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Analytical analysis of the generic SET and RESET
characteristics of electrochemical metallization memory
cells

Stephan Menzel*a and Rainer Waserab

We report on an analytical model which describes the bipolar resistive switching in electrochemical

metallization cells. To simulate the resistive switching, we modeled the growth and dissolution of a

metallic filament together with electron tunneling between the growing filament and the counter

electrode. The model accounts for the controllability of the low resistive state and the RESET current by

tuning the SET current. By analytical analysis the relevant conditions for these generic characteristics are

identified. In addition, an explanation for the asymmetry in the SET and RESET switching characteristics

is presented. The results of the analytical analysis is generalized to all types of ReRAMs.
Introduction

Resistively switching materials have attracted great attention due
to their potential application as Resistive Random Access
Memory (ReRAM) in future nonvolatile memories.1–3 Thereby, the
digital information is encoded as different resistance states
which can be programmed by applying appropriate electrical
stimuli. Typically, ReRAM cells consist of a simple metal/insu-
lator/metal structure, where the insulating layer is a mixed ionic–
electronic conductor. During the SET operation the ReRAM cell is
switched from a high resistive state (HRS) to a low resistive state
(LRS), whereas during RESET the HRS is restored. Based on the
intrinsic switching mechanism three different types of ReRAMs
can be identied: electrochemical memory (ECM), valence
change memory (VCM) and thermochemical memory (TCM).
While the ECM- and VCM-type resistivememories show a bipolar
operation scheme, i.e. different voltage polarities are required to
switch between different resistance states; thermochemical
memories operate at one voltage polarity. The switching mech-
anism in ECM cells relies on the electrochemical growth and
dissolution of a copper or silver lament within the insulating
layer.4 ECM cells typically consist of an active silver or copper
electrode, an ion conducting switching layer and an inert counter
electrode. By applying a positive potential to the active electrode
silver/copper is oxidized. The corresponding cations migrate
towards the counter electrode. A reduction occurs at the counter
electrode and a silver/copper lament subsequently grows
towards the active electrode. As soon as an electronic contact is
Jülich GmbH, Jülich, 52425, Germany.
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achieved, e.g. by the onset of electron tunneling between the
lament and the active electrode, the resistance drops to the
LRS.5 To RESET the cell the voltage polarity is reversed and
the lament dissolves. In contrast, the resistive switching in VCM
cells is attributed to the migration of oxygen vacancies within the
applied electric eld and a subsequent change in the electronic
conductivity, e.g. by modulation of the barrier height of one
metal–insulator interface.3 In thermochemical memories high
thermal gradients play the dominant role within the switching
process, which leads to a unipolar operation.6

Independent of the intrinsic switching mechanism ReRAMs
show some generic SET and RESET switching characteristics.5,7

The LRS can be tuned over many orders of magnitude by
limiting the current ISET during the SET operation to different
levels, i.e. RLRS f ISET

�1. On the other hand the RESET current
depends linearly on the SET current: IRESET f ISET. These
generic switching characteristics have been rst observed in
ECM cells8–10 using a simple current compliance.11,12 Typically,
the I–V characteristics show an asymmetry, i.e. the RESET
current is lower than the SET current. Recently, this behavior
has also been demonstrated for VCM and TCM systems.13 In the
latter study the multilevel switching has been attributed to a
variation of the lament diameter. The RESET has been
described as thermally activated dissolution of the lament,
which was shown to yield in the experimental correlation
between SET and RESET current. Here, SET and RESET currents
are almost equal. While this model seems to be applicable for
low resistive LRS states, it fails for high resistive LRS. In this
case the typical RESET currents can be less than a few mA at a
typical RESET voltage in ECM cells below 0.5 V. Thus, a signif-
icant temperature increase is not expected in this regime.
Instead of a diameter variation we proposed themodulation of a
tunneling gap between the growing metallic lament and an
Nanoscale, 2013, 5, 11003–11010 | 11003
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Fig. 1 Equivalent circuit diagram of the (a) numerical model5 and (b) the
simplified analytical model. The crossed-out elements are neglected in the
simplified model.
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active electrode as the origin of the multilevel switching in ECM
cells in this regime.5 In fact, experimental results indicate that a
transition between the variable gap and the variable diameter
model occurs in ECM cells at the resistance of a single-atom
contact, which is about 12.9 kU.14 At and below this value
quantized conduction steps have been observed in ECM cells.10,15

In addition, at this resistance value a change in the resistance
dri behavior of ECM cells has been observed.16 Furthermore, a
transition between pure bipolar and unipolar device operation is
reported for this resistance regime.17–20 The pure bipolar opera-
tion can be related to the tunneling gap mode. The unipolar
operation can be explained in the presence of a galvanic contact
(i.e. variable diameter mode) as a thermally-assisted self-disso-
lution of the metal lament.20 A transition between the variable
gap and the variable width case has also been recently proposed
for hafnium oxide based VCM cells.21 It should be noted that the
large range of programmable LRS resistances has been extracted
from dynamic I–V measurements. However, in a stationary state
a tunnelling gap as well as an atomic scale lament might be
relatively unstable.22Non-equlibrium states in this conguration
such as electromotive force, chemical potential gradients, size
effects or electrolyte non-stoichiometry could be a reason for this
instability.23

The rst simulation models for ECM cells were presented by
Russo et al. using a variable diameter model24 and Menzel et al.
for a vertical lament growth limited by electron transfer reac-
tions25 both in 2009. Later, Yu et al. proposed a model
combining vertical and radial growth.26 Recently, we presented
a physical compact model for multilevel switching in ECM cells
based on a variable tunneling gap.5 In the present paper an
analytical model for the high resistive LRS regime based on our
previous numerical variable gap model is derived. Using this
analytical model the relevant physical conditions for the generic
SET and RESET characteristics in this regime are discussed. By
comparing the results of this study to the variable diameter case
for low resistive LRS more of these results can be generalized.
ECM model
Physical compact model

Fig. 1(a) shows the equivalent circuit diagram describing the
numerical variable gap model. The switching layer of thickness
L is sandwiched between an active top and an inert bottom
electrode. Within the switching layer a cylindrical lament with
area Al is considered, which grows/dissolves when a voltage
Vapp is applied. Consequently, the tunnelling gap x between the
lament tip and the active electrode is modulated. Hence, the
lament resistance Rl and the ionic dri resistance Rion are a
function of the tunnelling gap. In a more microscopic picture,
the lament will have some curvature, and the deposition/
dissolution of a single metal ion can take place at the very top as
well as the sides of the lament. This could also lead to the
occurrence of discrete current jumps. In our model the lament
radius and the tunneling gap are regarded as effective param-
eters, which allows for continuous values.

In the present study we consider only the variable gap
regime, i.e. LRS resistances higher than 12.9 kU. Furthermore,
11004 | Nanoscale, 2013, 5, 11003–11010
we restrict our maximum current to approximately 20 mA. In this
case the dissipated power is also lower than 20 mW and thus a
signicant Joule heating can be excluded.27,28 Note that the
active electrode as well as the lament consists of Cu or Ag,
which are very good heat conductors enabling fast heat dissi-
pation. Thus, a constant temperature of T ¼ 300 K is assumed.
At higher current levels and power Joule heating might affect
the switching currents and needs to be considered in the model.

In the model the lamentary dissolution/growth and thus
the change of the tunneling gap x is modeled by Faraday's
law:29,30

dx

dt
¼ � MMe

zerm;Me

JMezþ ; (1)

where JMez+ is the ionic current density, z the charge transfer
number, MMe the atomic mass and rm,Me the mass density of
the deposited metal. The ionic current is limited by the electron
transfer reaction occurring at the metal/insulator boundaries.
The associated current density is described by the Butler–
Volmer equation30
This journal is ª The Royal Society of Chemistry 2013
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JMezþ ¼ JBVðhÞ ¼ j0

�
exp

�ð1� aÞez
kT

h

�
� exp

�
� aez

kT
h
��

; (2)

which depends on the electron transfer overpotential h. In eqn
(2) j0 denotes the exchange current density and a the charge
transfer coefficient. If h is positive the rst term describing the
oxidation process dominates, whereas the second term over-
weighs for negative h. Since the ionic current depends expo-
nentially on the overpotential, the switching process exhibits a
nonlinear switching kinetics. For an intermediate voltage range
the tunneling current ITu between the growing lament and the
active electrode can be calculated according to Simmons31 as a
nonlinear function of the controlling voltage VTu to

ITu ¼ eAfil

2phx2

�
DW0 � eVTu

2

�
exp

 
� 4px

h

ffiffiffiffiffiffiffiffiffiffiffi
2meff

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DW0 � eVTu

2

r !

� eAfil

2phx2

�
DW0 þ eVTu

2

�
exp

 
� 4px

h

ffiffiffiffiffiffiffiffiffiffiffi
2meff

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DW0 þ eVTu

2

r !

(3)

here, DW0 is the tunneling barrier height, meff ¼ mrm0 the
electron effective mass of the insulating material, Al the la-
ment area and h Planck's constant. Since the tunneling current
depends exponentially on the tunneling gap x, a wide range of
resistance states can be achieved by controlling the gap. Fig. 1
shows the equivalent circuit diagram of the simulation model.
The overpotentials at the lament–insulator interface and the
active electrode–insulator interface are denoted as hl and hac,
respectively. Using Kirchhoff's laws an implicit equation for the
lamentary overpotential hl can be obtained for an applied
voltage or imposed current.5 Thus, the differential equation (1)
can be solved numerically. This model has been extended
recently to also cover nucleation effects and nonlinear ion
hopping transport.32 Note that the derived model is inherently
dynamic and covers the dynamic switching behaviour when a
voltage is applied. It does not give information about the long-
term stability of different programmed resistance states.
Simplied model

To obtain an analytical model for ECM switching the physical
compact model needs to be simplied. Especially, it is neces-
sary to eliminate the implicit equations for the overpotential hl
and for the tunneling voltage VTu (cf. eqn (3)). According to our
previous simulations the voltage drops across the electrodes
given by IcellRel and the ionic conductor Vion ¼ IionRion are small
compared to the overpotentials hl and hac.5 Furthermore, the
nonlinear hopping is not relevant in the electron transfer
regime.32 Thus, the overall cell voltage can be simplied to
Vcell z VTu z hac � hl. This simplication is valid as long as a
moderate current compliance Icc# 10 mA is chosen and the load
resistor is negligible. The resulting equivalent circuit diagram is
shown in Fig. 1(b). According to eqn (3) VTu can only be obtained
numerically if the gap x and the current ITu are known. Since
ECM cells exhibit an ohmic I–V characteristic in the ON state, a
linear relationship between the tunneling current and the
voltage according to Simmons31 is applicable:
This journal is ª The Royal Society of Chemistry 2013
ITu ¼ C
3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p
2x

�e
h

�2
exp

�
� 4px

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p �
AfilVTu

¼ GTuðxÞVTu (4)

In contrast to the equation derived by Simmons31 an addi-
tional factor C is introduced in eqn (4). The value of C is opti-
mized by a least squares method such that the I–V relationships
of eqn (3) and (4) coincide for the set of parameters used in this
study, which results in C¼ 0.29. Eqn (4) can now be solved for x
using the Lambert-W functionW($) that gives the solution of the
equation xex ¼ a as x ¼ W(a).33 Rewriting eqn (4) and applying
the Lambert-W function yields

x ¼ h

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p W

�
C
12meffpDW0e

2AfilVTu

h3ITu

�
(5)

In this case the electronic tunneling current can be directly
calculated if the cell voltage Vcell, which equals VTu, and the gap
x are known.

To eliminate the implicit equations for the overpotential hl
the following simplication applies: for overpotentials |h| [
kBT/ze one of the two terms in eqn (2) can be neglected. So for
the SET operation the ionic current at the active electrode–
insulator interface Iac,SET is

Iac;SET
	
hac;SET


 ¼ j0Aacexp

�ð1� aÞez
kT

hac;SET

�
; (6)

and at the lament–insulator interface

Ifil;SET
	
hfil;SET


 ¼ j0Afilexp
�
� aez

kT
hfil;SET

�
(7)

holds. Note that ECM cells are mixed ionic electronic conduc-
tors and the ionic conduction could dominate in the HRS, e.g. in
Cu/SiO2/Pt cells.34 In the latter case the ionic currents dene the
resistance state as long as parallel electronic leakage currents
are neglected. Due to charge neutrality these two ionic currents
have to be equal and thus hac,SET can be expressed as a function
of hl,SET by

hac;SET ¼ � a

1� a
hfil;SET þ kBT

zeð1� aÞ ln
�
Afil

Aac

�
: (8)

Inserting eqn (8) into Vcell,SET z hac,SET � hl,SET gives

hfil;SET ¼ �ð1� aÞVcell þ kBT

ze
ln

�
Afil

Aac

�
: (9)

The ordinary differential equation (1) can now be rewritten
using eqn (7) and (9) to

dx

dt
¼ � MMe

zerm;Me

j0

�
Aac

Afil

�a

exp

�
að1� aÞ ze

kBT
VcellðtÞ

�
; (10)

which describes the lamentary growth during the voltage-
controlled SET operation. During current control the cell
voltage is replaced using eqn (4) by Vcell ¼ Icc(t)/GTu(x).

Similarly, an expression for the lamentary overpotential
during RESET operation can be found:

hfil;RESET ¼ �aVcell � kBT

ze
ln

�
Afil

Aac

�
: (11)
Nanoscale, 2013, 5, 11003–11010 | 11005
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Table 1 Simulation model parameters

Symbol Value

MMe 1.06 � 10�22 g
z 2
rm,Me 8.95 g cm�3

mr 0.86
DW0 4.2 eV
a 0.5
j0 1 � 10�2 A m�2

rion 1 � 10�2 U m
Aac 201 nm2

Al 201 nm2

Ais 201 nm2

L 20 nm
rl 2 � 10�8 U m
Rel 76.4 mU

RL 0 U

T 300 K
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Equivalently, it yields

dx

dt
¼ MMe

zerm;Me

j0

�
Aac

Afil

�1�a

exp

�
� að1� aÞ ze

kBT
VcellðtÞ

�
(12)

for the voltage-controlled RESET operation. Note that the cell
voltage is negative during the RESET operation. The ordinary
differential equations (10) and (12) can be solved analytically for
some special cases under voltage control. During the current
control eqn (10) still needs to be solved numerically since no
analytical solution exists.

Analytical solution of the simplied model

In experiments a triangular voltage sweep with a set current
compliance is commonly used. For this case the differential
equations (11) and (12) are solved analytically as discussed in
the following. Due to the shape of the voltage signal the time-
dependent cell voltage is dened piecewise. As a simplication
it is assumed that the current compliance is reached before the
peak voltage Vp is reached, i.e. tSET < trise. The cell voltage in this
regime is Vcell ¼ Vp/triset ¼ bt with sweep rate b. Partial inte-
gration of eqn (10) yields

x ¼L� MMe

zerm;Me

j0

�
Aac

Afil

�a
kBT

að1� aÞzeb

�
�
exp

�
að1� aÞ ze

kBT
bt

�
� 1

� (13)

as the solution for the gap x. It is valid until the current
compliance is reached. This upper boundary is determined as
follows: when the current compliance value ISET is reached the
gap is calculated by

xSET ¼ L� MMe

zerm;Me

j0

�
Aac

Afil

�a
kBT

að1� aÞzeb exp
�
að1� aÞ ze

kBT
VSET

�
:

(14)

The SET voltage in eqn (14) can be replaced according to eqn
(5) with

VSET ¼ 2h2

3Ce2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p xSETexp

�
4p

h
xSET

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p �
ISET

Afil

(15)

since the LRS resistance is given by the linear tunnel equation
(cf. eqn (4)). Now eqn (14) can be solved for xSET numerically,
which in turn gives the upper boundary for VSET and tSET,
respectively.

For the RESET process starting at t ¼ T0 ¼ 2trise the inte-
gration has to be conducted separately for T0 < t # T0 + trise and
T0 + trise < t# 2T0, respectively. In the former time period the cell
voltage reads Vcell(t) ¼ �Vp/trise(t � T0) ¼ �b(t � T0). Partial
integration of eqn (12) and solving for x gives

x ¼ xON þ MMe

zerm;Me

j0

�
Aac

Afil

�1�a
kBT

að1� aÞzeb

�
�
exp

�
að1� aÞ ze

kBT
bðt� T0Þ

�
� 1

�
;

(16)

where xON ¼ x(t ¼ T0) denotes the remaining tunneling gap
aer the SET process. For T0 + trise < t # 2T0 the cell voltage is
11006 | Nanoscale, 2013, 5, 11003–11010
Vcell(t) ¼ �2Vp + Vp/trise(t � T0) ¼ b(t � T0 � 2trise). Partial
integration of eqn (12) with the initial value xT+trise according to
eqn (16) results in

x ¼ xTþtrise þ
MMe

zerm;Me

j0

�
Aac

Afil

�1�a
kBT

að1� aÞzeb

�
�
exp

�
að1� aÞ ze

kBT
bð2trise þ T0 � tÞ

�

� exp

�
að1� aÞ ze

kBT
Vp

��
:

(17)

The complete I–V characteristic of an ECM cell can now be
calculated using the analytical equations (14), (16) and (17) and
during current control eqn (10) is solved numerically using an
advanced Euler method until the end of the SET sweep, i.e.
t ¼ T0. For all calculations the parameter set in Table 1 is used.

Results
I–V characteristics

To validate the derived analytical model an I–V characteristic is
calculated and compared to a numerical solution using our
previous 1D numerical model.5 As excitation a triangular voltage
pulse with a peak voltage of Vp ¼ 1 V and a rise time trise ¼ 1 s is
used. Fig. 2 shows the resulting I–V and R–V characteristics.
Evidently, the numerical and the analytical solutions coincide.
The slight difference in the R–V characteristics in the low voltage
range of the HRS is caused by the used simplication of the
Butler–Volmer equation (cf. eqn (6) and (7)). Since the growth
speed is very low in this low voltage regime, the deviation from
the numerical model is negligible. But, if a low voltage is applied
for a long time with respect to the growth speed, an error occurs.
The simulations show that the LRS obeys a linear I–V relationship
according to eqn (4) and the HRS is governed by the nonlinear
ionic current (cf. eqn (6) and (7)). Note that parallel leakage
currents are not included in this model. But since these are not
supposed to affect the switching, they would simply add to the
total current. For further analyses we refer to the quantities SET
voltage VSET, ON voltage VON, SET current ISET, RESET current
IRESET and the RESET voltage VRESET as dened in Fig. 2(a).
This journal is ª The Royal Society of Chemistry 2013
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Fig. 2 Simulated (a) I–V characteristics, (b) R–V characteristics using the
numerical model (blue dashed line) and the analytical model (black solid line).

Fig. 3 (a) Calculated LRS resistance vs. SET current using the analytical model for
sweep rates b ¼ 0.1 V s�1 (dark green), 1 V s�1 (black), and 10 V s�1 (light green).
For comparison the experimental data for a Cu/SiO2 based ECM cell and a
Ag/GeSe based ECM cell are shown as red squares and blue triangles, respec-
tively. Here, only a subset of the experimental data comparable to the simulation
range is shown.9 The simulation result obtained using the numerical model5 is
illustrated as a dashed blue line. (b) Voltage (red) and growth velocity vs. gap
under current control for different current compliances. In addition, the SET
voltages VSET (triangles) and ON voltages VON (squares) are shown for different
sweep rates using the same color code as in (a).
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In the present case the RESET current is higher than the SET
current. In experiments, however, the RESET current in ECM
cells is typically lower than the SET current. This asymmetry can
be explained by the asymmetry of the governing differential
equations (10) and (12) for SET and RESET, respectively. If the
charge transfer coefficient a s 0.5 and Al s Aac, SET and
RESET velocities differ for a certain voltage. As a consequence,
the ISET/IRESET ratio changes.
Generic SET and RESET characteristics

To study the generic SET and RESET switching properties the
I–V characteristics of the ECM cell are calculated using the
analytical model for varying SET currents from 100 pA to 10 mA
at different sweep rates b ¼ Vp/trise. The peak voltage is 1 V in all
calculations. From the calculation results the quantities VSET,
VON, ISET, IRESET and VRESET are extracted and analyzed. To show
the validity of the derived analytical model the calculation
results are compared to previous numerical simulation results5

and experimental data for Cu:SiO2 and Ag:GeSe cells.9 The set of
simulation parameters used in the present analytical study (cf.
Table 1) is identical to the one used in our previous simulations5

in which the sweep rate was always 1 V s�1.
SET

Fig. 3(a) shows the calculated LRS resistance against the SET
current for different chosen sweep rates b. As a comparison data
This journal is ª The Royal Society of Chemistry 2013
obtained from the numerical analysis5 are depicted as a blue
dashed line and the experimental data for Cu:SiO2 cells and
Ag:GeSe cells as red squares and blue triangles, respectively.
The calculated behavior coincides with the simulation results of
the numerical study and reproduces the experimental data very
well. Evidently, the LRS resistance obeys the empirical law
RLRS ¼ VON/ISET, whereas VON depends on the sweep rate. The
higher the sweep rate the higher the LRS resistance and in turn
the ON voltage is also increased. To understand the controlla-
bility of the LRS the growth velocity during current control v ¼
dx/dt, i.e. eqn (10) with V replaced using eqn (4), is analyzed in
more detail. In Fig. 3(b) it is plotted against the tunneling gap x
for different SET currents along with the corresponding voltage.
Apparently, the v–x as well as the V–x characteristics for
different SET currents are shied parallel to each other by a
constant gap. The growth velocity decreases several orders of
magnitude when the gap is reduced by a small amount due to
the highly nonlinear switching kinetics. Note that a growth
Nanoscale, 2013, 5, 11003–11010 | 11007
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velocity of 0.2 nm s�1 is so low that the growth cannot be
considered as continuous. The growth has to be rather
described by the deposition of individual atoms. Thus, the
growth will get statistical in this regime. The calculated SET
voltages and ON voltages are marked in Fig. 3(b) for different
sweep rates. For a particular sweep rate the SET voltages are
virtually identical for different SET currents. At the onset of the
current compliance also the growth velocities are thus virtually
identical. As a consequence, an almost identical transient
behavior under current control with virtually identical ON
voltages results. The inuence of the sweep rates on the SET
voltages as well as the ON voltages increases. This correlation
can be explained mathematically by rewriting eqn (14) to

VSET ¼ kBT

að1� aÞze ln
 
ðL� xSETÞz2e2rm;Meað1� aÞAfil

a

MMe j0kBTAac
a b

!
(18)

Since L [ xSET, L � xSET is almost constant and for the SET
voltage VSET f ln(—) holds. The voltage drop during current
control is VSET� VONz 0.5 V for all sweep rates. It is related to the
kinetics under current control and thus a system inherent quan-
tity. Therefore, the SET voltage can be used as a measure of LRS
resistance, which in consequence depends on the sweep rate as
illustrated in Fig. 3(a). In summary, the origin of the empirical law
RLRS ¼ VON/ISET is related to the highly nonlinear SET switching
kinetics of the ECM cell. If the voltage drops, the growth velocity is
reduced exponentially. In addition, the tunneling voltage depends
exponentially on the tunneling gap (cf. eqn (4)) and hence the
growth velocity depends double-exponentially on the tunneling
gap. This explains the good controllability of the LRS resistance
using a current compliance. The different LRS correspond to
different remaining tunneling gaps. The empirical SET law could
also be explained for low resistive LRS (RLRS < 12.9 kU) assuming a
lateral lament growth model, in which the origins of nonlinear
switching kinetics from a local temperature increase.13 If the
current compliance is reached, the dissipated power and in turn
the temperature is decreased. Thus, further lateral growth is
suppressed. Thus, in a more general consideration a ReRAM cell
that obeys the empirical SET law should exhibit highly nonlinear
switching kinetics. In this case the driving force for resistance
change during the current compliance is reduced tremendously
and the LRS resistance can be precisely tuned. This behavior is
independent of the origin of the switching kinetics of a particular
ReRAM, e.g. electric eld, voltage or temperature.

RESET

To analyze the empirical relationship between the RESET
current and SET current an expression for the RESET current
has to be derived. Since the RESET current is dened as the
peak current during the RESET process, this means dI/dt¼ 0. As
a simplication it is assumed that the RESET event occurs
before the peak voltage is reached. Hence, the RESET current is
given by eqn (4), where x is given by eqn (5). The current
equation can be further simplied by setting the term 1/x to a
constant value 1/xON. This approximation is valid since the
exponential dependence of the tunnelling current on x domi-
nates. With these approximations the current now reads
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Iz� 3

2
C

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p e2

h2
1

xON

� exp

�
� 4p

h
x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p �
Afilbðt� T0Þ

(19)

Differentiating eqn (19) with respect to t, setting to zero and
solving for tpeak with the help of the Lambert-W function yields

tpeak¼T0 þ kBT

zeað1� aÞbW
að1� aÞb ze

kBT

4p

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p MMe

zerm;Me

j0

�
Aac

Afil

�1�a

0
BBB@

1
CCCA

(20)

The RESET voltage can now be calculated according to
VRESET ¼ �b(tpeak � T0) as

VRESET ¼ � kBT

zeað1� aÞW
að1� aÞb ze

kBT

4p

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p MMe

zerm;Me

j0

�
Aac

Afil

�1�a

0
BBB@

1
CCCA

(21)

Note that the derived equation for the RESET voltage (21) is
independent of the previous state of the ECM cell and depends
only on the material parameters and the sweep rate. Thus, under
the same sweeping conditions the RESET voltage is constant for a
particular ECM cell. By inserting eqn (21) into eqn (16)

xRESET ¼ xON þ MMe

zerm;Me

j0

�
Aac

Afil

�1�a
kBT

zeað1� aÞb

� exp W

að1� aÞb ze

kBT

4p

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p MMe

zerm;Me

j0

�
Aac

Afil

�1�a

0
BBB@

1
CCCA

0
BBB@

1
CCCA� 1

0
BBB@

1
CCCA

(22)

results, where the �1 term will be neglected in the following.
This equation can be rewritten using the identity exp(W(b)) ¼
b/W(b) (ref. 33) so that

xRESET ¼ xON þ h

4p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p W�1

�
að1� aÞb ze

kBT

4p

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p MMe

zerm;Me

j0

�
Aac

Afil

�1�a

0
BBB@

1
CCCA

(23)

The RESET current can now be calculated using eqn (23), (19)
and GON ¼ Icc/VON as

IRESET ¼VRESET

VON

� exp �W�1

að1� aÞb ze

kBT

4p

h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2meffDW0

p MMe

zerm;Me

j0

�
Aac

Afil

�1�a

0
BBB@

1
CCCA

0
BBB@

1
CCCAISET

(24)

Hence, the linear dependence of the RESET current on the
SET current is mathematically derived. Fig. 4(a) shows the
This journal is ª The Royal Society of Chemistry 2013
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Fig. 4 Calculated RESET vs. SET current using the analytical model for sweep
rates b ¼ 0.1 V s�1 (dark green), 1 V s�1 (black), and 10 V s�1 (light green). For
comparison the analytical data for a Cu/SiO2 based ECM cell and a Ag/GeSe
based ECM cell are shown as red squares and blue triangles, respectively. Here,
only a subset of the experimental data comparable to the simulation range is
shown.9 The simulation result obtained using the numerical model5 is illustrated
as a dashed blue line.
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calculated RESET currents vs. SET currents using eqn (24) for
three different sweep rates b illustrating the linear dependency
compared to the numerical simulation results5 and the experi-
mental data. Apparently, the analytical and the numerical
solutions coincide and the experimentally observed trend is
reproduced. The experimental data, however, exhibits a lower
RESET current as predicted by the model as discussed in the I–V
characteristics section. The inuence of the sweep rate on the
RESET current is also illustrated in Fig. 4(a): the higher the
sweep rate, the higher the RESET current. This result follows
directly from eqn (24). The RESET current, which depends
linearly on the voltage, increases due to the increase in RESET
voltage for increasing sweep rates as illustrated in Fig. 4(b).
Based on the above considerations the origin of the empirical
law IRESET ¼ AISET can be identied to (i) the linear I–V charac-
teristics and (ii) the highly nonlinear switching characteristics
resulting in a RESET voltage that is independent of the previous
LRS. Both conditions were also met in the variable diameter
model of Ielmini13 and thus can be considered universal. The
physical origin of the linear LRS is not relevant. It can be for
example ohmic conduction13 or direct tunnelling as in the
present model. Also a nonlinear I–V might lead to the generic
RESET characteristics. But for this the current asymmetry of the
positive and negative voltage branch should be independent of
the resistance state. If the asymmetry of the positive and
negative voltage changes with the set resistance state, a linear
dependence of the RESET current on the SET current would not
be achieved.
Conclusions

In summary, we presented an analytic model for the resistive
switching in ECM cells that can be easily introduced into circuit
simulators. The model is valid as long as the switching kinetics
are electron-transfer limited and |V|[ kBT/ze. Both conditions
are typically fullled for fast pulse operation. Using the model
This journal is ª The Royal Society of Chemistry 2013
an analytical equation for the RESET current is derived. Based
on the analytical analyses the origin of the generic SET and
RESET characteristics in ECM cells can be identied:

(1) The origin of the empirical law RLRS f ISET
�1 in ECM cells

is demonstrated to be the nonlinear switching kinetics due to
the electron transfer reaction at the boundaries and the expo-
nential gap dependence of the tunneling voltage. This combi-
nation results in a double-exponential decrease of the driving
force for lamentary growth during current control.

(2) For ReRAM cells in general the empirical law RLRS f

ISET
�1 has its origin in the highly nonlinear switching kinetics

that leads to a huge decrease of the driving force of resistance
change under current control. In this case the physical origin of
the switching kinetics is irrelevant. It is also independent of the
physical representation of the LRS state, e.g. variable gap or
variable diameter mode.

(3) The relationship IRESET f ISET of ECM cells results from
the strongly nonlinear switching kinetics, which results in a
virtually constant RESET voltage, and the linear I–V relationship
of the LRS state. All ReRAMs that fulll these two conditions
also obey the empirical RESET law.

(4) The empirical RESET law might also apply to ReRAMs
with a nonlinear I–V relationship if the current asymmetry in
the positive and negative voltage branch is independent of the
programmed resistance state. If the current asymmetry depends
on the resistance state, the ReRAM cell would not obey the
empirical RESET law.
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