000150966 001__ 150966
000150966 005__ 20210129213339.0
000150966 0247_ $$2doi$$a10.1021/jp412648u
000150966 0247_ $$2ISSN$$a1520-6106
000150966 0247_ $$2ISSN$$a1520-5207
000150966 0247_ $$2ISSN$$a1089-5647
000150966 0247_ $$2WOS$$aWOS:000330610400016
000150966 0247_ $$2altmetric$$aaltmetric:5463462
000150966 0247_ $$2pmid$$apmid:24401100
000150966 037__ $$aFZJ-2014-00997
000150966 041__ $$aEnglish
000150966 082__ $$a530
000150966 1001_ $$0P:(DE-Juel1)151182$$aBarz, Bogdan$$b0$$ufzj
000150966 245__ $$aA Kinetic Approach to the Sequence–Aggregation Relationship in Disease-related Protein Assembly
000150966 260__ $$aWashington, DC$$bSoc.$$c2014
000150966 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1391071643_27174
000150966 3367_ $$2DataCite$$aOutput Types/Journal article
000150966 3367_ $$00$$2EndNote$$aJournal Article
000150966 3367_ $$2BibTeX$$aARTICLE
000150966 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000150966 3367_ $$2DRIVER$$aarticle
000150966 500__ $$3POF3_Assignment on 2016-02-29
000150966 520__ $$aIt is generally accepted that oligomers of aggregating proteins play an important role in the onset of neurodegenerative diseases. While in silico aggregation studies of full length amyloidogenic proteins are computationally expensive, the assembly of short protein fragments derived from these proteins with similar aggregating properties has been extensively studied. In the present work, molecular dynamics simulations are performed to follow peptide aggregation on the microsecond time scale. By defining aggregation states, we identify transition networks, disconnectivity graphs, and first passage time distributions to describe the kinetics of the assembly process. This approach unravels differences in the aggregation into hexamers of two peptides with different primary structures. The first is GNNQQNY, a hydrophilic fragment from the prion protein Sup35, and the second is KLVFFAE, a fragment from amyloid-β protein, with a hydrophobic core delimited by two charged amino acids. The assembly of GNNQQNY suggests a mechanism of monomer addition, with a bias toward parallel peptide pairs and a gradual increase in the amount of β-strand content. For KLVFFAE, a mechanism involving dimers rather than monomers is revealed, involving a generally higher β-strand content and a transition toward a larger number of antiparallel peptide pairs during the rearrangement of the hexamer. The differences observed for the aggregation of the two peptides suggests the existence of a sequence-aggregation relationship.
000150966 536__ $$0G:(DE-HGF)POF2-452$$a452 - Structural Biology (POF2-452)$$cPOF2-452$$fPOF II$$x0
000150966 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000150966 7001_ $$0P:(DE-HGF)0$$aWales, David J.$$b1
000150966 7001_ $$0P:(DE-Juel1)132024$$aStrodel, Birgit$$b2$$eCorresponding author$$ufzj
000150966 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/jp412648u$$gVol. 118, no. 4, p. 1003 - 1011$$n4$$p1003 - 1011$$tThe @journal of physical chemistry <Washington, DC> / B$$v118$$x1520-5207$$y2014
000150966 8564_ $$uhttp://pubs.acs.org/doi/abs/10.1021/jp412648u
000150966 8564_ $$uhttps://juser.fz-juelich.de/record/150966/files/FZJ-2014-00997.pdf$$yRestricted
000150966 909CO $$ooai:juser.fz-juelich.de:150966$$pVDB
000150966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151182$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000150966 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132024$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000150966 9132_ $$0G:(DE-HGF)POF3-559H$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vAddenda$$x0
000150966 9131_ $$0G:(DE-HGF)POF2-452$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lBioSoft$$vStructural Biology$$x0
000150966 9141_ $$y2014
000150966 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000150966 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000150966 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000150966 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000150966 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000150966 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000150966 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000150966 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000150966 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000150966 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000150966 920__ $$lyes
000150966 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie $$x0
000150966 980__ $$ajournal
000150966 980__ $$aVDB
000150966 980__ $$aUNRESTRICTED
000150966 980__ $$aI:(DE-Juel1)ICS-6-20110106
000150966 981__ $$aI:(DE-Juel1)IBI-7-20200312