first detected slot, no matter if it is a valid one or not. Thus, the kernel does not
need to weight the candidates and therefore the kernel does not require region position vectors to be
loaded. After rearranging the candidate list the kernel sends the first three overlap-list elements to

the correspondent locations in the overlap lists in the global memory.

During the kernels profiling different implementations were exercised to figure out the influence to
the kernels' performance of the different data layouts and compaction schemes both in global and
shared memories. The impact of application of specialised GPU functions was also tested. The
results are summarised in Table 9. The kernels are grouped by three in the profiling table
corresponding to the pixel level, the secondary lowest level and the higher level overlap-list

creation. Figure 41 shows the relative performance graph of the different optimisation approaches.
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Figure 41: Relative performance graph of Overlap-list Creation kernel implementations OLCI1-OLC14

The approach to search for the optimal implementation by varying the data organisation in the
global and the shared memories remains the same for the first two groups of kernels'
implementations (OLC1 to OLC3 and OLC4 to OLCS8) as in the previous section. The overall
conclusion is quite similar to the conclusions made for the Region Coding kernel:

¢ the reduction of the overall global memory traffic due to smaller data representation types is

favourable for a better kernel performance,



Chapter 5 GPU implementation

130

88¢ Y0€CT |0 0 0 0 clost |0 L9T §9€0T | 1L6T yCI8L | LTy €T 9669 00$ €90°0 | 9LEE6L
(43 0v8T |0 0 0 6€S | S6¥0E | 0 0v01 | €S06T | ¥PET 70869 | S6L 61 TLETT 09T €900 | 000TI8
3 . Auo Liowaw [pqo)3 ui sadAj-vipp jovduiod
8801 wey |0 0 0 869 | 8¢66€ |0 wIT | 98¢y | Tt 9LILET |9LIT 1T 091¥ [48¢ 8810 | 9LE'LIL pun Cowau oy pun paays w suwyd fo 401 [EDTO
85 Y0€C |0 0 0 0 w68yl | 0 543 209TT | 96¥SE 6ve8L | 1Ty @ 9s1¢ 09T STI'o | 08TsTs
S8 ov8C |0 0 8L01 | 991IT | 06LLT |0 T60T | 8LSOE | #8095 11169 | S6L 0c 697 ovl 881°0 | TLY'S8S
P P . . 3 o1 AJuo Liowdw pa.vys ur sadd) vypp 1o0duiod
8801 wey |0 0 91€l | 999T | ¥199¢€ | O 8Ty | TL8LY | €¥0101 Y9¥8€l | 9L1T 1z 0091 L 000 | 91¥'¥8L puv ‘Koot (qoj3 puv pa.vis ut sujd fo yovis (G0
88¢ ¥0€T |0 0 0 0 z1ost 1o L9T S9L0T | LEI9E L1ToL | LT¥ (44 9s1¢e 09T STI0 [ ¥8ILIS
[43 or8T |0 0 0 6€S | S6¥0€ |0 0v0l | €S06T |SOIES 6810L | S6L 0t 69y oyl 881°0 | 8TE'6LY
. . Aiowdut (pqoy8 puv pa.pys ur saddy pipp 1opduiod
8801 wey |0 0 0 859 | 8¢66€ |0 wIT | 98¢y | TLT86 9v90r1 | 9L1T (44 0091 L 0050 | 8957189 puv ‘Koo (pqoj3 puv pa.vys ut sujd fo yovis (DO
¥8S Y0€C |0 0 0 0 o8yl | ¥SO1 | 8LIT | 8FELL | 6S9T SY8SL | 1Tk €T 9669 00$ €900 | 080°8LL
[43 or8T |0 0 8LOT | 991T |06LLT |890€ |109L |¥Tv6l |1LTT 1€0L9 | S6L L1 TLeTt |09t €900 | 8¥¥'9L6
. . . X Atowdw [pqoy3 puv pa.piys ui sadA bipp paom “waut
8801 wey |0 0 91El | 999T | ¥199€ | bTey | 89S8 | 9S90€ | SISvl 9s61¢€1 | 9LIT 0t 091¥ (48! 881°0 | TEP'9T6 pun “Ciowou jpqoy3 puv po.vys s suwyd fo yoviS [FHTO
8¢ Y0€CT |0 0 0 811T |Tv6s |0 9€SE | TEOLE | 9P6LT 6LS8S | STY L1 9s1¢ 09T STI'0 | 89¢01F
[43 ov8C |0 0 0 9L06 |TLSTT |0 YovL | 8809 | 0¥91S €LE6Y | S6L <l (4 ovl 881°0 | 000°00S
" 0 q . . (Z u1 sp s1 jsa. ay})
8801 wer |0 0 0 806¥ | ¥TLYI |0 918 | TovLy | S8pYI 61€vTl | 9LIT 91 0091 (23 00S°0 | 096'YTY | ¢ \omom 10q0J8 pup pa.ys ur s2dd) iop 10dwo)) (€570
78S 0€T |0 0 0 811T |Tv6s |0 9€6E | TE0EE | 99LSSI 09L6S | STv 81 9669 00S €900 | 0¥P'S88
[43 ov8C |0 0 0 9L06 |TLSTT |0 YovL | 8809 |68YECT | L6VOS | S6L a1 cLeet |09t €90°0 | 098°0%01
3 X ( Ul SO S1 1524 2Y}) PaIDYS U] PAOMN WIdUL
8801 wey |0 0 0 806% | ¥TLY1 |0 Y918 | TovLYy | 6S€9¢€1 roLeen |9L1T 91 091¥ [48¢ 881°0 | 080°8SL pup Kiowaut (pqoj3 i sadds pvp 1vdwo) (2970
08S Y0€C |0 0 TS9¢€ | 9IL | TLSE |TLO6 | TIIv | TL8IT |€TI8YL 86€LS | 0TV 81 9669 00$ €90°0 | C€0C68
58 or8T |0 0 TSI8L | TI¥ | #80ET | TISOT |¥8IEL | 9S8EL | TLS6ST 18SLYy | S6L 1 TLETL 09T €900 | OFE06CI
3 X sadAj-vipp y13ua) p.rom wow xp
8801 wey |0 0 9186 | T60¥ |¥TLS | 8TEIT | 9S961 | TLI6T | vOVLST 166911 |9LIT 91 091¥ [48¢ 881°0 | TL9'888 Ciowout ppqoys pup pa.vys ur suyd prufans 7 (1770
" ] ssiu 1y posay] (sa14g) | (sa14g) i
2.4 bo. qezr | g9 | qzs | qszI | gr9 qzs | asyprias | suoy | sayouvig yooig | proayy | dound
2yopd | a1 dod (sn) oy
158 pI3 - 158 158 158 I3 pi3 I3 sdivg( | -onasuf | padiearq 3y £ad Jpod -n200)
xa1 x2] 3y
wowg | wous

Sujrfoad ,suonyppudwa)dtl jou12y U0 JS1]-AD]12AQ) -6 d]qDL




131

Chapter 5  GPU implementation

6¥C Y0€ | L9 £eTeEl |0 65 S659 10 0 0LOY 17881 €911E | P61 w 8779 91 STro 808'1¢€T
LS9 ¥8S | 19L LSEST |0 L1E | 99911 |0 0 LY8S £€9081 S91S9 | T€9 [43 081¥ ¥8 005°0 [qa%:y4
0v8 0 19Ly | SLSEL |0 687 | T8SSI |0 0 0 14%44 8€856 | T¥8 L1 ¥9 8y 0SL°0 881°€0¢ az150.4 Y0019 (FIDTO
824 s |90L o6zl |0 0 8LITL |0 0 08CL | L8T0E 00209 | 9¥€ w 0291 91 0sT’0 ETLYT
LS9 ¥8S | €9€T | LIVYT |0 SL ceote |0 0 678 9€8¥C LT8S9 | Tl6 [43 8011 78 0050 | 009°68C
o o . . (01 u1 sv ;nodvy vyop) uonorduiod Aijua
89L 0 LLT8 | 68059 |0 0¥ | 8TI8T |0 0 0 Y0101 Tr6g6 | 60€T L1 ¥9 8y 00S0 | ¥OLTIE 1851]-dvjaoa0 oy Surddpw Liowaw 2.4mx2 1 [(JIRETE]
a1 s | 10L L06ZT1 |0 0 9tLE |0 0 08CL 18962 Y09LS | ShE w 9191 091 0ST0 | 09¢T1T
€1T 89S |989T | vS8ET |9L €51 |oLTL |0 0 [4323 1ceie 0LIE9 | L¥6 [43 Y011 08 005’0 |0T6'ITT
3 X (6 u1 s 81 1500 Y1) U0YILAUIOD
9LT 0 0006 | ¥LYOL |91Y w8 | Sl |0 0 0 899 LTIL6 | 8TYCT L1 09 144 0050 | O¥P'E6T A319ud 151)-dv 11200 y1on Surddow Liowow 2133 ] [GATRRTE)
0s1 Y0€C |0 0 0 0 LILE 10 £9C §0T0T | €clce STITY | LvE 0t 89LT (474 9s1°0 T66'9LE
€I 0v8T |0 0 6L PSL | 1€EL |0 LTO1 | 8986T | LTOLY LS089 | 108 0z L1y 8Tl 8810 | 000°TLE
N 3 . (6 ul Sv 2wDSs 2y} SUIDWL LIOWdUL P2.DYS Ul UONDSIUDS.0
9LT 9Ivy |0 0 9y (42 A (] 88CC | vTich | 898¢l wivol | vleT 0t 9661 89 005°0 wsLoge vpp) woyonduiod Gyua 1sij-dopioa) (DO
8CS 89¢T |0 0 0 0 SveEl | 0 SLT 60€0T | $$99T 9ITys | Tre L1 TLLe 9¢€T 9S1°0 | 008'8¥¢
LS9 0z6T |0 0 0 SL ceoTe |0 6501 | ¥SL6T | 80T9€ T0EIS | 8LL Sl 081¥ (43} 8810 | 0T965¢E
. . (6 Ul SD UIDS 2] SUIDUID.L SILIOUIdUL PAIDYS PUD [PGOLS Ul
89L 960¥ |0 0 0 ovc | 8CI8T |0 0T61 | ¥8L8E | 68881 T€9001 | LLTT 0c 0091 L 00570 8957607 uoysiu3.i0 pip) uoupsiuydo jaa] uoyn.odo NN
8T¢ 89¢T |0 0 0 0 S¥oel |0 SLT 60£0T | €9¥ST €019 | £¥E L1 TLLT 9¢T 9S1'0 | ¥98°09¢
LS9 0z6T |0 0 0 SL eote |0 6S01 | ¥SL6T | 80T9€E 979ts | 8LL St 081¥ (43} 8810 | ¥98'¥9¢
. . (8 U1 SD 2WIDS U} SUIDWD.L SILIOUIDUL PADYS PUD [DGO]S
89L 960¥ |0 0 0 ovc | 8CIST |0 0c6l | ¥8L8E | ISVLI 80¥911 | 001T 81 0091 L 000 [ 09181 uy woypsuDS.10 DDP) PaSvEAD Aua 151-doloA0) (GO
(229 89¢T |0 0 0 0 Y06¥1 | 0 SLT 60€0T | ¥918¢€ 01$€9 | vO¥ 81 9s1¢ 09T scro wresy
9L8 0T6T |0 0 0 L o |ortoe |0 6S01 | ¥SL6T | 18781 SISTS | 8LL Sl 697 oyl 8810 | 0VO'ETH
Aiowaut [pqo|3 uy
¥2ol | 960% |0 0 0 08y | vPeELE | O 0T61 | ¥8L8E | 09081 10¥911 | 001T 81 0091 L 005°0 880°L6Y | pup pavys uj sads} bipp 1o0duiod pup ‘{iowaul pavys ul
sumpyd prayfgns ‘Ciowout pqoy3 uy suwyd fo yovig I
; (sa14g) | (sa1lg)
ha. baa | m ascr | qr9 | 9cE | qscl | 99 qce | osHPHAS | suol | sayoung pootL yoig | prayr | douvd
a1ond | 2yoDd 42 (sn) auiyy
1858 I8 o g 158 153 188 P8 I8 i3 sdwy | -onusuf | pasiaalq 5o Aod Jad -n2o0
x21 xo1 R wowg | wowg

(panunuoo) 3uijifoad ,suonpiuduid]dull [oU12Y UOLDLD JS1]-dD]IAQ) ¢ ]GV




132 Chapter 5 GPU implementation

» subfields of compact data types should be organised in row-wise arrays with regard to the

reduction of bank conflicts and

e the strack of plains layout in the global memory results to coalesced memory accesses and

hence in a better traffic organisation.

The later conclusion is not evident from the data shown in the profiling table of this section and is
worth a special discussion. The profiling data for OLC3 and OLCS8 shows a small increase in the
clapse time for the pixel level and the higher level Overlap-list Creation kernels for the
implementation with the stack of plains data layout in the global memory. The information given in
the global load and global store columns of the table (gld 32b, gld 64b and gst 32b, gst 64b) shows
a solid upstream traffic quality improvement in favour of stack of plains data layout. Meanwhile,
the quality of the downstream traffic drops more dramatically. It happens due to the fact that
indexes of overlap-pair regions are stored in two separate stacks of plains (separate stacks for right-
hand and left-hand parents in a pair). This results in a significant distance between the region
indexes in the address space of the global memory leading to wide scatter operations for memory
controller, which cannot be well coalesced. Meanwhile, this traffic overhead is much more than
compensated by a significant improvement of the upstream traffic to the Linker kernel

implementation if exploiting the stack of plains data-organisation scheme (see Table 10).

OLC9 addresses the problem of reducing the downstream traffic. To do this the overlap-list entity
structure has been modified to the variant in which the feature information of a pair is represented
by the average of two overlapping regions instead of two region features stored separately.
Although this approach results in a significant traffic reduction, it requires extra computation for the
average calculations. The matter is that for the average feature the quality of the linking may be
influenced, as the mean values of two overlap pairs already include the feature contribution of a
common subregion and thus may lead to the chain error effect. To eliminate this effect the overlap-
pair average is calculated as a weighted average of the regions, in which the weights are determined
as the number of bits set in their region position vectors. In this case the average is shifted to the
feature of the most solid region. As indicated in the profiling table the implementation of the
approach with downstream traffic reduction results in a significant performance increase of the

kernel.

OLC10 demonstrates the influence of operation-level optimisations. In the pixel-level kernel the
optimisation is related to the procedure for the common pixel detection in regions of two
overlapping islands. The four 8-bit region position vectors of each island are packed into one single
32-bit register and the whole register is shifted once for a fixed number of bits taken from the
lookup table, instead of shifting each region position vector in the shared memory. Afterwards the
whole register is masked with a 32-bit vector, in which every first bit in a byte is set to one.
Alternatively the register can be masked directly with a bit vector from a lookup table in the
constant memory that contains the above bit masks shifted for a certain number of bit positions in

advance. The later modification gives a slight performance improvement. After masking, only one
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position in the vector can remain to be set. Using the find first set function from the CUDA API this
position can be identified. The integer division of the returned number by the number of bits in a
region position vector results in the required index for the region. Another CUDA API function
counting the number of set bits in a register is used to determine the weight of a region and is

applied to all three OLC kernel types.

The idea realised in OLCI11 consists in the further traffic optimisation for the overlap-list entities
and the minimisation of the scattered accesses to the overlap-list array in the global memory. For
this the overlap-pair entity is stored as a compact structure, in which the pair average and the two
region indexes are stored in a single memory word. Although this approach increases the
complexity of the kernels due to additional operations for structure compaction and the overall
downstream traffic for one byte per overlap-list entity, the approach is beneficial for the Linking

kernels (see Table 10 in the next section).

The performance balance between the implementation with and without overlap-list entity
compaction is even shifted to the prior solution with the exploitation of texture memory in OCL12
and OCL13. In these implementations the read-only parent region data were mapped to the texture
memory. This showed a notable impact to the performance of the secondary lowest and higher level
kernels due to a significant improvement of the shared memory utilisation leading to a higher

multiprocessor occupancy.

OLC14 shows the performance of the kernels with optimal thread block configurations of 16*12 for
the pixel level kernel, 16*16 for the secondary lowest level kernel and 8*8 for the higher level

kernel instead of 8*8, 8*8 and 4*4 exercised in previous implementation.

5.2.3 Linking kernel implementation

The direct implementation of the linking approach realised in hardware (Section 4.4.1.2) showed a
relatively low performance of the linking state machine due to the high divergence in the parallel
threads. For this reason an alternative algorithm was elaborated for realising the linking procedure,
which allowed an increase of over three times in performance, but still implemented the same
functionality. This alternative approach is based on the bit-vector representation of the overlap-list
connectivity information. Each bit vector (referred to as a connectivity vector) corresponds to an
overlap-list entity and represents the relative positions of two overlapping regions in a macroisland.
A connectivity bit-vector consists of seven subvectors correspondent to the seven subislands in a
macroisland (referred to as subisland bit-groups). The number of bits in the subvectors corresponds
to the number of regions in the subislands of one hierarchical level. A bit set in a connectivity
vector unambiguously identifies a particular subregion within a macroisland. If two connectivity
vectors have two bits set at the same position, it indicates that two overlap-list pairs have a common

subregion and the subregions represented in both pairs may be linked together to form a
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macroregion. The processing pipeline of the Linking kernel realising this approach is depicted in

Figure 42.
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Figure 42: Processing flow of Linking kernel
OPN — number of overlap points in a macro-island; NP — number of entities per overlap points in overlap-list
structure; NSI — number of sub-islands in an island;, NR — number of regions in a sub-island at a given
hierarchical level; Pn indx — parent index of sub-regions

The CUDA threads of the Linking kernel are assigned to macroislands of a hierarchical level i. Each
thread works on its own copy of data structures placed in the shared memory. At the initial stage of
the processing pipeline the overlap list correspondent to the thread's macroisland is loaded from the
global memory. At the next stage every index pair in the overlap list is converted to the bit-vector
representation using bit-wise operations. Afterwards the connectivity vectors are glued realising the

linking operation on subregions.

The gluing operation is performed by two nested loops over the connectivity vector table. In the
outer loop a search for a new macroregion root is done. When a new root is detected the inner loops
start a search for the next link candidate. If a common subregion is detected in both connectivity
vectors they are tested for similarity. In the case of similarity one of the connectivity vectors is
updated with the new bit positions and the average feature is written to a correspondent entity of the
overlap-list table. The second connectivity vector is nullified and the search for the next linking
candidate proceeds until the bottom of the table is reached. The decision which vector is to be

updated depends on the processing of the connectivity vector table. The experiments show that the
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descending vector propagation, in which the chain root is reassigned to the newly linked candidate,

reduces the overall execution path and leads to a higher performance of the kernel.

After all possible connectivity vectors are glued the resulting vectors represent complete chains of
subregions each corresponding to newly linked macroregions within a macroisland and respective

feature fields in the overlap-list table.

In the next step the parental relationship between macroregions and the contributing subregions is
established. A thread searches for a nonempty connectivity vector in the connectivity vector table
and analyses the bits set in it. The position of a set bit gives the index of the subisland and the index
of the contributing subregion within the subisland. Using these indexes, the order number of the
nonempty connectivity vectors is written to a special data structure representing the parent index
fields of the subCEs.

Afterwards, the connectivity vector table is scanned again to generate the region position vectors of
the newly linked macroregions. This is done by analysing the complete subisland bit-groups of

nonempty connectivity vectors.

In the last stage the results are offloaded to the GSC database. Sending the macroregions to the
global memory in the same order as they were processed during the parent index assignment

guaranties the consistency of the parental information in the CEs of a hierarchical level i-1.

The profiling results of the Linking kernel implementations with different data organisation and the
impact of the application of specialised GPU API functions are shown in Table 10. The kernels are
grouped by two in the profiling table corresponding to the Initial Linking and the General Linking.

The relative performance of the different optimisation approaches can be seen in Figure 43.

120%

100%

80%

60%

40%

20%

0%

M Initial linking M General linking

Figure 43: Relative performance graph of Linking kernel implementations L1-L14

The experiments with different data layout in the shared and the global memories in L1-L3 and L4-
L8 lead to the same conclusions as for the Region Coding and Overlap-list Creation kernels

described in the two sections above.
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Interesting results are observed in the profiling data of L8 for the General Linking kernel. The
implementation is configured with two different options for the layout of the connectivity vector
table in the shared memory. Connectivity vectors of the General Linking kernel are coded in four
full memory words. Therefore, the column-wise organisation of the connectivity vector table may
benefit from bank conflict-free accesses to its entities as indicated by the Warp Serialised column of
the profiling table. Meanwhile, the computation of the addresses for the column-wise organised
array become more complex than the address calculation row-wise layout, which is indicated by a
significant difference of instructions (/nstruction column of the profiling table). It should be pointed

out that the overall performance shifts the solution towards a tangible bank conflict rate.

L9 shows the influence of a change in the overlap-list entity structure, in which overlap lists contain
averages of an overlapping region pair. The small increase in the kernels' performances indicates the
low impact of the upstream traffic to the overall kernels' elapse time, emphasising the computation

intensity of the linking.

L10 targets an optimisation of the kernel control flows. The connectivity vectors' gluing loop is
modified to reduce the number of passes over the connectivity vector table in the way that roots of
newly linked region chain are moved down towards the bottom of the table instead of keeping the
initial positions of the root regions as it was realised in the implementations before. Additionally the
procedure for updating region position vectors of newly linked macroregions was extracted from the
gluing loop to a separate pass over the connectivity vector table after the table is glued. This
resulted in shorter branch traces beneficial for the execution flow of a multiprocessor in case of

execution flow divergence in thread warps.

L11 applies CUDA API functions to the procedure of parent index assignment to subregions within
the macroislands. In the former procedure positions set in a connectivity vector were detected by
shifting the vector bit-by-bit over the whole vector width. The application of the ser-bit counting
function (__popc) and the find first set function (_ ffs) allows the reduction of the amount of
iterations over the connectivity vector to the number of current positions set, thus leading to

significant performance improvement.

L12 shows the positive impact of the overlap-list entity compaction on the overall performance of
the kernels, which shows the best result among the implementations described above. Meanwhile,
the optimisation approach realised in the next implementation excels it in this parameter due to the
higher occupancy of multiprocessors caused by reducing the shared memory used per thread. The
main idea of this approach is that the indexes of subregions stored in overlap-list entities may only
be used once for the initial filling of the connectivity vector table and that the subisland and
subregion indexes for the establishing of the parental relationship between newly linked
macroregions and their contributing subregions are derived from the connectivity vectors after
gluing. Therefore, the shared memory allocated for subregion indexes in the overlap-list table may

be reused after the initial connectivity vector table is built.
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In the implementation realising the shared memory reuse approach, the Linking kernels use the
same overlap-pair feature array for storing both subregion indexes and the average features in the
different kernel execution phases. The average feature loading is postponed until the connectivity
vector table is built using the subregion indexes loaded before. Afterwards the indexes are
overwritten by the overlap-list entity features. This means that the approach with the shared
memory reuse is not compatible with the overlap-list entity compaction approach because in this
case the same data will be loaded twice by the global memory controller. That is why the kernel

applies the stack of plains layout for data organisation in the global memory.

Unfortunately the texture memory utilisation, which showed a positive impact on the performance
of the Region Coding and Overlap-list Creation kernels, is not applicable here. The reason is that
the data manipulated by the linking procedure is constantly modified in the lifetime of the kernel,

which would make local copies of the data structures in the read-only texture cache incoherent.

The high amount of the shared memory used by a thread does not give much space for block size
optimisation. The block dimension configurations — 4*4 for the [nitial Linking kernel and 2*2 for
the General Linking kernel — used for the profiling implementations described above appeared to be
the optimal. L14 illustrates an attempt to increase the block sizes to 8*4 and 4*2 configurations,
respectively. As it can be seen a change in the blocks' dimensions leads to an overall performance

drop.

5.2.4 Downpropagation and result generation

The CUDA threads of the Downpropagation kernels for the result generation are bound to the
islands of a level i. The regions in these islands inherit the segment information (feature and/or
label) from the parents one level above (i+17). The threads of the initial kernel implementation work
with private copies of their islands and the two parent islands all placed in the shared memory. The

generalised processing pipeline of the kernel is shown in Figure 44.

At the first stage a thread loads all CEs of an island (feature, position and parental information) and
their two parents (segment features and labels). At the next stage going over all regions the segment
information from the upper level is downpropagated if parents exist or, otherwise, a new segment
root is formed. A new segment key is generated as a combination of the hierarchical level number,
the CUDA thread index, and the index of a region in an island. This mechanism guaranties the
uniqueness of a segment label. The validity of a region is checked by the region position vector®?. In
the final step the segment features and labels assigned to regions are offloaded to the global
memory for the next downpropagation iteration.

At the bottom of the GSC pyramid, the regions are not updated in the global memory. Instead of
that, the segment labels and features are directly assigned to the pixels of the label and feature

images. This image generation is done using the information stored in the region position vectors.

#2Region feature can be used as alternative for region validity detection, as a feature is stored in an intrinsic data type having more bits
than it is needed for feature presentation.
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The downpropagation to the bottom level is done by a specialised downpropagation kernel called

Image Generation kernel.
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Figure 44: Processing flow of Downpropagation kernel

As an alternative to the initial implementation different versions of the kernel exploiting the texture
memory instead of shared memory and using an explicit buffering of read-only data are realised and
analysed for efficiency. The joint results of the kernel implementation profiling can be found in
Table 11. The kernels are grouped by two in the profiling table corresponding to the
Downpropagation and the Image Generation kernel. The relative performance of different

optimisation implementation approaches is shown in Figure 45.
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Figure 45: Relative performance graph of Downpropagation kernel implementations DP1-DP9

The results for the different data layouts in the global and the shared memory indicated that the use
of compact data types is preferable for the Downpropagation and the Image Generation kernels.
The data organisation scheme in the global memory does not affect the performance of the kernels

seriously as can be seen from comparison of profiling data for DP3, DP5 and DP6. It should be
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determined by the requirements of the more time consuming /inking phase, which benefit more

from the stack of plains layout in the global memory.

The data organisation scheme in the shared memory does not influence the performance much as
well due to the fact that the shared memory is not intensively used be the kernels. Most memory
operations are read-only accesses to the parent indexes of regions and the parent regions' data. The
accesses of the second kind are sporadic (parental index dependent) and thus having no regular
access pattern over the kernels' execution flow, which makes the bank conflict prediction not

realisable.

Taking into account the peculiarities of data manipulated in the kernels, most of the data structures
are moved to the texture memory and only modifiable data structures are kept in the shared memory
(segment features and labels of regions, local copies of a pixel island in the /mage Generation
kernel). The results of this modification can be seen in the kernel profiling table for DP8. The
influence of the thread block resizing is shown with the profiling data for DP9. It has the optimal
block sizes of 8*4 for the Downpropagation kernel and 8*8 for the Image Generation kernel instead

of 4*4 and 16*4 in the initial configuration.



6 Results comparison

6.1 Application performance and dataset scalability

The main exploitation indicators for HPC that are paid attention to firstly are computation
performance, hardware and setup costs, and power consumption. The cost and power parameters of
both solutions lay in the same range of a few thousands Euro and some hundred Watts per board
and are not specially addressed in this work as well as the systems' operating characteristics as fault
tolerance, computing reliability, etc. The present work addresses only the question of application

performance.

Figure 46 illustrates the performance comparison of two GSC solutions — the maximally optimised
GPU implementation on a top class nVidia Tesla C1060 at 1.3GHz of graphical core clocking and
the FPGA implementation in the 3x3x3 configuration® maximal supported by Xilinx XC2VP100 at
100MHz. Figure 46a gives the absolute processing time for a number of image resolutions. It is
significant that in the rage of small resolutions the GPU elapse time stays approximately the same,
although the amount of raw data increases four times in each resolution step. Additionally the GPU
solution yields to the FPGA implementation notably up to 512* image sizes (Figure 46b). For higher

resolutions the performances become almost even™.

Figure 46¢ shows how the processing time scales with the change of the image resolution for each
solution. The processing time of the FPGA solution scales almost proportionally to change of data
volume, although there is a small tendency for the ratio to grow with an increase in image size. This
is explained by the relative increase of the auxiliary data traffic related to overlapping rows of
islands in the hierarchical level processing organisation (refer to Section 4.2.3) for fixed processor
arrays' sizes in the GSC processing units. The processing time of the GPU solution does not scale
proportionally to the data volume for smaller resolutions. Together with the almost equal processing

time this indicates that for the GPU solution some fixed constituent related to the computation

% 3x3x3 indicates the number of island rows in the island row blocks processed by initial linking processing, general linking and down-
propagation processing units, respectively.

% For the higher resolutions the performance behaviour does not follow the trend, because both implementations suffer from problems
with data placement in memory caused by limitations of data size allocation in specialised memories of the current GPU architecture
and sizes of memory banks in case of FPGA solution. Therefore, the both solutions require different implementation modifications.
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organisation on the GPU exists, which becomes significant for smaller data volumes processing. No

optimal computing payload distribution for small data sets is the other reason for this behaviour.
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Figure 46: Processing times and dataset size scaling ratios
a) Processing time for different resolutions (ms); b) GPU to FPGA processing time ratios
¢) Processing time scaling ratios (next to previous resolutions)

In general the systems built around shared memory resources do not have such elastic scalability
over the number of processing elements as distributed systems have. The ultimate limitation of the
performance for an application on such systems is the bandwidth of their data channels to shared
storage. On both platforms the GSC application is implemented in a way that the shared external
storages accommodate the main volume of intermediate computation data, although serious efforts
have been applied to minimise the external data traffic and to exploit the local memory resources.
Considering the data models of the GSC implementations as they are described in Chapter 4 and
Chapter 5, it can be seen that the FPGA implementation has a solid potential for performance
improvement by increasing the number of specialised processors (currently limited by resource
budget of the die) in the GSC processing units until the memory bandwidth is saturated. Building
these characteristics for GPU is not feasible. However, it can be assumed that the top model GPU
card is designed to exploit the bandwidth of its DRAM maximally, thus further system scaling is not
hypothetically effective.

The peculiarities of the computing architectures are well illustrated by the processing time

distribution among the different hierarchical levels. Typical level processing time profiles for the
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FPGA and GPU implementations are shown at Figure 47a. The graph shows the processing time for
the first five hierarchical levels of linking (1-5) and the downpropagation (6-10). In order to ease the
comparison, the stages of the GPU-GSC pipeline are grouped together to match the FPGA-GSC
pipeline stages, e.g. the processing time for the coding, the initial overlap-list creation and the initial
linking GPU kernels are summed up together to be comparable with the elapse time of the initial
linking stage of the FPGA solution. It can be seen that the processing time curve for FPGA solution
precisely follows the curve of data traffic to external memory, which highlight the data-flow nature
of the FPGA solution. The GPU elapse time profile shows that only the downpropagation tail (6-10)
of the curve achieves a proportionality of data volumes. The linking curve of the GPU solution
seems to be much more disproportional. This curve shape accentuates the difference in the way the

streaming architecture of the GPU handles different type of algorithms.

The downpropagation kernels are characterised by short, predominantly linear control flow paths.
The kernels are light and are not burdened with large and complex data structures placed in the local
memory of processing cores. The linking is a difficult task for an SPMD architecture, which can be
seen from the significantly steeper incline of the left half of the GPU curve at Figure 47a. The
control flow of the linking kernels is intricate; the kernels have to handle a large amount of data in

shared memory of the Streaming Multiprocessors.
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Figure 47: Typical level processing time profiles for FPGA and GPU implementations
(sampled for 1024° image size, y-axis is time in micro sec.)
a) FPGA and GPU combined profile; b) GSC GPU stage detailed profile

Figure 47b shows the impact of the linking kernels to the processing time of the linking phase in
more detail. While the coding and overlap-list creation kernels obey the general tendency of the left
half of the complete GPU curve, the linking kernel processing times stand out against the general
trend as local seriously distinguished maximums, although the data flows into and out of the
adjacent processing stages are equal. Notable is the big difference between the execution times of
the initial linker kernel and the first general linker kernel. This is explained by the significant higher
complexity of the linking algorithm at higher levels. Considering only the data traffic associated

trends it can be assumed that the GPU could seriously outperform the FPGA solution, if it could
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overcome the limitations of the current SPMD architecture. In the simplest case this can be

achieved by just an increase of local memory resources (refer to Section 5.2.3).
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Figure 48: GSC application performance in comparison to CPU solutions
a) Elapse time in microseconds; b) Performance acceleration ratios

At Figure 48 both solutions are compared to the CPU implementations of the GSC. It can be seen
that both the FPGA and the GPU solutions show a drastic acceleration of the application compared
to the single CPU approach and a significant speed-up compared to the OpenMP parallelisation
approach. It is notable that the SMP solution is not advantageous from the point of view of system
scaling. So, for example, doubling of the number of processors does not have any noticeable effect.
This is related to the fact that the granularity of the parallelism is very high for the GSC
implementation. Several parts of an image are processed in parallel by different CPUs, but should

not be made smaller due to increasing overheads for synchronisation.

6.2 Comparison of application development factors

The other group of metrics being significantly important for HPC are characteristics related to the
application development process. These characteristics are difficult to compare quantitatively, thus
they are treated in a form of an expert assessment. Among the major factors for comparison are the

implementation efforts, modifiability, maintainability and portability.

6.2.1 Implementation efforts

Estimations of implementation efforts can normally be supported with numbers. Good candidates to
be a measure are the market prices for similar solutions, manpower required for the implementation
of each solution, and number of code lines written for each implementation. Each of these metrics

has its benefits and limitations in use.
The most objective measure is the price comparison as the market levels all nuances of the
development process such as qualification of workers, methodological or instrumental difference in

the design approaches, cost of equipment and intellectual property purchase, etc. A big advantage of



Chapter 6 Results comparison 147

this method is that, provided the exploitation characteristics of two solutions are equal, it can be
used to compare solutions based on principally different technologies such as HW design and
programming. However, this indirect economic assessment approach has a serious limitation — the
comparable solution should be available at the market or there need to be a methodology in order to

make the available solutions comparable.

The comparison of the solutions based on the needed manpower can be attractive as the approach
directly operates with the amount of time required for each solution development. The approach
allows the analysis of the time structure of a work package in details, i.e. the time for designing,
coding, debugging, testing, etc. However, the time-based method has a notable expense; it requires
a well-developed project-management system and extra administrative efforts. For the comparison
of solutions this approach poses a serious restriction to the implementations. It is necessary that the
solutions are implemented by executors with comparable skills in each technology. In case different
solutions are implemented by the same person, it is necessary to take into account an education
curve and training time if the developer is not of the same experience level in different

technological fields.

The effectiveness of the development efforts' estimation using the third approach is the least

evident. The approach has a number of restrictions, which make the method limited in applications:
e the implementation effort indicators can only be derived indirectly with some propositions
in mind; in particular, the development efforts for making a code functional, e.g. debugging
and testing, which normally take a serious bulk of the development time, are completely
invisible;
e the code style directly influences the number of lines in a code;
» the syntax specifics of different implementation languages allow a different effectiveness of

the coding.

However, in the present work this method can be effectively applied for the comparison of the
FPGA and GPU solutions. Taking in account that SystemVerilog has a C-like syntax and the
implementations are realised by the same person the two last limitations mentioned above can be
neglected as the code structure of both solutions can be considered being equivalent. The advantage
of this approach is that it eliminates the education curve by comparing only the mature resulted
code of both solutions. The efforts for the code debugging are supposed to be proportional to the

code amount and do not need to be illustrated in absolute values for the comparison analysis.

Figure 49 compares the code amount of the two implementations in their final versions and
illustrates the structure of the code for the FPGA and GPU solutions. Alternative realisations of the
FPGA modules and GPU kernels are not counted, so as if the projects have been implemented in
accordance to precise specifications of computing systems without an experimental design search.
The code for the preimplementation modelling is not included as well, as it is assumed to be used
for both the FPGA and GPU solution.
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Figure 49: Number of code line comparison for GSC Implementations
a) FPGA and GPU solution comparison; b) FPGA code structure

The left diagram shows the relationship of the FPGA and GPU codes. It compares both the GSC
specific and the auxiliary codes for the computation organisation. In case of the FPGA solution the
auxiliary code implies the code being related to the infrastructural components of the SoC*. The
GPU auxiliary code includes the procedures needed for computations' organisation, memory
management, kernels' configuration, procedures needed for debugging purposes, etc., while the
GSC specific code generally covers the code of the GPU kernels. As it can be seen from the
diagram the amount of the overall FPGA code is 8.5 times higher than the total GPU code, while
the GSC specific code ratio is about 7.7. These figures emphasise the complexity of a hardware

design compared to a GPU software development.

The right diagram offers a more detailed view to the FPGA code. It can be seen that the
infrastructure development took a solid bulk of the logic design. The verification code of the
infrastructural modules is approximately equal to the RTL code of the modules. Taking into
consideration that the verification code is written in a higher level of abstraction and that it is much
more compact for describing the same functionality, the figures show how much efforts are
normally made for the verification of reusable universal components of a system. Most of efforts in
this case are initial investments for the development of the verification environment and reusable
verification components. At the other hand the proportion of the verification code for the GSC
specific components is much lower due to the fact that the computation modules are built using
universal reusable components already constrained with intrinsic verification checkers and that the
subject of verification in this case becomes a pure functionality of the computation units without

signal or temporal-logic level details.

6.2.2 Functional modifiability

For the comparison of the two solutions also the term functional modifiability is used in this work.

The term is notably distinguished from the ease of code modification®, which is per se associated

$3FPGA SoC line count does not include the DDR SDRAM controller core, which has been delivered as a netlist IP.
%1In software engineering this characteristic of a code is defined as Perfective Maintenance as stated in ISO/IEC 14764.
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with the implementation effort parameter. The functional modifiability implies more the
characteristics of underlying computing architecture flexibility and is closely associated with the

performance of an implementation after introducing algorithmic variations.

As it can be seen from the previous section, the code amount for describing a similar functionality
for the FPGA and GPU significantly differs in favour of the latter technology. This is natural as the
description of the functionality is done at different levels of abstraction — the logic design requires
some hundred thousand signals to be described with their logical connections and synchronisation,
whereas the software development only needs the description of the data manipulation sequence on
a well-established set of hardware. Therefore, it is evident that bringing in changes to a code and

ensuring its functional correctness is significantly easier for the software approach.

However, the extent of changes for upgrading a code to an enhanced functionality, i.e. the
proportion of newly introduced code to the stable code, and the influence of these changes to the
application performance is ambiguous. Different solutions will react to the introduction of minor
qualitatively changes to a target algorithm with a variable response for the application performance.
The functional modifiability aims to reflect the flexibility of an implementation on a target
computing architecture to enhance the algorithm for performance. This characteristic is definitely
not a universal characteristic of a system but should be viewed in combination with a particular

algorithm or computing method®".

For the GSC method this metric is best applied to the linking phase which offers several variations
of sequential linking approaches each influencing the quality of the segmentation results (refer to
Section 4.1.1.2). Both the FPGA and GPU solutions realise the Centroid Linking Method, which
can be enhanced by two modifications. One realises an advanced procedure for the next candidate
selection by using the minimal feature distance criteria. The other consists in an enhanced feature
computation by weighting the subregions depending on their sizes (number of CE;, or number of

positions taken in a respective island 7.;).

For the realisation of the enhanced candidate selection in FPGA a reduced variant of the bitonic
sorting algorithm can be effectively used as a parallel solution to find the minimal feature distance
for the candidates. For six potential candidates the utilisation of this algorithm increases the number
of clocks per linking step to four clocks in case of forward tree traversing. This modification
increases the linking time by about 1.6 times as modelling indicated. The modification of the
linking processor requires adding two extra stages in the linker SM and some combinatorial logic
for the realisation of the bitonic algorithm. The implementation of this upgrade changed the code
length of the general linking processor by about 8% counted in physical SLOCs (added, removed,

or modified against the original number of code lines).

The realisation of this linking enhancement for the GPU leads to more dramatic changes in the

code. In fact the optimised approach of the bit-vector gluing does not work for the selective linking

% When treated generally this characteristic should be understood as flexibility of a computing system or similar. Such analysis is too
general and is beyond the scope of the work.
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as it cannot use the bit-position analysis in the connectivity table. The modification of the linking
method requires primarily the modification of the gluing loop (refer to Section 5.2.3), which
increases dramatically the number of connectivity vector traverse iterations and makes a compact
overlap-list representation impossible, thus leading to a higher shared resource demand. The
modification of the linking algorithm results in a 36% enlarged code and increases the elapse time

of general linker kernel by 2.7 times as the profiling showed.

The expenses for the weighted feature modification are much higher in both cases. Due to the
significant modifications in the designs requiring a solid reengineering these expenses are described

roughly without precise figures.

The weighted feature modification requires cardinal changes in those GPU kernels that are related
to the global modification of data structures. To implement the weighting a kernel needs to have the
information about the size of a region. This size is computed during the linking of lower
hierarchical levels and needs to be forwarded to an upper linking procedure via an overlap-list
creation process using the GSC DB (joining the linking and overlap-list creation kernels showed to
be ineffective for application performance), which can significantly influence the traffic to and from
the external memory. In this case the code of the kernels requires not a lot of modifications and only

relatively inexpensive arithmetic add-ons, which can be estimated in a dozen of lines per kernel.

In contrast, the implementation of this functionality in the FPGA solution faces a problem being
related to the realisation of arithmetic operations. At the same time the data structures in the
external memory are not affected significantly. The region weight information can be integrated in
the existing overlap-list structure without any changes in its size. This means that the overall
external traffic of the system does not change, which is significant for the performance of a data-
driven system. At the same time the FPGA solution suffers from the lack of the implementation of a
fast division operation. The division module being implemented in the studies and realising a slow
division algorithm requires n+2 clocks for one division operation, where # is the bit width of a
divisor. Although the division operation is executed only once per linked region, this additional
time can be quite sensitive for the linker’s performance provided that the number of linking
processors cannot be increased for pipeline rebalancing. The implementation of fast division
methods, e.g. multiplication by the divisors' reciprocal is the subject of a serious redesigns of the
data path of the linker processor. The code changes in this case can be comparable to the size of the

original module.



7 Summary

The progress in computer science and technology, achieved in the beginning of the XXI century,
has opened the era of high performance computing in the segment of mini- and microcomputers.
This made the power of supercomputers and the high accuracy and realism of advanced computing
algorithms available to a vast range of end users. This technological progress became possible with
the adaptation of parallel computing to small- and midrange machines. However, the price for this
advancement is the necessity for end users to abandon the old stereotypes of application

development and to conform their mind with parallel computation thinking.

After a transient period of compact HPC maturing two technologies stood out of many parallel
computing initiative: FPGA- and GPU-based solutions. The FPGA technology took its respective
place due to its relatively long and successful history in the field of embedded solutions and
prototyping. There it showed a distinctly high flexibility to realise application specific designs and a
relative ease of application design which is typical for solutions based on standard devices. The
maturity of the development chain and the high integration level of ICs, achieved around the
beginning of the 2000s, played an important role for its popularity in the incipient field of compact
HPC.

The success of general purpose computing on GPU is explained by the market competition of the
PC entertainment manufacturers. The increasing demands for virtual reality in 3D games have
forced the graphical card vendors to endeavour in refining the architectures of graphical processors.
At a certain point of the evolution when GPU architectures become flexible enough a number of
initiatives appeared to adapt the architecture for general purpose computing in the academic society.
Eventually this initiative was enthusiastically taken up by the GPU vendors when promising
prospects of this trend became obvious. This strong support of GPGPU from the side of the
manufacturers brought new life to GPU technologies. Computations on GPU became a separate
trend in high performance computing steering aside from the initial graphical background. In the
present work both technologies were addressed for the implementation of a complex image
processing algorithm, which allowed the comparison of their peculiarities, their relative merits, and

downsides.
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Although new parallel computing technologies open broad perspectives for high performance
computing, not all existent algorithms can be adopted for parallel processing. That is why a
scrupulous analysis of computation methods in order to discover their parallelisation potentials is of

primary importance for the adoption of HPC.

The application field in this work addresses image segmentation, which takes a central place in the
image processing chain for automated image analysis. Segmentation methods being fast, having
high segmentation quality and a high level of automation, are of high interest in applications. The
Grey Value Structure Code (GSC) studied in this work belongs to those methods.

In the present work the GSC method has been analysed for its parallelisation potential at different
levels of granularity and implemented on a Xilinx Virtex II Pro FPGA card specially designed for
memory intensive applications and on the high performance nVidia G80 and GT200 GPU cards
designed for general purpose computing. Thus, the work covers two aspects of computer science:

algorithmic and technological.

As an immersion into the technological field the general tendencies of modern computing
technologies were brought up, followed by a detailed discussion of the FPGA and GPU
technologies' fundamentals. As particular modern examples of the two computing platforms the
Xilinx Virtex II and the nVidia G80 architectures were described in brief. Although both platforms
are competitors in compact HPC they are two principally different classes of computing
architectures. This means that the application implementation approaches for the two computing
platforms are principally different. This difference has been described in this work in the form of a
survey on methodologies for the application development on FPGA and GPU platforms after an

initial introduction to the underlying hardware.

The importance of the methodology rises with the increasing complexity of a design. The absence
of a methodological guideline endangers both the quality of the design and the realisability of a
project in an appropriate time. In this work a methodical top-down approach to the design process

has been worked out as the only way to handle a complex system development.

This approach is especially important for the development of the FPGA-based applications, as a
designer needs to bridge a large gap between the initial highly abstract specification and very
detailed description of a system at the logic design level. The top-down design approach was
described as a gradual refinement process of the initial specification through different levels of
abstraction and represented as a spiral of specification-implementation-verification-modelling
development cycles stretched over the description abstraction axis. A special attention was paid to
the verification of RTL models. The significance of an exhaustive verification drastically increases
with the increase of a design complexity. An application development cannot be treated as being
complete until the functional correctness is approved by thorough verification. Moreover errors that

inevitably appear during a development process can hardly ever been detected without a carefully
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planned verification policy and robust verification infrastructure. The questions related to the

creation of an effective verification environment were dealt with in this work.

The methodology for an efficient application partitioning for the GPU platform was based on the
peculiarities of the stream processing architecture and has been discussed in this work.
Consequently the GSC method was analysed and implemented in compliance with these
methodologies.

In the application development phase a number of application models were implemented at different
levels of abstraction for the analysis of the GSC method in many implementation aspects. The
functional data-flow model allowed figuring out the maximal potential for the parallelisation of the
method at different granularity levels. The analysis of the data-flow model showed that the GSC
method has a strong parallelisation potential which can be exploited using different massive parallel
architectures of symmetric memory access class. The analysis helped to tailor the method for
maximal exploitation of the algorithm potential on the parallel platforms. Using this model the data
dependency graphs of the method together with the data-flow intensities were analysed to get a
clear picture of the optimal partitioning of computation resources and the efficient organisation of

data structures of the application.

Using the functional data-flow model it was particularly shown that the hierarchical islands can be
processed independently within a hierarchical level and the data dependency exists only between
the superimposed hierarchical layers, which makes the GSC layer processing attractive for massive
parallel implementations. The regular array data organisation has been shown the most effective
for the target implementation platforms with symmetric memory access. An optimal data exchange
scheme between the hierarchical layers during the linking phase was identified. This scheme based
on the special region connectivity structures called Overlap Lists allows significant memory access
reduction critical for parallel computing machines. It was figured out that for massive parallel
architecture the most efficient approach to result generation for the GSC method is the /layer-wise

downpropagation of the segment data.

The executable functional model built at this stage was used as the basic model for the further
hardware system refinement and the reference for the verification of subsequent detailed system
models for FPGA- and GPU-based designs. It was also used for statistical information gathering by
profiling the model with the realistic data sets for detailed specification of precise data formats

effective for further hardware and software implementations.

Using the knowledge obtained from the functional models' analysis, after the precise specification
of the FPGA computing platform and the elaboration of an appropriate data-structure layout, the
GSC architectural models were built to steer the design process for the precise hardware platform
implementation. Analysis of the data-stream model was used for optimisation of the external data
traffic of the system and defining effective GSC data-to-memory space mapping configurations in
the FPGA-board architecture.
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In particular, it was figured out that joining the coding and the linking processing of the first and
the second hierarchical layers during the linking phase can drastically decrease the data traffic to
GSC data structures stored in the external memory. Additionally, a special island processing scheme
for the linking and the result generation phases was developed for external traffic reduction and for
improvement of memory assess scheduling efficiency. This scheme implies processing islands

using sliding window moving over the overlapping island row blocks.

After specifying the precise hardware data model, the static data-stream model (Traffic Model)
enabled the first precise estimation of the data traffic circulating in the system, which made initial
measurements of the potential application performance available. These early performance
estimations served as a criterion for the efficiency of a particular HW platform and the efficiency of

a particular application implementation on an FPGA.

The partially-timed executable architectural model operated on the data-token level made this data-
flows circulation available for dynamic observation in the complete communication system of the
FPGA platform. The cycle accurate architectural model defined precise behaviour of the GSC
processing pipelines in the clock domain. It was used for careful balancing of different pipeline
stages to find a performance/resource compromise for implementation of the functional units in the
given hardware. During elaboration of the precise GSC algorithms for time domain partitioning a
special attention was paid to finding an optimal coding scheme for initial region forming at the pixel
level. It was shown that an effective scheme for structural coding algorithm implementation can be
realised as a pipeline using four basic subgraphs in the hexagonal pixel island graph for optimal
resource utilisation. For acceleration of the sequential linking method a special topology aware
approach to connectivity graph traversing was proposed. A weight-ranking mechanism was also
proposed to increase the quality of the region connectivity data in the fixed-sized overlap-list

structures.

The early resource model was developed to give an approximate estimation on the realisability of
the proposed implementation in the given FPGA before implementing the GSC at the RTL level.
The approach is based on the calculation of internal data-aggregate sizes requiring clocked on-chip
memory (flip-flops) of the FPGA and showed relatively high correlation with the results of RTL
synthesis.

The cycle accurate interface model of the communication system was implemented to gather
statistical data on the delays and latencies introduced by the communication infrastructure of the
system. Implementation of this model made the performance estimation totally realistic. The
complete cycle accurate model of the system allowed the optimal configurations for the GSC
application pipeline for achieving the maximal application performance on the given platform to be

determined.

After the implementation at RTL, the synthesisable application was exhaustively verified using the

previously developed functional and temporal logic models to assure the functional correctness of
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the design. The postsynthesis place-and-route procedure produced the exact timing and resource

utilisation parameters of the final physical implementation.

The most valuable information of the modelling, the analysis, and the implementation of the GSC
application in the FPGA was reported in the present work. The studies clearly have showed that
performance of the GSC application on application specific design platforms is definitely restricted
by the throughput of the external memory. The traffic pattern defined by the application’s buffering
scheme has a certain influence to the application throughput. The most serious constraint for the
application performance on the target Virtex II Pro platform is the lack of hardware resources due to
the high complexity of the application. This resource shortage does not allow a well-balanced GSC

pipeline configuration to achieve the maximal throughput of the memory subsystem.

Using the information attained from analysis of the high level GSC models, the executable
functional model was partitioned to the GPU stream processing architecture and implemented using
the nVidia CUDA C language extensions. Although there is a general guideline for the application
implementation in the field of stream processing, which is based on architectural assumptions, strict
coding rules for achieving the optimal performance do not exist. This is why the optimisation work
for a GPGPU application consists in scrupulous profiling of an application. Many implementations
of the GSC kernels have been created for determining the optimal configurations of the kernels. The
GPU-GSC application was ran on two nVidia GPU architectures: G80, the first architecture with
CUDA support, and GT200, the second GPGPU architecture. The experiments with the G80
architecture showed unacceptable results in the performance, which was even much behind the
reference CPU implementation. A top GT200 card performed significantly better and could
compete with the FPGA solution. Therefore, only the results related to GT200 architecture have

been reported in this work.

The GPU experiments were primarily focused on the external and internal data structures'
organisation, the influence of data traffic manipulations, the optimisation of the code flow, the
application of GPU hardware-accelerated functions, the influence of specialised memory resources,

and the block size configuration. The most distinguished results have been reported in this work.

During the studies it was found that GPUs are notably sensitive to the complexity of a kernel’s code
flow and shared resource demands, as it can be particularly seen for the linking kernel. Using
special memory resources, such as texture and constant memory, can significantly ease the problem
with the shared memory resource deficit, if no intensive interaction over the data structure is
needed. In some cases the utilisation of a GPU-accelerated function can significantly boost up
computations. A careful control-flow analysis and optimisation can help in many cases, although in
some cases the results are contrary to the expectations, especially if memory operations are
involved. The search for an optimal thread block configuration is more a heuristic than a logical

procedure and in many cases it was carried out by trying.
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The implementation results of both solutions were compared with each other and with the reference
single thread and SMP CPU implementations. The performance comparison showed a big
advantage of parallel implementations due to their extensive exploitation of finer parallelisation
granularity. The comparison of the FPGA and GPU solutions indicated that they became rivals at
higher image resolutions, though with smaller data sets the FPGA-GSC left the GPU-GSC behind.

Except the performance parameters the solutions were compared by the implementations’ efforts
using a physical code line count metrics and by the flexibility of the computing platforms to adapt
the solutions to functional enhancements in the GSC method. As the comparison showed the GPU
implementation requires much lower development efforts due to the significantly higher level of
abstraction required for the GSC description. At the same time the ease of the functional upgrade is
more intricate. In some cases the constrains induced by the SIMD architecture peculiarities make
functional modifications complicated leading to significant changes in the code or to a complete
redesign of a kernel. In these cases the flexibility of the FPGA architecture gives a big advantage to
a designer requiring only minimal changes to a code. At the same time the lack of primitive
operation units in the FPGA architecture can lead to a cardinal reengineering of complete modules,

whereas the standard ISA of a GPU allows those algorithmic enhancements without any costs.
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8.1 Conclusions

Generalising the knowledge acquired from the work, it can be stated that data-parallel segmentation
applications using low precision fixed point values, such as the GSC, can be successfully
implemented on both FPGA- and GPU-based platforms gaining a significant speed-up factor
compared to sequential CPU processing. The achieved acceleration endorses the use of the parallel
GSC in real-time and interactive applications. The studies showed that a huge bulk of the work is
dedicated to the analytic aspects of the application implementation on a parallel platform, i.e. the
exploration, identification and development of the parallelisation potential of an algorithm. In
general, an FPGA implementation designer has more freedom for the organisation of the
computation. In the case of the GPU, the application design requires an additional adaptation of the
algorithm to the fixed target architecture having a lower adaptation degree for the parallelisation
granularity. In particular, a designer needs to keep in mind the SIMD-like organisation of the

computations and the strongly restricted memory resources of the multiprocessors.

From the practical point of view, the studies showed that the development cycle for an FPGA
application is significantly longer and more complex than for a GPU application. In particular, the

verification of a project is a specific challenge for a hardware design.

The implementation of this particular application showed that GPU platforms are most effective for
a huge amount of data, which enables the scheduler to exploit the full potential of the memory
channels and to optimally distribute the workload. At the same time, the flexibility of an FPGA

design allows building fully customised data management schemes elastic to data volumes.

Looking at computing applications at the platform (macro architecture) level, the performance of a
data parallel application is limited by the throughput of the memory subsystem of the computing
platform it is realised on. Therefore, one of the primary targets for an application design is to
optimally use the bandwidth of the platform's memory channels. Traffic planning plays an
important role in an FPGA design. Hence it is essential to have preimplementation models for the
strategical planning of the design. In particular, the planning of the data-structure organisation and

traffic models can give a lot of information for an accurate platform architecture design to obtain
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the maximum performance gain. The studies showed that, although, having a much lower
bandwidth in the external memory channels and operating at lower frequencies, the semi-custom
solutions can be competitive or even outperform the standard processing systems. The fundamental
reason for this is that the FPGA design can use the bandwidth of the available channels more

efficiently.

First of all, this can be explained by the fact that the utilisation of more compact data formats
reduces the overall volume of the traffic, which is in its turn enabled by the bit-level and operation-
level parallelism available in FPGAs. In contrast, the regular ISA of standard architectures (GPU,
CPU) do not allow such flexible operations on bit fields. This forces a designer to choose between a
higher number of processor cycles for the data preparation (data extraction and packing), or a higher
volume of unpacked data which consumes a solid portion of the bandwidth. Meanwhile, if the data
size is critical, as occurred in the GPU-GSC application when placing data into the shared memory,

the special bit functions can be extremely helpful for reducing the processor cycles.

The second reason for a more effective memory bandwidth utilisation of FPGAs is their ability to
organise a more dense traffic for the same data volume, which is achieved by application-specific
buffering schemes and traffic scheduling. In a GPU engine the task of the traffic organisation is
entrusted to a universal scheduler, which cannot always provide an optimal data flow. Meanwhile,
the GPU schedulers are known to be specially designed for SIMD-like execution which can benefit
from burst-oriented linear accesses to the dynamic memory. Thus, the efficiency of the bandwidth
utilisation can be significantly increased by carefully organising the data layout as shown in this
work. In simple terms, the basic principle of data layout is a transition from arrays of structures to

structures of arrays.

Looking at the application performance from the point of view of the computing microarchitecture
it is necessary to note that the ability to create custom data-paths is a significant advantage of the
FPGA architecture. The data storage and processing elements in those paths are placed maximal-
logical compact enabling an exclusive memory space for the processing elements. In contrast, in
GPUs the data resides in common data pools (shared memory, register files), which may cause
memory resource conflicts among the parallel processes, increasing the number of processor cycles.
Therefore, similar to the external memory, the data layout in the on-chip memory of a GPU may
influence the performance of an application significantly. Similarly, the problem of representing the
data in the shared memory in a compact form can be critical for the performance. In contrast to
FPGAs having a large volume of fine-grained memory elements, which enable a precise allocation
of the memory for the data structures being specific for customised data paths, the memory inside
the multiprocessors of a GPU is distributed evenly among all processes in a block of threads, while
the functional units are designed for processing fixed size memory words. Both features can
significantly increase the volume of data structures for a single process and thus decrease the
effectiveness of the workload of a multiprocessor. As the work showed, the resources of the shared

memory are one of the most critical problems for the performance of memory resource demanding
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computation tasks. Partially, this problem can be solved by using specialised on-chip memory
(constant and texture) with some limitation to the data access types and by exploiting the benefits of

full-fledged caching mechanisms being principally new in GPU technology.

The studies showed that the performance of the application implemented on GPUs is dependent on
the complexity of the kernel's control flow as a result of the SIMD nature of the GPU architecture.
Thus, the control flow optimisation of GPU kernels can be an effective mean for evening-out the
peculiarities of SIMD-like architectures for minimising performance losses. In contrast, the FPGA
implementation, in addition to its data parallel computation capability, can benefit from the true

parallelism of the execution flow being enabled by using independent customised state machines.

At the same time, the realisation of arithmetic intensive computations, with a large variety of non-
trivial arithmetic operations, can be rather problematic for the implementation on FPGA-based
computing platforms. For gaining application versatility, the FPGA architecture is built primarily on
fine-grained logic architectural primitives supplemented by relatively simple signal-processing
oriented functional blocks. Although the complexity of these blocks gradually increases, shifting
towards primitive ALUs [137], complex arithmetic functions are not implemented as hardcore
blocks and therefore require a multicycle implementation. In contrast, GPU multiprocessors contain
arrays of hardcore functional units implementing a variety of arithmetic functions. Although the
complex arithmetic functions typically require a number of clock cycles to be completed, the
hardcore implementation allows them to be executed faster thus reducing the operation delays. This
makes the GPU attractive for parallel applications with a predominant arithmetic computation

burden.

8.2 Outlook

8.2.1 Performance on prospective FPGA and GPU platforms

Considering the implementation of the 2D-GSC on the latest and prospective FPGA and GPU
platforms, the throughput of the memory subsystem should be primarily taken into account as a
limiting factor for the performance progress. An increase in the throughput of the memory
subsystem of the FPGA platform can be achieved by the implementation of the newer DDR3 [138]
and the perspective DDR4 [139] SDRAM technologies. However, the achievable bandwidth
enlargement is generally restricted by the technological aspects of FPGA ICs' manufacturing and, in
particular, the capability of the device's I/O circuitry. For the Xilinx 7 FPGA device family the I/O
capacity is limited by DDR3 operating at 933 MHz [140].

The other parameter, determining a possible increase in the application performance, is the
capability of the FPGA-GSC design to satisfy the traffic throughput generated in the external data
channels. Figure 50 shows the increase in the resources for the logic and memory elements for
Xilinx FPGAs [141-145]. It can be seen that the fine-grained logic resources of the top models of
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the 7" Xilinx FPGA family are increased more than 20 times in flip-flops and more than 10 times in

LUT function generators® compared to the Virtex II Pro device used for the GSC implementation.
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Figure 50: FPGA technological trends (Virtex FPGA family evolution)

Provided the FPGA-board architecture persists the same and taking conservative clocking
assumption for the external memory channels equal to 533 MHz of a single clock rate®, the data
throughput of the system increases 5.3 times. Additionally, assuming only a clock frequency of
266MHz” for the GSC core to ease the timing inside the chip, the throughput can be satisfied by
GSC processing units containing twice as many processors in the processor arrays. Moreover, the
remaining chip resources can be used to achieve the saturation of the memory channel bandwidth by
a further increase of the number of GSC linking and labelling processors, as discussed in
Section 4.3.4, gaining another 60% decrease in processing time. All in all, implementing the FPGA-

GSC on a modern Virtex device might speed up the application 10 times at least.

The latest generation of the Xilinx Virtex 7 family is manufactured in cutting-edge 28 nm
technology [146]. According to the plans of the IC contract manufacturers, who provide the
production lines for fabless semiconductor companies [147-148] as Xilinx and nVidia, the massive
transition to a finer manufacturing technology is expected not earlier than 2013. This indicates that

the next generation of Xilinx FPGA devices can likely not be expected in the next two years.

To estimate the performance potential of the GPU-GSC implementation on next generation GPU
platforms, the following technical trends are considered. The first determinative parameter,
influencing the peak performance of a GPU architecture, is the bandwidth of its external memory
channel. The second significant characteristic of the GPU architecture is related to the memory

subsystem architecture and can be quantitatively valued by the amount of on-chip memory being

% From Virtex 5 FPGA generation on the Xilinx FPGA architecture includes 6-input and 2-output LUT elements capable to be configured
in a two 5-to-1 LUT mode with common inputs or a combination of two 3- or 2-input LUT mode, which offer more powerful and
configuration-flexible function generation resources compared to the 4-to-1 LUTs of Virtex-II architecture.

¥ Clocking of the memory control interface.

*The half frequency of the external RAM memory interfaces for core clocking is selected to avoid timing constraint problems, which can
arise due to an increase in the number of the processing elements in the GSC processing units. Moreover the doubled frequency of the
memory channels can solve the problem of buffer latencies while reading data.
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available for the application®. Although the GPU generations can differ in the architecture of the
processing units and in the multiprocessor organisation, the influence of these qualitative changes to
the performance of an arbitrary application is difficult to predict, therefore, they are not treated as

prognostic features here.
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Figure 51: Bandwidth trend of GPU-board memory interfaces

The tendency of the improvement in GPU technology can be seen by comparing the nVidia C1060
(GT200 architecture) [149], the GPU-GSC was implemented on, with the latest GPGPU nVidia
C2070 card [150] which is based on the Fermi (GF100) architecture [151]. The bandwidth increase
of the graphical memory of those cards is 1.4 caused by migration from the GDDR3 to the GDDRS5
memory type (102.4 GB/s with an effective data rate of 1.6 Gbps® against 144 GB/s with an
effective data rate of 3 Gbps). A significantly higher increase appears for the on-chip nonspecialised
memory per SM: 16 KB of shared memory for the GT200 architecture against 64 KB of
configurable on-chip memory (shared and L1 cache memory with 48 KB maximally available as
shared memory) for the GF100 architecture. Directly porting the GPU-GSC to the C2070 platform
results in a performance increase of about 2.5. This difference is significant due to the fact that the
performance increase cannot be solely explained by broadening the graphical memory bandwidth.
Thus, the qualitative increase can be ascribed to changes in the architecture, most likely to the
changes in the shared memory having been shown to be of primary importance of for the
application performance. Nonetheless, the impact of qualitative architecture changes cannot be
neglected for further possible improvements of the GPU-GSC. Most notable among those changes
are those being introduced as a result of the higher adaptation of the GPU architectures to general
purpose computing. In particular, the hierarchy of the memory subsystem has adapted characteristic
features of CPUs. The emphasis has shifted towards the reduction of the data access latency by
implementing a two-level cache mechanism. This may ease the problem with the shared memory
shortage in the GPU-GSC application.

°'For example, the amount of shared memory per SM is critical for the linking phase which is the most time consuming stage of the
segmentation pipeline.
2 Gigabit per second is an effective data rate at one data lane of a memory interface.
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In general, the change in the memory subsystem can be quite significant for the performance of an
GPU application, but difficult to estimate numerically. The appearance of the full-fledged caching
mechanism critically shifts the application of the shared memory from means of fast access storage,
placed maximally close to the processing units, to a pure mechanism of process communication.
This shift in the paradigm releases the multiprocessors from the problem of insufficiently loading
the work for kernels that require high-volume, versatile, and intensive random memory-access
operations and can increase the efficiency of the traffic scheduling and thus the general application

performance.

The latest tendency in the GPU technology can be seen with the recent transition of AMD GPUs to
the 28 nm technology®”. The top card, issued at the beginning of 2012, has a graphic memory
interface capable for 264 GB/s [152] which is about 1.8 faster than the memory interface of the
nVidia C2070 (Figure 51). The increase in the amount of on-chip memory for the next generation of
nVidia products (28 nm technology) can be presumably expected to be equal to the existing ratio of
1.7 between the on-chip resources of the AMD Northern Island (Barts) architecture (40 nm
technology) [153] and the AMD Southern Island (Tahiti) architecture (28 nm technology) [152]*.
Assuming that the scaling factor of the application performance is not less than the increase of the
memory bandwidth and that at the same time the extra gain from on-chip architectural improvement
does not exceed the ratio of the on-chip memory resources increase, the performance of the GPU-
GSC implementation can be expected to be approximately 5 times higher in a planning horizon of
minimum two years as a rough extrapolation. Thus, the GPU prospective shows less potential in

performance in comparison with FPGA platforms.

8.2.2 Future work

The present studies are primarily concentrated on the performance gain of the application exploiting
the two popular massive parallel architectures. Meanwhile, the question of feasibility of the parallel
GSC in different application fields is not highlighted in this work. Different application areas can be
more or less sensitive to the quality of the segmentation. The parallel implementations are designed
to gain the most performance out of the inspected parallel architectures, although keeping the
quality of segmentation as high as possible in the given conditions. Meanwhile, it is interesting how
critical the quality improvements, introduced in [3] for different application areas (singularity
correction, pixel splitting, improved linking approaches), can be and how critical they are for the
application performance on a particular platform. Of special interest is the question of the influence
to the application performance when integrating the quality improvement methods into the parallel
implementation or performing them as preprocessing/postprocessing stages to the parallel
application. In particular, using local threshold methods, in which, for example, the thresholds are

defined as an image map derived from the local image dynamics, can be of an interesting option for

The first nVidia GPU card done with 28 nm technology are not officially announced as for January 2012.
% Compared are Barts' shared memory (48 KB) and Tahiti's shared memory together with the level one cache (0KB) per multiprocessor.
Barts architecture does not have general purpose caches.
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segmentation quality improvement in comparison to advanced and potentially performance critical

linking methods.

Relying solely on the same principles for the regions generation and labels propagation as in the 2D
case, the 3D version of the GSC suffers from a dramatical increase in the sizes of the data
structures, which make them unattractive for those computation platforms the parallel 2D-GSC was
implemented on. For example, the overlap list should be increased from 12 overlap positions of 3
overlapping pairs (144 bytes in the most compact representation) in 2D case to 24 by 8 overlapping
pairs (816 bytes minimum) in the 3D version®. With the growth of the resources in modern FPGAs
and GPUs it can become possible to extend the parallel GSC to the 3™ dimension and to open new

application areas for this segmentation approach.

% The number of CE position bit-flags in the connectivity vector table in GPU- GSC will increase in about 36 times.
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A Appendix

A.1 Virtex Il Pro architecture elements

A.1.1 Input/Output blocks

Input/output block buffers contain a variety of resources to guarantee the electrical protection of die
circuits, signal integrity and data consistency. These resources include pull-up and pull-down
resistors, bus weak-keeper circuits, digitally control impedances for parallel and series line
termination, clamping diodes, drive-strength, slew-rate control circuits, and programmable input

delays.
The I/O blocks of the FPGA contain additional logic to provide fully synchronous and constraint

data paths inside or outside of the chip. Each I/O block contains six storage elements which can be
configured as either edge-triggered D-type flip-flops or as level-sensitive latches with asynchronous
or synchronous set and reset. These registers are used for input and output paths and tri-state output
buffer control. The number of registers is doubled for double-data-rate operating. In case of DDR

mode each coupled register is to be clocked 180 degrees out of phase.

The I/O blocks are organised in groups of two or four to be connected to a single switch matrix. The

adjacent blocks can be used as a differential pair.

A.1.2 Logic resources

The Virtex II Pro has three types of logic resource blocks which are seen as architectural units in the
global interconnection system of a die. They are Configurable Logic Blocks, 18Kb Block

SelectRAM modules and 18x18 two's complement signed multiplier blocks.

Configurable Logic Block (CLB)

A CLB element comprises four similar slices connected by a fast local network for signal feedback
within the CLB. Each CLB element is tied to a switch matrix to access the general routing network

and is equipped with a number of dedicated resources for fast signal exchange with neighboring
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CLBs. The four slices are organised in two columns of two slices with two independent carry logic

chains and one common shift chain.
Each slice contains the similar set of logic resources, which are:

* two LUT-based function generators each capable of implementing any arbitrarily defined
Boolean function of four inputs, 16-bit shift registers, or 16-bit distributed RAM memory
(deeper and wider RAM configurations are possible if combined and cascaded within a
CLB);

* two storage elements that can be configured as either edge-triggered D-type flip-flops or

level-sensitive latches with common synchronous or asynchronous set and reset signals;

» arithmetic logic gates including an XOR gate that allows a 2-bit full adder to be
implemented within a slice and a dedicated AND gate that improves the efficiency of

multiplier implementation;

» large multiplexers capable to combine function generators to provide any function of five to

eight inputs and selected functions of nine inputs within a slice;

» shift register dedicated chains that provide connection between shift registers without using
the ordinary LUT outputs. The shift register chaining together with large multiplexers allow

an up to 128-bit shift register with addressable access to be implemented in one CLB;

* a dedicated carry logic that provides fast arithmetic addition and subtraction signal

propagation between slices and CLBs;

* a dedicated carry multiplexer together with a carry path can be used to cascade function

generators for implementing wide logic functions;

» ahorizontal cascade chain together with a dedicated OR gate are designed for implementing

large, flexible Sum of Product planes or other combinatorial logic functions.

18 Kbit Block SelectRAM resources

The on-chip storage, used for buffering, caching or queuing mechanisms, play an important role for
complex SoC designs. The Virtex II Pro provides a large number of hard-core RAM modules with
flexible configuration capabilities for the resource/performance optimisation of a design. Block

RAM modules save Configurable Logic Block resources in memory intensive applications.

The block SelectRAM modules are 18 Kb dual-port single cycle latency synchronous static RAMs.
The RAM modules are configurable from 16Kx1-bit to 512x36-bits in various depth and width
configurations. Each port is totally uncoupled in control and clocking. Both ports of a module can
be configured with independent data/address aspect ratios. Memory modules are placed in
interleaving columns that simplify the cascading of the modules to implement large embedded

storage blocks.
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Multiplier blocks

Another kind of dedicated hard-core blocks is the 18x18 two's complement signed multiplier. The
columns of the multiplier blocks are placed next to the block RAM columns. Each multiplier can be
used independently or in association with the adjacent RAM block. A multiplier is optimised for
operations on the content of the adjacent memory block, which can be helpful in DSP applications,

for example.

A.1.3 Clocking resources

It is normal for modern complex systems to have multiple clock domains on a single die. The
reason for that could be the need for interfacing buses with clocking constraints, which are different
to a chosen reference frequency of the on-chip design or a particular decision for internal
computation components clocking disparity. The Virtex II Pro conforms to modern imperatives. It

contains a variety of resources for multidomain designs, which includes:
* 16 clock input pins that can also be used as regular user I/Os;

* 16 global clock buffers that can either be driven by the clock pad to distribute a clock
directly to the device, or driven by a Digital Clock Manager, or by local interconnects.
These buffers can be configured to gate the clock or to multiplex between two independent
clock inputs;

* 4 to 12 Digital Clock Managers with fully digital delay lines allowing a high-precision
control of the clock phase and frequency for clock deskewing, frequency synthesis and
phase shifting;

* 8 dedicated low-skew global clock trees per quadrant of a device.

A.1.4 Interconnection system

The interconnection network of an FPGA can be divided into global, local and dedicated signal
routing subsystems. The global network provides general purpose resources for the connectivity of
programmable logic elements such as CLBs, IOBs, RAM blocks, and multipliers of the device.
Local routing resources are capable for a fast connection within the CLBs without using the global
interconnection resources. The dedicated routing subsystem is a collection of specialised signal

resources, which are typically used for particular functionality.

The global interconnection system consists of programmable routing switch matrices and
connection lines of different types. The programmable logic blocks are all connected to identical
switch matrices for the access to global routing resources. The programmable switch matrices are
placed at the intersections of vertical and horizontal routing channels to configure a network of

signal lines. There are four types of signal lines that carry signals for different distance:
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the long lines span the full height and width of the device;

the hex lines route signals to every third or sixth block, but can be driven only at their end

points and not at the middle;

the double lines are similar to hex lines, but three times shorter and route signals to every

first or second block;

the direct connect lines route signals to all eight neighboring blocks.

The interconnection network is characterised by the density of connection lines. Each routing

channel of a device consists of 24 long lines, 120 hex lines, 40 double lines. Each CLB has a total of

16 direct connections.

The subsystem of local interconnections provides a fast connectivity between slices inside CLBs. A

local network consists of eight of such lines per logic block.

Additionally the Virtex II Pro has dedicated signal resources. They include shift-register chain

signals (one per CLB), a sum of product logic expander (2 per CLB row), fast arithmetic carry

chains (2 per CLB column), and segmentable 3-state bus on-chip lines (4 per CLB row).
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A.2 Implementation calculations

A.2.1 Overlap-list rationales

The advantages of the proposed overlap-list approach comparing to the overlap detection scheme
via up-and-down hierarchical search can be shown with a simple estimation of the number of
memory accesses to external storage required for deriving a connectivity map of a macroisland.
During linking in a macroisland /;;; all regions R; in all seven islands /; covered by the macroisland
have to be checked for existence of a child R;;. This implies accesses to all 84 regions R; in a
macroisland /;;; (the number of regions in an island is limited to 12 due to statistical assessment).
This number is the minimal number of accesses, provided that all inspected regions R; have no
inheritance. Each downward relationship detection leads to an access to a subregion R;; two layers
below the current level. Assuming that a data prefetching mechanism is used, which is favourable
for the systems with a plain memory access scheduling, the implementation has to prebuffer all the
subregions R,; available in the 12 overlapping nodes (/;.;) of a macroisland /.,, as the subregions
R:; common for the regions R; from different /;s can be found only there. Thus, the number of data

pieces needed to be retrieved from external storage increases by 144.

Provided that the connectivity information is specially generated in the previous level pass and
stored separately in specialised overlap-list data structures, the approach implies only access to 72
regions per macroisland, which are organised in 36 region pairs per overlap-list (the number of pairs

is determined by the statistical assessments).

A.2.2 Average region feature calculation error for sequential linking
The arithmetical average of region feature is

Farith:; Siln i
where 7 is the number of subregions in the chain,}; is the feature of a subregion.

The computed feature for sequential linking is

Fu= 22 (11207
Assumption:N [~ f (similar features)=A=F ,,—F ., =n% f/n—f/Z"—an f/2(”+HJ
:A:f(l—Z’(”+”>k(2+Z 2))=r01 —2*<"*‘J*(1+§ 2'); ; x=(1=x"")(1-x)

SA=F(1=2" s (1+(1=2"")/(1-2))) = fF*(1=2""Vsx(1=1+2""Y))= fx(1-1)=0
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A.3 Traffic model

The Traffic Model is based on the number of memory words transferred to the GSC data-structures
in the external memory. Depending on channel configurations of the Processing Units each data-
stream traffic may contribute to the GSC processing time or neglected as a parallel data stream. The
Traffic Model is represented in Table A.1-Table A.2.

Table A.1: Linking Phase memory words generated

HL(i)

4 Data Stream Description 4096° 2048° 1024° 512° 256°
Image Load ~ 1048576 | 262144 | 65536 | 16384 | 4096
n=image_regolution’/16
Pixel Island Store

1 |(without parental pointers) 4198401 | 1050625 | 263169 | 66049 16641

n=(level width(HL,’

Ovl.List for Secondary Lowest Level Store and
Load* 25215000| 6316056 | 1585176 | 399384 | 101400
n=level width(HL;,)**12*2

Pixel Island Load, Modify and Store
2 |(parental pointers added)* 8396802 | 2101250 | 526338 | 132098 | 33282
n=level width(HL:,)’*2

Secondary Lowest Level Island Store
(without parental pointers) 1050625 | 263169 | 66049 16641 4225
n=level width(HL;)**2

Ovl.List Store and Load

n=level width(HLi.,)**12*2 6316056 | 1585176 | 399384 | 101400 | 26136

Secondary Lowest Level Island Parental Info

3 |Store 1050625 | 263169 | 66049 16641 4225
n=level width(HL:,)’*2
iﬁg’jjjfgﬂ’jfjj’e 526338 | 132098 | 33282 | 8450 | 2178
nO:VIing;ffv Ifég(’;L“’jdleo‘z’d 1585176 | 399384 | 101400 | 26136 | 6936
g |landParenss Store 263169 | 66049 | 16641 | 4225 | 1089
ifgfffjfg;‘(’l_’l’j l):gjg’e 132098 | 33282 | 8450 | 2178 | 578
Ovl.List Store and Load 399384 | 101400 | 26136 6936 1944
5 |Island Parents Store 66049 16641 4225 1089 289
Island Regions Store 33282 8450 2178 578 162
Ovl.List Store and Load 101400 | 26136 6936 1944 600
6 |Island Parents Store 16641 4225 1089 289 81
Island Regions Store 8450 2178 578 162 50
Ovl.List Store and Load 26136 6936 1944 600 216
7 |Island Parents Store 4225 1089 289 81 25
Island Regions Store 2178 578 162 50 18
Ovl.List Store and Load 6936 1944 600 216 96
8  |Island Parents Store 1089 289 81 25 9
Island Regions Store 578 162 50 18 8

Ovl List Store and Load 1944 600 216 96 24
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;[L @ Data Stream Description 4096’ 2048° 1024 512° 256°

9 |Island Parents Store 289 81 25 4
Island Regions Store 162 50 18 2
Ovl.List Store and Load 600 216 96 24

10 |Island Parents Store 81 25 9 4
Island Regions Store 50 18 8 2
Ovl.List Store and Load 216 96 24

11 |Island Parents Store 25 9 4
Island Regions Store 18 8 2
Ovl. List Store and Load 96 24

12 |Island Parents Store 9 4
Island Regions Store 8 2
Ovl.List Store and Load 24

13 |Island Parents Store 4
Island Regions Store 2
* executed in Initial Linker approach
Total Number of Mem.Wrd. Transfers
Coders as a stand-alone modules 50452 742| 12643 563| 3176 144 801717 204 314
Initial Linker approach 16 840 940| 4226257 1064 630 270 235 69 632
Times of Traffic Reduction 3 2,99 2,98 2,97 2,93
Overhead 33611802| 8417306] 2111514 531482 134 682
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Table A.2: Result Generation Phase memory words generated
i[L(z) Data Stream Description 4096’ 2048° 1024° 512° 256°
| |Label Image Store 4194304 | 1048576 | 262144 | 65536 | 16384
n=image_resolution’/4
Pixel Regon Island Load
n—level width(HL)" 4198401 | 1050625 | 263169 | 66049 16641
Sfconda(y Loweszt Level Label Island Load 2101250 | 526338 | 132098 | 33282 8450
n=level width(HL;.;)’*2
Secondary Lowest Level Region/Label Island
2 |Load-Modify-Store 4202500 | 1052676 | 264196 | 66564 16900
n=level width(HL,)**2*2
Label Island Load
n—level widih(HL,.,"*3 789507 | 198147 | 49923 12675 3267
Region/Label Island Load-Modify-Store
3 nelevel widih(HL*3*2 1579014 | 396294 | 99846 25350 6534
Label Island Load
n—level widih(HL.,"*3 198147 | 49923 12675 3267 867
4 |Region/Label Island Load-Modify-Store 396294 | 99846 25350 6534 1734
Label Island Load 49923 12675 3267 867 243
5 |Region/Label Island Load-Modify-Store 99846 25350 6534 1734 486
Label Island Load 12675 3267 867 243 75
6  |Region/Label Island Load-Modify-Store 25350 6534 1734 486 150
Label Island Load 3267 867 243 75 27
7 |Region/Label Island Load-Modlify-Store 6534 1734 486 150 54
Label Island Load 867 243 75 27 12
8  |Region/Label Island Load-Modify-Store 1734 486 150 54 24
Label Island Load 243 75 27 12 3
9 |Region/Label Island Load-Modify-Store 486 150 54 24 6
Label Island Load 75 27 12 3
10 |Region/Label Island Load-Modlify-Store 150 54 24 6
Label Island Load 27 12 3 0
11 |Region/Label Island Load-Modlify-Store 54 24 6
Label Island Load 12 3
12 |Region/Label Island Load-Modify-Store 24 6
Label Island Load 3
13 |Region/Label Island Load-Modify-Store 6
Label Island Load 0
Number of Mem.Wrd. Transfers
17860693 4473932 |1122883 |282938 |71857
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A.4 HW-GSC profiling statistics

Figure A.1: Sample profiling images
a) Sample A “Lena”; b) Sample B “Erika”; ¢) Sample C “Venedig”; d) Sample D “Bagdad”
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Figure A.13: Downpropagation processing clocks per island distribution for different sample images
(Sample A — column a, Sample C — column b)
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Level 2 Linking clock distribution for 2 clk per Level 2 Linking clock distribution 2 clk per step
linking step (threshold 7), Sample A (threshold 7), Sample B
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Figure A.14: Linking clocks per island distribution for 2clk per linking step implementation
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A.5 Hardware resource model

The Hardware Resource Model is based on counting of clocked memory (in bits) required for
allocation of local data aggregates of the FPGA-GSC. Although it is not intended to give a precise
flip-flop budget for each processing unit of the FPGA implementation, it can predict the order of
complexity of each design module with high degree of certainty. Table A.3- Table A.12 show
results of the Resource Model computed with the help of electronic tables for the FPGA-GSC for
different numbers of rows in the island row blocks. Table A.13 offers the summary of synthesis for
some configurations. As it can be seen the correlation between the model and synthesis results is
high. Meanwhile, the Resource Model can hardly obtain the absolute accuracy in prediction as the
results of synthesis depends on the optimisation algorithms, e.g. logic replication, typically
exploited by modern synthesis tools for improving timing characteristics of synthesised designs.

Table A.3: FPGA GSC data-structure constants

Constants Number of bits

MEMORY WORD_WIDTH 128
BIT PER_FEATURE PIXEL 8
BIT PER REGION FEATURE 12
BIT PER LABEL PIXEL 32
REGION _POSITION VECTOR WIDTH 7
CORE REGION FEATURE 10
PIXEL PER_MEMORY WORD 16
LOWEST LEVEL MAX CE NUMBER PER ISLAND 4
PRELOWEST LEVEL MAX CE NUMBER PER ISLAND 8
HIGHER LEVEL MAX CE NUMBER PER ISLAND 12

PARENT POINTER WIDTH

PARENT POINTER PAIR WIDTH 8
LOWEST LEVEL CE WIDTH 27
HIGHER LEVEL CE WIDTH 20
LOWEST LEVEL REGION WIDTH (CEF) 19
HIGHER LEVEL REGION WIDTH (CEF) 12
LINKING_DIGIT TRUNCATION 4
LOWEST LEVEL ISLAND MEM WORD NUMBER 1
PRELOWEST LEVEL ISLAND MEM WORD NUMBER

HIGHER LEVEL ISLAND MEM WORD NUMBER 3
NUMBER OF ISLANDS IN MACROISLAND 7
NUMBER OF OVERLAP POINTS IN ISLAND 6

NUMBER_OF OVERLAP POINTS IN _MACROISLAND 12
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Constants

Number of bits

ISLAND INDEX WIDTH

CE _INDEX WIDTH

LOWEST LEVEL REGION INDEX WIDTH

OVERLAP LIST REGION FEATURE WIDTH

12

REGION WEIGHT FIELD WIDTH

OVERLAP LIST REGION_WIDTH

16

OVERLAP LIST PAIR WIDTH

32

OVERLAP LIST PAIR NUMBER IN NODE

MAX OVERLAP LIST PAIR NUMBER IN MEM WORD

OVERLAP LIST LENGTH

36

LOWEST LEVEL OVERLAP LIST LENGTH

12

LABEL POINTER WIDTH

24

HIGHER LEVEL LABEL POINTER WIDTH

20

LABELED CE WIDTH

36
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Table A.4: FPGA GSC data-aggregate sizes

Data structures

Number of bits

LOWEST LEVEL CE ISLAND

108

PRELOWEST LEVEL CE ISLAND

160

HIGHER LEVEL CE ISLAND

240

LOWEST LEVEL REGION ISLAND

76

PRELOWEST LEVEL REGION ISLAND

96

HIGHER _LEVEL REGION_ISLAND

144

LOWEST LEVEL PARENT POINTER ISLAND

32

PRELOWEST LEVEL PARENT POINTER ISLAND

64

HIGHER LEVEL PARENT POINTER ISLAND

96

LOWEST LEVEL OVERLAP LIST ISLAND

384

OVERLAP LIST ISLAND

1152

OVERLAP LIST NODE

96

LOWEST LEVEL LABEL ISLAND

144

PRELOWEST LEVEL LABEL ISLAND

288

HIGHER LEVEL LABEL ISLAND

432

ISLAND OF PIXELS

56

BASIC REGION_STRUCTURE

13

BASIC REGION ARRAY

52

EXPORT TABLE

66

MACRO ISLAND OVERLAP STRUCTURE

1728

REGION TRANSITION TABLE

432

OVERLAP POSITION ENTITY

72

OVERLAP LIST ENTITY IN MIOS

24

OVERLAP ISLAND

144

MACRO _ISLAND OVERLAP STRUCTURE HLI

264

IMPORT TABLE

66

REGION _DESCRIPTOR

11

PRELOWEST LEVEL REGION_ISLAND

160

LABELLED ISLAND

384
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Table A.5: Coding Unit flip-flop memory budget
CODING UNIT # | bits
Front End
Pixel-Prefetch Memory Word
Buffer
words per pixel island 2| 256
Pixel-Island Extraction Memory
Word Area
words per pixel island 2| 256
Number of Islands 7| 3584
overhead for buffers 256
Procesing Core
Processor:
Pixel Island Fetch 1 56
Basic Regions 4 52
Basic Region Linkage Vector 4 16
Core Region Partial Sums 16 192
Core Region Position Vector 4 28
Lowest Level Region Island 1 76
Export Table 1 66
Miscellaneous 1 30
Shared Storage:
Coded Island Array
region islands per pixel island 1 76
Parent Index Pair Array
parent pointer islands per pixel
island 6 24
Number of Islands 7| 4312
Back End*
Region Island Output Buffer
region islands per pixel island 1 76
Overlap-list Node Output Buffer
overlap-list nodes per pixel
island 3 96
Number of Islands 6] 1032
*-not included if coding unit is used as an add-on
Number of coding
processors 7
Total 8152
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Table A.6: General Linking Unit flip-flop memory budget
GENERAL LINKING # bits
Front-End
Overlap-list Island Prefetch
Buffer
islands per linking island 1 1152
Number of Islands 3 3456
Processing Core
Processor:
Macroisland Overlap Structure 1 1728
Current Overlap Island 1 144
Transition Region Index
Candidates 18 72
Transition Region Feature
Candidates 18 216
New root fegures 18 216
Linked region macroisland 1 144
Miscellaneous
Transition Flags 72 72
Current Island Transition Table 6 18
threshold register 2 26
FSM related 1 51
Shared Storage:
Linked Island Array
region islands per linking island 1 144
Parent-Pointer Island Array
parent-pointer islands per
linking island 7 672
Number of Islands 3] 10509
Back-End
Region Island Output Buffer
region islands per linking island | 2 288
Parent-pointer Island Output
Buffer
parent-pointer islands per
linking island 4 384
Overlap-list Node Output Buffer
overlap-list node per linking
islad 3 288
Number of Islands 2 1920

Number of island rows

Total

15885
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Table A.7: Initial Linking Unit flip-flop memory budget
INITIAL LINKING # | bits
Front End
Overlap-list Island Prefetch
Buffer
islands per linking island 1 384
Number of Islands 3| 1152
Processing Core
Processor:
Macroisland Overlap Structure
HL(1) 1| 264
Region Vectors of Coded
Islands in Macroisland 7 168
Linked Region Macroisland 1 160
Current Overlap Island 1 66
Current Region Vectors of
Coded Island 1 28
Miscellaneous:
thershold register 2 26
FSM related 1 64
Shared Storage:
Linked Island Array
region islands per linking island 1 76
Parent-Pointer Island Array
parent-pointer islands per
linking island 7] 224
Number of Islands 3| 3228
Back End
Region Island Output Buffer
region islands per linking island 2 192
Parent-pointer Island Output
Buffer
parent-pointer islands per
linking island 4 128
Overlap-list Node Output Buffer
overlap-list node per linking
island 3 288
Number of Islands 2| 1216
Number of island rows 3
Total 5596
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Table A.8: Downpropagation Unit flip-flop memory budget
DOWNPROPAGATION # bits
Front End
Label Island Prefetch Buffer
islands per labeled island 1 432
Unlabelled subisland Prefetch
Buffer
islands per labeled island 4 960
Number of Islands 2 2784
overhead for label island buffer 432
Processing Core
Processor:
Child CE Fetch 12 324
Parental Features and Labels 8 288
Child Labelled Island 4 1536
Miscellaneous:
Pipeline Auxiliary 4 164
Shared Storage:
Parent Island Source Zone
labelled islands per label island 3 1296
Subisland Labelling Zone
labelled subsland per labelled
island 6 2592
Region Sub-island Source Zone
region subislands per labelled
island 6 1440
Label Image Mapping Zone
memory words per labelled
island 8 1024
Number of Islands 2| 17328
overhead for parent source
buffer 1296
Back End
Labelled Subisland Output
Buffer
labelled subisland per labelled
island 4 1728
Labelled Image Output Buffer
memory words per labelled
island 4 512
Number of Islands 2 4480
Number of island rows 3
Total 26320
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Table A.9: Coder to Linker integration resources
CODER TO LINKER
INTEGRATION MODULE # | bits
Intermediate Buffer
Parent Index Piar Bridge Buffer
parent pair per linking processor| 12 72
Coded Island Bridge Buffer
coded island per linking
processor 6 456
Export Tables 6] 330
Number of island rows 7| 3696
Linking Unit Intrusion
Coded Island Temporal Sorage
coded islands per linking
processor 8 608
Coded Island Output Buffer
coded region islands per linking
processor 4 304
Number of island rows 4] 3648
Number of island rows 7
Total 7344
Table A.10: Overlap Node Processor flip-flop memory budget
OVERLAP NODE
PROCESSOR # | bits

Processing Core

computed for three overlap points per island
Processor: row
Parental Indexes 6 24
Parental Features 6 72
Parental Position Vectors 6 42
Local thresholds 6 78
Features Distanses 6 72
Region Weights 9 36
Child Island Local 0 0
Parent Islands Local 0 0
Number of island rows 2| 648
Back End**
**included in correspondent linking module
Number of Islands 2 0

Number of island rows

2

Total

648
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Table A.11: Resource Model summary (in bits and as a percentage of XCV2P100 flip-flop memory)

rows in Coding Lowest Level Linking General Linking Overlap Node
block Unit Unit Unit Processor

2 2684 2.94% 3228 3.54% 9778 10.71% 324 0.35%
3 3984| 4.36% 5296 5.80% 15717| 17.21% 648 0.71%
4 5284  5.79% 7364 8.06% 21656  23.72% 972 1.06%
5 6584 7.21% 9432 10.33% 27595 30.22% 1296 1.42%
Table A.12: Resource Model summary (continued)

rows Down-

in Coded | Coder | Extended Initial Initial Linking | Extended Linking | propagation
block |Islands| Add-on | Integration | Integration Unit Unit Unit

2 5| 5396 4464 2562 11510 12.61%| 19962| 21.86%| 14024| 15.36%
3 70 7452 7344 4134 17530 19.20%| 31161 34.13%| 26320| 28.82%
4 9 9508 10224 5706| 23550| 25.79%)| 42360 46.39%| 38616| 42.29%
5 11| 11564 13104 7278| 29570 32.38%| 53559 58.65%| 50912| 55.76%

Table A.13: Synthesis* results for XCV2P100

rows General Linking Unit Initial Linking Unit Downpropagation Unit *

in block DFFs DFFs DFFs

2 14531 15.91% 15888 17.40% 17146 18.78%
3 21360 23.39% 19031 20.84% 28880 31.63%
4 30813 33.74% 26737 29.28% 44323 48.54%
5 35933 39.35% 30852 33.79% 54198 59.35%

* MentorGraphics Precision 2010, Place and Route with Xilinx ISE 10.1
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A.6 Labelling Processor cache efficiency

The cache scheme of the Labelling Processor in the separate segment-feature storing scheme (the
higher resolution image processing) has been profiled to estimate the efficiency of the caching
mechanism for different cache sizes. Table A.14-Table A.18 below show the profiling information

gathered for the last three hierarchical levels for the four sample images.

It is notable that due to spatial locality of the data the cache scheme achieve relatively high
effectiveness with rather small cache sizes and shows a negligible improvement with increase of the
number of data positions in the caches after a certain level. It is also important to note that the L2
cache plays an important role in the cache scheme and is especially important for highly segmented
or fractal images.

Table A.14: Cache efficiency for 24-position L1 and 64-position L2 scheme

L1(24),L2(64) Sample A Sample B Sample C Sample D Total

Segment key read attempt 50184 51150 23637 44860 169831
Cache Hit 35861 35518 11854 25380 108613
Cache Efficiency 0.71 0.69 0.50 0.57 0,64

Table A.15: Cache efficiency for 24-position L1 and without L2 scheme

L1(24),L2(0) Sample A Sample B Sample C Sample D Total

Segment key read attempt 50184 51150 23637 44860 169831
Cache Hit 27215 27142 6720 15886 76963
Cache Efficiency 0.54 0.53 0.28 0.35 0.45

Table A.16: Cache efficiency for 24-position L1 and 128-position L2 scheme

L1(24),L2(128) Sample A Sample B Sample C Sample D Total

Segment key read attempt 50184 51150 23637 44860 169831
Cache Hit 37197 36196 12145 26264 111802
Cache Efficiency 0.74 0.71 0.51 0.59 0.66

Table A.17: Cache efficiency for 48-position L1 and 64-position L2 scheme

L1(48),L2(64) Sample A Sample B Sample C Sample D Total

Segment key read attempt 50184 51150 23637 44860 169831
Cache Hit 36349 35793 11993 25668 109376
Cache Efficiency 0.72 0.70 0.51 0.57 0.64

Table A.18: Relative efficiency of different caching scheme implementations

Efficiency Gain Sample A Sample B Sample C Sample D Total
L2(0)vs.L2(64) 31.8% 30.9% 76.4% 59.8% 41.1%
L2(64)vs.L2(128) 3.7% 1.9% 2.5% 3.5% 2.9%

L1(24)vs.L1(48) 1.4% 0.8% 1.2% 1.1% 1.1%
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A.7 Interface descriptions

A.7.1 ZBT controller core interface

Memory transaction is initialised under the following conditions: at the rising edge of the clock
signal (clk) vid n is asserted LOW, a valid address of the memory transaction is sampled at the
address bus addr, rw signal is determining the direction for the memory transaction (»w = HIGH :

read, rw=LOW : write), brst_n signal specifies burst mode memory transaction.

The transaction initialisation is ignored under any of the following conditions: reset signal reset n
set LOW, stand by asserted HIGH, or vid n asserted HIGH, or user busy input ubusy asserted
HIGH.

Memory transaction is completed if the following is true: sampled at the rising edge of c/k, data out
ready signal dout rdy n is set low (for a read operation) one clock before the data bus data_out
contains valid data, and the transaction is not invalidated at the next clock edge. If data in ready
(din_rdy n) signal is set low one clock before valid data appear at the data bus data_in, and the
transaction is not invalidated at the next clock edge.

Data transference phase is considered being invalid if the following is true: reset signal reset n set
LOW, stand_by asserted HIGH, or user busy input ubusy asserted HIGH.

User busy input ubusy is used to suspend a data transference phase (e.g. when asserted HIGH at a
read data transference phase the data at data_out bus are frozen till ubusy is deasserted).

Burst mode is evoked at a valid transaction initialisation phase if brst n is asserted LOW. At each
valid subsequent transaction initialisation phase transaction address on the bus addr is ignored and
the memory operation is initialised for the subsequent memory location. SRAM controller exits a
burst mode when brst_n is deselected at a valid transaction initialisation phase.

The signal interface is summarised in Table A.19.

Table A.19: ZBT SRAM Controller interface

Signal Direc | Act- Description
-tion ive
SRAM interface

A 6} - Address used to select one of the addressable locations.

[addr _bus width-1:0] Sampled at the rising edge of the clock.

WE n (6] low | Write Enable. Sampled at the rising edge of clock if CEN n
is active. This signal must be asserted low to initiate a write
sequence.

ADV LD (0] - Advance/Load used to advance the internal SRAM-chip
address counter or load a new address. As the burst is
restricted to the length of four memory position, this signal is
always set low and the controller core address counter is used
in the burst mode.
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Signal

Direc
-tion

Act-
ive

Description

CE n

low

Chip Enable. Sampled on the rising edge of clock. Used to
select/deselect the SRAM module. Set high during
initialisation period of at least 1 ms.

OE n

low

Output Enable. Combined with the synchronous logic block
inside the device to control the direction of the I/O pins.
When low, the /O pins of RAM module are allowed to
behave as outputs.

When deasserted high, I/O pins are three-stated, and act as
input data pins. OE n is masked during the data portion of a
write sequence, during the first clock when emerging from a
deselected state and when the SRAM chip has been
deselected. Presently is always asserted active. If the board-
level time model shows data-bus contention, the control of
this pin should be reviewed.

CEN n

low

Clock Enable. When asserted low the clock signal is
recognised by the SRAM. When deasserted high the clock
signal is masked.

DQ[word width-1:0]

Bidirectional Data I/O lines. As inputs to ZBT SRAM, they
feed into an on-chip data register, which is triggered by the
rising edge of clock. As outputs, they deliver the data
contained in the memory location specified. The direction of
the pins is controlled by OE.

MODE

Mode. Selects the burst order of the device. Tied HIGH
selects the interleaved burst order.

Pulled LOW selects the linear burst order. This signal is
always asserted low to select linear burst mode, for the
interleaved bursts are architecture specific option.

zZz

high

ZZ “sleep” signal. This signal places the device in a nontime
critical “sleep” condition with data integrity preserved. Sleep
mode is currently configured to get in after 4000 idle bus
cycles.

User interface

clk

pos.
edge

Clock input of the core. All signals are sampled at the rising
edge of clk.

reset n

low

Reset. This signal resets the internal logic of the core. This
signal is asynchronous to clk.

brst n

low

Burst mode.

w

Read/write. This signal selects the direction of the memory
transaction when vld n is active. Asserted high means
reading data from a memory location specified by addr bus.
Setting low — writing to a memory location indexed by
address bus.

vld n

low

Transaction valid. Sampled low at the rising edge of clk
specifies a valid memory transaction with the direction
specified by rw signal to/from the memory location specified
by addr bus or by internal burst address counter if in a burst
mode.

addr
[addr_bus width-1:0]

When sampled at the rising edge of clk with vld n active
specifies the memory cell location of the memory transaction.
Ignored if the core is in a burst mode.

data_in
[word width-1:0]

Data input is sampled at the rising edge of clk if din_rdy n is
active for write transaction.

data_out
[word width-1:0]

Data output contains valid data of a read transaction at the
rising edge of clk if din_rdy n is active.
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Signal

Direc
-tion

Act-
ive

Description

din_rdy n

low

Data In Ready. When asserted low indicates that the data of
the current write transaction are accepted from data_in bus at
the next rising clock edge.

dout rdy n

low

Data In Ready. When asserted low indicates that the data of
the current read transaction are valid at data_out bus at the
next rising clock edge.

ubusy

high

User busy. Asserted high shows that the user is busy and can
not perform bus activity. Thus all bus operations are ignored
by the SRAM controller core. The data busses are frozen and
maintain the valid data of current transaction till ubusy is
deselected.

perr

high

Parity error. When set high shows that there was a data
corruption and the parity of data transferred three clocks
before was not fulfilled. Parity check is performed as a
complementary “one” to odd number of “ones” for each eight
bits of data bus. (DQ[8], DQ[17], DQ[26], DQ[35], DQ[44],
DQ[53], DQI[62], DQ[71], DQ[80], DQ[89], DQ[98],
DQ[107], DQ[116], DQ[125], DQ[134], DQ[143])

stand_by

high

Stand by mode. This signal when set high is showing that the
SRAM controller is not active and all bus activity are
ignored.

A.7.2 Switch Matrix interface

Table A.20: Switch Matrix active port interface

Signal name Direc Description
-tion
ADDRESS BUNDLE

ADDRESS[bus width:0] IN Address of a memory access operation

BURST NUMBER]2:0] IN Number of words in the burst. Specially coded: 100 — 3
words; 110 — 2 words; 111 — 1 word. Other combinations will
lead to unpredictable results and need for restart (sampled
together with ADDRESS)

READ WRITE IN Direction of the memory access operation: HIGH(1) — read;

LOW(0) - write (sampled together with ADDRESS)

Address bundle control

ADDR _write_op_req IN Request signal for operation. Active HIGH(1). Together with
active HIGH ADDR write op gnt indicates that operation
was admitted for execution.

ADDR write_op gnt OUT | Grant signal for operation. Active HIGH(1). Together with

active HIGH ADDR write op req indicates that operation
was admitted for execution.

DATA TO MEMORY CHIP (outward FPGA)

DATA _OUT data write IN Data for writing to the memory at corresponding position

[data_bus width:0] indicated by valid ADDRESS

DATA_OUT write_op_req IN | Request signal for data write. Active HIGH(1). Together with
active HIGH DATA_OUT write op gnt indicates that data
were taken from DATA OUT data_write.

DATA_OUT write_op_gnt OUT | Grant signal for data write. Active HIGH(1). Together with

active HIGH DATA_OUT write op_req indicates that data
were taken from DATA OUT data write.
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Signal name Direc Description
-tion
DATA FROM MEMORY CHIP (inward FPGA)
DATA_IN data read OUT | Data for reading to the memory at corresponding position
[data_bus width:0] indicated by valid ADDRESS
DATA_IN read op req IN Request signal for data read. Active HIGH(1). Together with

active HIGH DATA IN read op gnt indicates that data were
taken from DATA IN data read.
DATA_IN read op_gnt OUT | Grant signal for data read. Active HIGH(1). Together with
active HIGH DATA IN _read op_req indicates that data were
taken from DATA IN data read.
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