000150853 001__ 150853
000150853 005__ 20240708132748.0
000150853 0247_ $$2doi$$a10.1002/adem.201200107
000150853 0247_ $$2ISSN$$a1438-1656
000150853 0247_ $$2ISSN$$a1527-2648
000150853 0247_ $$2WOS$$aWOS:000308254000006
000150853 037__ $$aFZJ-2014-00888
000150853 082__ $$a540
000150853 1001_ $$0P:(DE-HGF)0$$aNies, Daniel$$b0$$eCorresponding author
000150853 245__ $$aDamage Characterization of Thermal Barrier Coatings by Acoustic Emission and Thermography
000150853 260__ $$aWeinheim$$bWiley-VCH Verl.$$c2012
000150853 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1392366229_26042
000150853 3367_ $$2DataCite$$aOutput Types/Journal article
000150853 3367_ $$00$$2EndNote$$aJournal Article
000150853 3367_ $$2BibTeX$$aARTICLE
000150853 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000150853 3367_ $$2DRIVER$$aarticle
000150853 500__ $$3POF3_Assignment on 2016-02-29
000150853 520__ $$aThermal barrier coatings allow increasing the operating temperature and efficiency of land-, sea-, or air-based turbines. As failure of the coating may result in serious damage of the turbine, reliable estimation of its lifetime is essential. To assess the lifetime, cyclic tests are conceived to combine thermal loading by heating the surface of the coating with laser irradiation and nondestructive methods for damage determination. Using laser irradiation allows a high reproducibility of the thermal load. The temperature of the sample surface during thermal loading is determined by an infrared-camera which also enables the possibility to detect damage in the coating via thermography. Additionally, four acoustic sensors, attached to the experimental setup, are used to detect damage in the sample and determine the source of acoustic events. Results of acoustic emission correlate well with thermographic images that visualize the formation and evolution of damage through delaminations in the samples.
000150853 536__ $$0G:(DE-HGF)POF2-122$$a122 - Power Plants (POF2-122)$$cPOF2-122$$fPOF II$$x0
000150853 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000150853 7001_ $$0P:(DE-HGF)0$$aRehmer, Birgit$$b1
000150853 7001_ $$0P:(DE-HGF)0$$aSkrotzki, Birgit$$b2
000150853 7001_ $$0P:(DE-Juel1)129670$$aVaßen, Robert$$b3
000150853 773__ $$0PERI:(DE-600)2016980-2$$a10.1002/adem.201200107$$gVol. 14, no. 9, p. 790 - 794$$n9$$p790 - 794$$tAdvanced engineering materials$$v14$$x1438-1656$$y2012
000150853 909__ $$ooai:juser.fz-juelich.de:150853$$pVDB
000150853 909CO $$ooai:juser.fz-juelich.de:150853$$pVDB
000150853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129670$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000150853 9132_ $$0G:(DE-HGF)POF3-119H$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vAddenda$$x0
000150853 9131_ $$0G:(DE-HGF)POF2-122$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lRationelle Energieumwandlung und -nutzung$$vPower Plants$$x0
000150853 9141_ $$y2013
000150853 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000150853 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000150853 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000150853 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000150853 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000150853 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000150853 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000150853 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000150853 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000150853 980__ $$ajournal
000150853 980__ $$aVDB
000150853 980__ $$aUNRESTRICTED
000150853 980__ $$aI:(DE-Juel1)IEK-1-20101013
000150853 981__ $$aI:(DE-Juel1)IMD-2-20101013