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Self-propelled point-like particles move along circuleajéctories when their translocation velocity is con-
stant and the angular velocity related to their orientatiector is also constant. We investigate the collective
behavior of ensembles of such circle swimmers by Browniaradyics simulations. If the particles interact via
a “velocity-trajectory coordination” rule within neighbng particles, a self-organized vortex pattern emerges.
This vortex pattern is characterized by its particle-dgnsirrelation functiorG,, the density correlation func-
tion G, of trajectory centers, and an order param&tegpresenting the degree of the aggregation of the particles
Here, we systematically vary the system parameters, sutte garticle density and the interaction range, in or-
der to reveal the transition of the system from a light-voideminated to heavy-vortex-dominated state, where
vortices contain mainly a single and many self-propelledigas, respectively. We also study a semi-dilute
solution of curved, sinusoidal-beating flagella, as an gutarof circling self-propelled particles with explicit
propulsion mechanism and excluded-volume interactions. Sdnulation results are compared with previous
experimental results for the vortices in sea-urchin speastuti®ons near a wall. The properties of the vortices in
simulations and experiments are found to agree quangtgtiv

I. INTRODUCTION ticles moving with constant velocity align their direct®of
motion with the average direction of other particles in apre

Systems of self-propelled particles (SPPs), which conScribed interaction range, while internal or external ads
sume energy to maintain a persistent non-Brownian motionfaken into account by adding a random increment to their ori-
exhibit an abundance of fascinating non-equilibrium aplle €ntation vectors. By a variation of the system parametegs, e
tive behaviors — such as swarming, swirling, and clusteringhe particle density and the strength of the perturbatiochs
[Eh. Examples are found in very fierent areas of physics & Simple system has been found to undergo an order-disorder
and biology, and range from actin filaments and microtubule§hase transition, whose nature (first or second order) is re-
in motility assaysmzli] through metallic nano—roElsmS, 6] t lated to the particle velocity and the way the perturbat®on i
flocking of birds [7/ 8] and groups of peopld [9.10]. In al introduced|[22, 28, 29]. According to these studies, thiésini
of these examples, SPPs emplofetient propulsion mech- conditions and settings of the simulation, the type of imter
anisms, and also interact with each other iffetent ways, tion and the boundary conditions play an importantrole & th
including direct physical contaoﬁllﬂlZ], chemota@ﬁ[m formation of certain collective patterns of motion [1].

hydrodynamic interaction 16], and restricted visoai- A special, but not rare class of patterns of collective mo-
tact ]- However, the collective behavior of SPPs systsms o in SPPs systems are swirls or vortices, in which a group
surprisingly similar, displaying phenomena such as giantd 4 harticles circle around a common center. In experiments,
sity fluctuations with anomalously slow relaxati@[@—,ZO] swirls and vortices emerge both in non-living particle sys-
order-disorder phase transition with increasing noised®d o ms (vertically vibrated granular r030], actin filarten
creasing densi@E‘ZG], etc. in motility assays|[2], aligned microtubules with vortex ar
Since the simplest model of interacting SPPs was introray [4]) and in systems of living micro-organisms (bacteria
duced by Vicsek et all__dﬂ], nowadays widely referred as thecolonies ], zoo-plankton under optical stimul [3Has
“Vicsek model” ], collective behavior of SPP systemsurchin sperm trapped near a substrate [32]). In simulations
has attracted much intereBt [1]. Inthe Vicsek model, paant p  the emergence of swirls and vortices was found to depend on
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the initial conditions and the model settings, such as a cirrange, and noise amplitude), the circle SPP systems have at
cular boundaryﬁﬁq, alignment with a “blind angle” of least the spontaneous curvature of the particle trajec®gn
interaction behind each agent [17], a harmonic attractaie p extra parameter. The larger parameter space suggests a more
potential with a noise above a critical vaI@[C%S], and hylyro  complex behavior of these systems. In order to study such
namic interaction@4]. In most of the computational medel systems, highly simplified models are often very useful, as
exhibiting vortices, a single SPP is either assumed to perfo has been demonstrated by the success of the Vicsek model.
a random Walkl , or to move with constant magnitude ofAn example for circle swimmers is the simplified model of
velocity , 5]. Ref., designed to interpret the formation of vortex asray
In this paper, we consider a class of SPPs which mov@f sea urchin sperm. In this model, each sperm is described
— in the absence of noise — alongrved trajectoriesather by a point particle at its trajectory center, with a pairwise
than straight lines, which we call circle SPPs. The drivingshort-range attraction arising from hydrodynamic forees
force of a circle SPP does not coincides with its propagatior® longer range repulsion due to steric or hydrodynamicorigi
direction, so that its trajectory is a cycloid in three spiadii- ~ Inspired by this model, we construct a model of circle SPPs
mensions or a circle in two dimensio[@—38]. Artificial by point-like particles with a constant propagation veigci
circle swimmers can be constructed by introducing a tilted o Where particles interact through a “velocity-trajectoopodi-
bend structure to catalytically driven colloidal rods [6lving  nation”, which takes the trajectory centers of neighbotipar
thermophoretic colloidal swimmers a L-sha@ [39], or by de-cles into account. This algorithm of interaction idferent
signing micro-machines of connected beads which are moveliom both the “trajectory-center coordination” of Ret| aa
relative to each other in a time-irreversible multi-stepgley the “velocity coordination” of the Vicsek modéﬂZl] (which
[@]. Examples of circle swimmers in living systems include averages the velocity of neighboring particles). We wilt an
certain bacterialﬂl] and spermatoza é , 43] — wherlyze this model in detail, and show that it describes vortex
the micro-organisms are attracted or confined in their moformation and the evolution of a stationary vortex pattern.
tion to a surface or wall. The most carefully analyzed ex-  |n addition to the point-like circle SPPs model, we also
periment on the collective motion of circle SPPs might be thestudy curved, sinusoidal-beating flagella. Sinusoidatihga
self-organized vortices of sea-urchin spernd [32]. Th68-  of a filament or elongated body is a common self-propulsion
long sperm circle clockwise when they gather at a substratenechanism in biological systems with low-Reynolds-number
With increasing surface density of sperm, the system etehibi hydrodynamics, e.g. nematon[M] and sperm of higher an-
a transition from a disordered state of randomly distridute jmals ﬁn‘% ]. The sinusoidal wave propagates from one end
sperm to a self-organized vortex-array state with locablgex to the other on the filament-like body and pushes the surround
onal order, in which each vortex consists of several spermng fluid backwards to generate a forward force. Thus, the
In Ref[32, the emergence of this structure is attributeti¢o t cell or organism gains velocity in opposite direction of wav
hydrodynamic interactions between individual sperm and bepropagation. As indicated by experiments of biological sys
tween sperm vortices. However, simulations suggest tleat thiems g] and simulations of model syst [12], the
steric interactions between rod-like SPPs - 12] and-sinusjnusoidally undulating motion of the body does not destroy
soidal beating fIageIIaL_[_iZ] strongly contribute to the eoll  the general collective behaviors of rod-like SPPs. Our flag-
tive motion and aggregation. ellum model is coarse-grained as particles connected by har
While the morphology and properties of swirls and vor- monic springs, and the hydrodynamics is either approxithate
tices in straight-trajectory SPPs systems have been studidy anisotropic friction, or calculated by using Multi-Hak
intensively in recent yearEllE @—35], much less i€ollision dynamics (MPC), a mesoscopic particle-based sim
known theoretically about the collective motion of circleFs  ulation approac El]. By introducing a non-zero averag
[El]. The understanding of thdfect of the spontaneous circu- curvature in the beating plane, the undulating flagellurmetsa
lar trajectory on the collective behavior of SPPs is esaénti out a circular trajectory in two dimensions, reminiscerd th
for the understanding of many biological phenomena and fotrajectory of sea urchin sperm at a substr@ EJZ 52]. The
the design of microscopic machines. In addition to the pasimplicity of the model allows us to analyze the contribatio
rameters of SPPs (like velocity, particle density, intdoac  of volume exclusion and hydrodynamic interaction sepérate



The study provides insight into théfect of flagellar proper-
ties, such as frequency distribution and spontaneous €urva
ture, on the collective motion and the emerging vortex pat-

terns.

The paper is organized as follows. Secfidn Il gives a brief
description of our models and simulation methods. InGéc. Il

we analyze the collective motion of point-like circle SPPs-s

tems. Then, we study the collective motion of curved, sinu-

soidally beating flagella, and compare the results withleirc

SPPs models and sea-urchin sperm experiments in"Sgc. IV.

The results are summarized in Se¢. V.

Il. MODELS
A. Circle self-propelled particles

We considerN point-like particles moving in a two-
dimensional system of size, x Ly. The number density of
the particles isog = N/LyLy. Each particle has a sponta-
neous circular trajectory of diamet®g, which is traversed in
counter-clockwise direction, and a circular interactiegion
of diameterd, as illustrated in Fid.J1. At timé& thei-th par-
ticle has position;, velocityv;, and trajectory center position
re; of its spontaneous circle trajectory determined by
. Vi(t)

— () + 20
ra® =) + PR (2.1)

FIG. 1. Schematic of the interaction of particieend j. The dashed
lines denote the spontaneous circular trajectories oi-thendj-th
particles. The gray area displays the neighbor region dighar. e
is the tangent unit vector to the trajectory of partigigith v; -e; > 0.

sum of all particles within the interaction regionieth parti-
cle — includingi-th particle itself. The tangential unit vector
gj is obtained at the intersection of the spontaneous trajecto
of j-th particle and the connect line betwegrandr;, as
illustrated in Fig[l. The direction of; is chosen to make
vi-g >0.

In contrast to the Vicsek modé] 21], the change of the
velocity direction in our model is determined not by a polar
alignment of velocities (velocity coordination), but ratloy a
nematic alignment of local trajectories, which are deteedi

whereR(6) is a rotation matrix which rotates a vector in two by the instantaneous trajectory centessof the neighbor par-

dimensions counter-clockwise through an angjléNote that

ticles (velocity-trajectory coordination). Here, the @wof

r.i(t) is obtained from the instantaneous velocity and positionthe alignment rule strongly depends on the interactioneang

rather than from the full trajectory.
The equation of motion for thieth particles is then given

by
ri(t+ At) = ri(t) + vi(t + A)At. (2.2)

Motivated by the nematic alignment of colliding rod-likerpa
ticles @], we define a majority rule for the the re-direotuaf
the velocity as

2 &
[ Zia) &l
where At is the simulation time stepyy is constant magni-
tude of the velocitywy = %"—g is the angular velocity of the
orientation of the particle velocity which enforces a clezu
trajectory of diameteDy in dilute suspension, andj is the

Vi(t + At) = VoR(woAl) (2.3)

relative to the preferred swimming radius. Clearly, a major
rule can only generate alignment if the number of partiates i
the interaction range is fiiciently large. This is very diicult

to achieve ford < Dy when particles move collective in cir-
cular vortices. Therefore, we choase: Dg. Our simulations
show that in this case velocity coordination as in the Vicsek
model does not give rise to vortex patterns in a circle SPP
system, because neighboring particles align their dwastof
motion but do not tend to generate vortices with several-part
cles circling around a common center.

Note that we omit noise terms in Eqs. (2.2) and](2.3), so
that our model is deterministic — once the initial state i®gi
This is a reasonable description of microswimmers which are
not too small, such as sperm.

In the simulation, we use the diameter of sponta-
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neous trajectoryDg as length unit,At as time unit, and The swimming of both nematodes and sperm is deter-
Vo = 0.025D¢/At. This implies a period of rotation of an mined by low-Reynolds-number hydrodynamics, where vis-
interaction-free particle oy = nDg/vo. The interaction cous forces dominate over inertial forces. In this regirhe, t

ranged is varied below, but is typically on the order of dynamics of a rod can often be well described by resistive-

Do (as explained above). The simulation box sizd_js=  force theory ﬂb], in which hydrodynamic interactions be-
Ly = 20Dg or 40Dg. The simulation time for each system is tween diterent segments of a rod are approximated by an
T = 5x 10PAt ~ 4.0 x 10°T,. anisotropic friction (AF), so thdy = —yvylo, f. = —y.V.lo,

wherev, andv, are the velocity components of a flagellum
segment on the directions parallel and perpendicular ttothe
cal tangent vector, respectivelyg is the friction codicient

for a segment of unit length, witB =|| or L [@]. Hydrody-
namic interactions are not included in simulation emplgyin
AF, so that volume exclusion is the only interaction between

B. Circle-swimming flagella

We construct a two-dimensional flagellum mo [16]
from a linear sequence ®f; beads, which are connected by

harmonic springs with rest length. The local spontaneous o o . .
curvature of such a filament is a function of timand po- the flagella in this case. Considering the relatively laigess

sition x along the flagellar contour, measured from the firstOlc flagella and nematodes of several 1B and a few mil-
bead, limeters, respectively, we neglect thermal fluctuationeun
AF simulations.

C(x.1) = Co + Asin(-2r ft + X+ o). (2.4) In simulations with full hydrodynamics, the flagellum
where f is the beating frequency is the wave numbeipg model is embedded in a two-dimensional fluid, and the time
is the initial phase chosen independently from a uniform disevolution of the system is carried out by employing a hy-
tribution on the interval [02r7) for each flagellum, andy is  brid molecular dynamics approach — multi-particle colli-
the average curvature. We denote a flagellum with non-zersion dynamics (MPC) for the quiﬁ%&l} in combination
co a curved flagellum. The constaAtcontrols the strength with molecular dynamics (MD) for the flagellum — as fol-
of beating, which is related to the amplitude of the shape unlows. During the streaming step, the point-like particlés o
dulations. Equatior (214) generates a traveling wave, lwhicthe MPC fluid move ballistically during a time intervaf,
propagates from the front to the end of the flagellum. Thewhile Newton’s equations of motion for the flagellum parti-
curvature elasticity of the flagellum is determined by a bendcles are integrated by the Verlet algorithm with a time step
ing potential, which depends on the deviations of the anglesf A" = 0.02Ar. In the subsequent collision step, the flag-
between neighbor bonds from their preferred vatpet)l,.  ella exchange momentum with the neighboring fluid parti-

Therefore, the elastic energy of flagellyrs given by cles. The collisions are performed by sorting all fluid and
flagellum particles into the cells of a cubic lattice (with-la
2|2[|R| il- |o] Z 2|3[RI+1J R(ci (X, t)'O)RIJ . tice constant), which are labeled by an index A rota-

(2.5) tion operatofi;(a) is assigned to each box. \f, is the pre-
Here,R;j = ri.1j — ' are bond vectors, and; denotes the collisional center-of-mass velocity of all particles i the
position of thei-th bead of thejth flagellum. %(c;lo) is an post-collisional velocity of a particlei in the box is given
operator rotating a two-dimensional vector counter-clisk by V{ = V¢ + 935(0)(Vi - Vc,.f)a wherey; is its pre-collision ve-
by an anglec;(x;, t)lo. k is the spring constant andthe bend-  locity. This simple collision rule conserves mass, momentu
ing rigidity Eé]. The volume exclusion of beads orffdrent ~ and energy, which guarantees the emergence of Navier<Stoke
flagella is taken into account by a purely repulsive, truedat hydrodynamics on length scales larger tasince the beat-

and shifted Lennard-Jones potential ing flagella perpetually inject energy into the fluid, we appl
12 6 a local thermostat after each collision step.
46[(_0) - (&) + 1], r < 249, _— .
V() = r r 4 ,  (2.6) The simulation system containd flagella of length
0, otherwise Nilo = 50ain a simulation box of sizé.x x Ly, wherea is

wherer is the distance between two beads belongingftedi  size of a MPC collision box. The number density of flagel-
ent flagella. lum is po = N/LxLy. Periodic boundary conditions are em-
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FIG. 2. (Color online) The diameté, (black solid squares) of the @@ o) =
circular trajectory of a single flagellum as a function@fi§) ™ in AF @ | ‘_"_ T E A wo & ‘
. . . . . . . - @B o)
simulations. The red line is a linear fit to the data with slopé.8. 2 = se S

The inset is the dimensionless velocigy foa of a single flagellum
(black solid squares) as a functionagfy. The red line is the linear fit
to the data. In both (a) and (b), the beating frequency of #geflum
is fo = 1/120r,™.

FIG. 3. (Color online) A snapshot of vortices in a circle SBiAstem

at the end of the simulation tinte= 4 x 10°T,. Each black dash is
the trajectory of a particle in a time intervAllT = 10At ~ 0.08T,,
and the red dots are the corresponding trajectory centédrs.inBet
shows a magnification of the area at the bottom left cornerrevhe

ployed. During the simulation, each flagellum has a constarff?0 Vortices consists of groups of circle SPPs with equatadise

frequencyf chosen from a Gaussian distribution with the av- betw_een ne|ghbor|ng grgups. The number of particle grod

fo = 1/120r-" and the variance(f — )2> _ 262 are five and six, respectively. The parameterslare L, = 40D,
eragelo = L/ 1ebo™ 077 =%, D2=4,andd=1.3D,.
whereo is a dimensionless number characterizing the width

of the frequency distribution. When the average spontasieou

curvaturecy is positive, the flagellum is curved and prefers IIl. COLLECTIVE MOTION OF CIRCLE SPPS
a clockwise circular trajectory. The trajectory diameligy
depends approximately linearly omlp) * in AF simulations, N circle SPPs are distributed in the simulation box with

and the center-of-mass velocity, of the flagellum decreases random positions and random velocity directions at théainit
approximately linearly witftolo from its value forco = 0, as  timet = 0. Shortly after the start, vortices emerge, which are
shown in Fig[2. Each simulation runs for at least 2880  formed by one or several particles circling around a common
The other parameters of our flagellum simulations are liste¢enter, as illustrated in Filll 3 and movies in the suppleaient
in Ref.155. material |[_a5]. The vortices distribute in space with no ebvi
The collision of two particles with elongated structure ous long-range order, and displace vigorously if the ttajgc
in a viscous fluid environment results in a cooperated motiortenters of the particles belonging to the same vortex do not
that the particles move together with close packing. If thecoincide precisely at the same point. When two vortices-over
elongated particles are straight, the nematic interacéeults  lap or collide, particles are exchanged between the vaitice
in velocity alignment of neighbor particles and clustemfiar  until they either fuse or separate from each other far enough
tion ,,]. When two elongated and curved flagellaTherefore, the vortex mass, defined as the number of circle
encounter each other, they tend to get close and synchroni&PPs forming it, changes during collisions. Note that ttse sy
their configuration via hydrodynamic interactions as well a tem is deterministic due to the absence of noise, and a noise-
volume echusionHﬂG] and form arffective “extended induced fission of vortices does not occur in the simulation.
flagellum” with the same average curvature. The circular moWe characterize the emergent vortex pattern of circle SRPs b
tion of such an extended flagellum around a center is equivahe particle density-correlation functions, the trajegtoenter
lent to the motion of two flagella around the same center, thelensity-correlation functions, and the order paramefae
first step towards the formation of a vortex. ing the degree of the particle aggregation. By systematical



FIG. 4. (Color online) The examples of the particle-densiyrela-
tion functionG,. The inset is the density correlation function of an
annular region of evenly distributed particle density. Gremneter of
the inner circle of the annular region is78Dg, and the diameter of
the outer circle is 25Dg.

changing the particle densipg and the size of the interaction

regiond, we then determine the dynamics phase diagram of

this system.

A. Particle density-correlation functions and trajectory-center
density-correlation functions

The correlation function of particle densities at tiinis
given by

Gy(Ir = ') = po 4p(r, t) - p(r", ), 3.1

and the correlation function of the trajectory-center dtgrat
timetis

Ge(Ir = 1'l) = po%pc(r. 1) - pe(r’, O, 3.2)

wherep(r,t) andpc(r,t) are the number densities of the par-
ticles and the trajectory centers at positioand timet, re-
spectively. We consider timésn the interval [T1, T2], where
T: = 8x 10PTg andT, = 4 x 10°T,. Most of the systems
have not yet reached a stationary staté atTi, so that the
correlation functionss,(x, t) and G¢(x, t) still contain some

121 E

FIG. 5. (Color online) (a) The vortex diametBx, as a function of
the particle density,Dj3. The red dashed line is the guide to the eye
at valueD, = D,. (b) D, as a function of the diameter of the inter-
action regiond. The open symbols and the solid symbols represent
the light-vortex-dominated systems and the heavy-vodmxinated
systems, respectively. The error bars in (a) and (b) areatievidth

of peak Il as defined in Fif] 4.

is a pronounced peak at~ d/2, denoted as peak I, which
arises from the interaction range of our model. The displace
ment of a particle in a simulation time stegAt, is much
smaller thard/2; therefore, during the very short time inter-
val for two particles to adjust their motion and form a vor-
tex, their relative distance remains essentially const@his
distance only changes when a third particle comes into play.
If the mass of a vortex is high, the multi-particle interaati
affects and disturbs the distances of other particles in a vor-
tex. Thus, a higher densipp depresses peak | in Figl. 4. For

averaging over dierent structures and spatial arrangementg&xample, wherd = 0.5Dg, doublingpg strongly depresses

of the vortices.

The particle density-correlation functia®,(x) mainly
characterizes particle arrangement in a vortex, in pdaticu
for x < Do + d/2, as shown in Fid.J4. In the single-vortex re-

the height of peak I. Similarly, increasintjenhances peak |
whenpyg is kept constant. Therefore, a vortex is composed of
several groups of particles with the constant distady@be-
tween neighbor groups, as illustrated in [Eig. 3. If the tenge

gion,G,(x) displays a pronounced spatial dependence. Ther® keep the distance/2 is strong for the particle groups, a



second and third peak become evident, see[Fig. 4. The po- 14| ' ' ' 1

sition of then-th peak is approximatelx, = Dy sin(hd/2) 126 _

whered = 2 arcsinfl/2D,) andD, is the diameter of the vor- 1ol

tex. Note that such periodic particle density modulation is

dynamic temporary structure which breaks and reconstructs G, o )

with time. oer , ]
The peak of the vortex structure at~ Do, denoted as 04r a=0.5D,, pD, =2 1

peak Il, indicates the diamet&, of a vortex. According to 0.2r 1

the definition of the density correlation functi@), this di- 005 2 n 6 8

ameter is weighted by the mass of the vortices, so that the x/D,

vortices consisting of more particles contribute moredtp
Thus,D, mainly reflects the diameter of the “heavy” vortices, FIG. 6. The trajectory-center-density correlation fuantiGc, with
containing a large number of particles in the vortex. We aefin d = 0-5D0 andpoDg = 2.
the width of peak Il as the distance between the peak position
and the position of the subsequent minimum. A larger pealnany heavy vortices of both= 5 andn = 6 Whenpng =4
width indicates a wider band of particles in the vortex. la th andd = 1.3D,.
low-density limit, the particles hardly meet each otherd an Forx > Do + d, G, approaches unity due to the loss of
the vortices mainly contain a single SPP, which is defined agpatial correlations at large distances, which indicatiegia-
a light-vortex-dominated state. In this staf®, ~ Do and |ike order of the vortices.
the width of peak Il is narrow, as illustrated in Fd. 5a for The correlation function of the trajectory-center density
poDj < 1. At high particle density, e.g. faD3 > 4, ama- G, shown in Fig[h, has a large peaksat= 0 because of
jority of the particles belongs to vortices of mass larganth the aggregation of the trajectory centef3, decays rapidly
10, which is defined as a heavy-vortex-dominated state. Ifo zero forx ~ 0.5D,, indicating that the trajectory centers
this state Dy still approximately equal®o, but the width of  aggregate in a small spot at the center of the vortex. Two
peak Il is about twice as large as fa/Dj < 1. An extraordi-  heavy vortices cannot overlap, otherwise they will fuse int
narily large width ajpoDj = 2 in Fig.[Ba indicates a transition one or separate into several distinct vortices. Theref@ge,
of the system from a light-vortex-dominated state to a heavydi5p|ays a depletion zone froBy to Do + d/2. Forx > Do +
vortices-dominated state. d/2,Gc increases rapidly and displays a peak corresponding to
The same transition from light to heavy vortices also hapthe the closest possible distariag of two neighboring heavy
pens with increasing at constant densityy. The vortex di-  vortices. For larger distancesG. approaches a constant with
ametersD,, for differentpng coincide in the heavy-vortex- decaying oscillations, which reveals the absence of |@amge
dominated state, but are slightly smaller in the light-egft order and corresponds to a liquid-like spatial arrangeroént
dominated state, see Fig. 5b. Increasiruses a systematic vortices.
increase oD,. The small dip atl = 1.3Dg, can be interpreted The dependence dd,, on the particle density is show
as follows.Dy, is not only determined by the spontaneous tra-in Fig.[da. D,y is nearly independent of density, with,, ~
jectory diameteDy of circle SPPs, but also influenced by the 1.55D, for d = 0.5Dy and poD(Z) > 3, when the system
interaction range, because the vortex prefers a dynamic tem-is heavy-vortices dominated. Similarlp,, =~ 1.25D, for
porary state with an integral number of particle groups \&ith png < 1, when the system is light-vortices dominated.
constant neighboring distand¢2, as shown in Fid.13. There- The transition between light-vortices-dominated and keav
fore, D, can be estimated b®, ~ d/[2sin¢r/n)], wherenis  vortices-dominated states occurs whegt poDZ < 3, which
the number of particle groups in a vortex; this estimate proagrees with the transition region extracted fr@n(compare
vides qualitatively the correct trend fdr> 1.1Dg, but devi-  Fig.[3a). As shown in Fig.]7b, the increasef, with d for
ates a little quantitatively becausdliftfers for diferent vor-  constant density)ng is somewhat faster than the linear rela-
tices in the system. For example, heavy vortices with 5 tion Dg+d. FOI‘png =1, D,y displays a pronounced increase
are dominant whepng = 4 andd = 1.5Dg, while there are by more than BDg whend is increased from.8Dg to 1.5Dy.
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FIG. 7. (Color online)(a) The distance between vortifgs, as a
function of the particle densityoD3. (b) Dy as a function of the
diameter of the interaction regiahwith different particle densities.
The red dashed line is= Do + d. The inset is the order parameter
as a function of timé/To whend = 1.5D,. The red, blue and black
lines represent the particle densitig®3 = 1, 2, and 4, respectively.
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stronger aggregation leads to a larger center-densitatieni
Therefore, we define an order parame&exs

2
s= 4 _ 1, (3.3)
AZ
0
where
2 ND% 2
A2 = o (1- D§/Lily). (3.4)

is the variance of a binomial distribution of point part&le
andA? is the variance of the trajectory center numbers in an
areaDg. If the center positions are randomly distributed in the
space S vanishes.S increases with the degree of the aggre-
gation of centers, which indicates the formation of voricé
all particles circle around a common center N — 1.
SupposeN particles form N, vortices in the two-
dimensional spacky x Ly. The number of the vortices con-
sisting ofn particles isP(n), and

Z P(n) = Ny, Z nP(n) = N. (3.5)
n n

In order to elucidate the relation between the average mass
(ny = N/N, of the vortices and the order parameter, we as-
sume that the trajectory centers of all particles in a voctex
lapse into one point, the vortex center, although they adway
have some narrow distribution around the center in the simu-
lations. According to the trajectory-center density claien
functionG, (Fig.[da), the distance between two vortices in our
systems is usually larger tharbDy in the systems dominated

by heavy vortices, except when two vortices are collidind an
merging. Therefore, the possibility to find two heavy vortex
center in an areﬁ)g is low. Thus, we assume that the proba-

Whenpng = 2,4, Dy, exhibits an unexpected decrease forbility to find two vortex centers ing is zero. We divide our
d = 1.5Dg; we interpret this as the absence of a second vortexsystem of sizé., x Ly into boxes of siz&3, and fill the boxes
mass-increasing time period due to the inadequate siroolati with at most one vortex. Then, the variance of the center-

time, as will be explained in Sec.I11B below.

B. Order parameter

In the initial state, all particles are randomly distritdite
in space, so that the number of the particles and the number

number distribution irD3 is

A% =

2
L?Ey (Z n2P(n) — pODgN) . (3.6)

Note that the weight average of the vortex mass is

W= anP(n)/ZnP(n). (3.7)

of the trajectory centers in a defined area assumes a binomial

distribution. When the particles form vortices, the aggtém

of the trajectory centers cause a large deviation of the mumb
of trajectory centers in a defined area from its average vélue

Thus,A? can be written in terms af as

A? = (W- poD3). (3.8)
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FIG. 8. (Color online) Time evolution of the order paramesefor ~ 10%, 10%, and 4x 10, (a) as a function ofl whenp,Dj = 1.0, and (b)
(a) various diameters of the interaction region, and (b) various par- as a function opoDj whend = 0.5D,. The dashed lines in (b) are
ticle densitiesoo. The dashed lines are power laws witiffeient  linear fits of S att/To = 10°, 104, and 18.

exponents, as indicated.

this period, the vortices are formed mainly by particlesahihi

Substituting Eqs[(314) an(3.8) into EQ.(3.3), we find are close to each other in the initial state; therefSréepends
W— poD2 roughly linearly on the particle density, as shown in Eig. 9b
= ﬁ -1 (3.9)  Period Il is defined as the time period after period I, during
— Mol =xby

which S increases only very slowly and approaches a plateau,
In our simulationsD3/LxLy < 1/400 < 1 is negligible, so  as shown in FigJ8. The plateau has a higher value for larger
that po andd.
For high densities,a()Dg > 2 whend = 0.5Dq in Fig.
Bb) or larged (d > 0.9Do whenpoD3 = 1 in Fig.[8a), there
This result reveals a simple linear relation between oueiord is another dynamical evolution after period Il, denotedquer

S~ W- poDj - 1. (3.10)

parameteB and the weight average of vortex mass. Tiiis, [ll, in which S displays another pronounced increase. The
a proper order parameter to characterize the degree ofxvorténcrease ofS in period Il indicates the formation of heavy
formation. vortices by vortex fusion — not seen for some lowr smalld

The order paramet& increases with time once the par- Systems. However, in our simulation time scale, some system
ticle start to move and the trajectory centers aggregate, agith highp and larged also do not display period IlI (see the
shown in Fig[B. S first undergoes a fast increase during ainset of Fig[Tb), in this case because the simulation time is
time interval which we call period I. The increase®fwith ~ not long enough for vortex fusion to occur.
time during period | occurs faster for largey, but is not sen- By analyzing the order paramet&rat a given timet
sitive tod, as indicated by the dashed lines in Fiy. 8. Duringfor different systems, we can also determine the transition
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state state. For exampl8,does not have the highest value in
regimeD. The reason is that the characteristic time scale of
the evolution strongly depends on particle density, so d@hat
the chosen final simulation time, the systems in reginteas
only been able to complete the initial collection of neighbo
particles. (see inset of Figl 7b).

Our simulations are performed without noise. There-
fore, the vortex mobility only depends on multi-particlédn
actions. Increasing vortex mass leads to an increasing com-
plexity of these interactions and can result in a high mgpili
of vortices. The light-vortex-dominated systems cannet in

. . crease the vortex mass via collision because all vortices do
FIG. 10. Phase diagram of the circle SPPs system. The calor fr

black to white shows the value 8fatt/To = 4 x 10° from 0 to 16.

The white lines divide the phase diagram into four regimeswating
to the shape 08(t). For the definition of regimes to D see main ~ VOrtex mass via the collision of vigorous heavy vorticeslunt
text. a limit is reached, which is determined by the particle den-

sity. At the boundary between regimasndB in Fig.[10, the

) i value ofS is between 1 and 3, indicating the weighted vortex
from the light-vortex-dominated state to the heavy-vortex e )
mass less than 5. Moreover, the position of the line agrees

dominated state, as shown in Hig. 9. The transition happens ) . , i
5 5 well with the transition between light-vortex-dominatedts
when 08 < d/Dy < 1.0, forpoDg = 1, and when Xk poDg <

) and heavy-vortex-dominated state indicated by the vanati
3 ford = 0.5Dg. S assumes a small value near zero in the

. . , , of Dy and D,y shown in Fig[5 and Fid.]7. Therefore, the
light-vortex-dominated systems, then increases rapidtis w ) i . )
boundary between regimés and B can be identified with

increasingd and png in the heavy-vortex-dominated sys- . . )
the transition from the light-vortex-dominated to the heav

tems.
) ) vortex-dominated state.
According to the dierent shapes &(t) for different sys-

tems, compare Fif] 9, we obtain the phase diagram of circle
SPPs, as shown in Fig.]10. The phase diagram is divided into
four regimes. For systems locating in regileS has com-
pleted the first growth period I, and reached the plateau-of pe
riod 11, i.e. the final state of these systemst(diy = 4 x 10°)
is dominated by light vortices. In regini the systems have
passed the stationary period Il, and at the end of the siioalat
time are just undergoing the fusion of light vortices (pdrio The flagella are initially distributed randomly in space,
I11); thus, these systems are in the crossover between ezgimwith random orientations. Shortly after the flagella stawts
AandC. In regimeC, the systems have come to the seconding, the system reaches a stationary state in which the durve
stationary state after the pronounced increas® of period  flagella spontaneously organize into rotating vorti@,[és
1l. Finally, in regimeD, which occupies the highand high illustrated in Fig[TlLab. The flagella are moving clockwisd a
d section of the phase diagram, the evolution of the fusion othe waves on the flagella are propagating counter-clockwise
heavy vortices is still in progress Ty = 4 x 10%; the end  |n AF simulations, the flagella only have hard-core interac-
state is characterized in this case by heavy vortices of&@imi tions, while in a MPC fluid, the hydrodynamic interactions
weight. synchronize the flagellar beat in the same vortex and packs
Note that the division of the regimes according to theflagella tightly due to hydrodynamic attracti@[lG]. Thesna
temporal evolution ofS(t) resembles but does not coincide of each vortex changes dynamically due to the collision with
with a classification according to the value $fin the final  flagella in neighboring vortices [56].

not move after formation. In contrast, systems which form
heavier vortices during period | can continue to increase th

IV. COLLECTIVE MOTION OF CURVED,
SINUSOIDALLY-BEATING FLAGELLA
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vortex center to which the flagellum belongs, as a function
of R In AF simulations,w approaches;o/R for largeR,
wherevi g is the velocity of a freely swimming flagellum.
At small radii, the volume exclusion between the propagat-
ing sinusoidal configurations of neighboring flagella reshic
the angular velocity. Thus, althoughstill slowly increases
with decreasindR for R < 0.5Dy, it is much lower than ex-
pected from the relation = vip/R. On the other hand, at
large radiusR > 0.5Dy), in some AF systems (for example,
Do = 30.7aandDg = 16.4ain Fig.[12),w is larger tharvi o/R
due to the repulsive interaction between two flagella belong

ing to different vortices. In conclusion, the volume exclusion
between the flagella depressesliue to interactions between
flagella in the same vortex, but enhaneedue to interactions
between neighboring vortices.

In a MPC fluid, w also approximately obeys the power
FIG. 11. (Color online) Snapshots of self-organized vediof flag-  1aw w ~ R™! at largeR. However, at radii @ < R/Do < 0.5,
ella (a) in a MPC fluid withD, = 30.7a, poDZ = 2.36, ando- = 0%,  w is nearly independent &, as shown in Fid.12b. Here, the
(b) in AF with Do = 30.7a, poD3 = 2.36, ando- = 0%, and (c) in AF  synchronized flagella form a closed ring with integer nursber
with Do = 16.4a, poDj = 0.67, ando- = 0%. The dashed linesin (c) of waves and rotate with same angular velocity, as shown in

shows the local hexagonal order. (d) Normalized flagellumsilg movie S2 in the supplementary matera [56].
p:(r) averaged over a time interval afT = 30/ f, of the system in

(b). See also movie S1 in the supplemental matl [56].

AlthoughwR is not exactly equal t@; o in systems with
MPC fluid or with AF, an assumption of a unique swimming

N < N —— —— velocity is still a good approximation for comparison of the
~e A Twml A s with anisotropic frictions - )
RN S0 Pasa,, flagella system with the circle SPPs system.
~ © 0o 00\0\ S AAA
1E-3 |-
B. Correlation functions
3
«a\ We define a normalized density of flagellar segments as
o o=l% D.=307 _ 1 [HAT2 r.t
a3 A o=10% R pi(r.t) = —f dtpf( ), (4.1)
in a MPC fluid A D=164a AT Jiat)2 P£,0
0.1 R/DO 1 ) ) .
o1 1 wherep+(r, t) is the number density of monomer beads aver-
R/D, aged in a square box of arda{100)x(Ly/100) at the position

r at timet. In order to gain better statistics of the vortex struc-
tures,p; is the average over timaT, with AT is chosen to

be 3¢ fo. An example of an image r,t) is shown in Fig.
o = 0%. The dashed lines are the functians= v; oR™*. The inset Ofo P ge g (1,0 9

showsw as a function ofR in a MPC fluid withpng = 2.36 and [L1d.

Do = 30.7a; the dashed line is a guide to the eye to indicate a plateau.
fined as

FIG. 12. (Color online) Angular velocity of the vortex as a function
of the radius position in AF simulations wiy = 0.00252 and

The correlation function of flagellum density is then de-

A. Angular swimming velocities Gro(lr =r') = ¢(r.t) - o (r', Hr. (4.2)

Similarly, the correlation function of flagellum trajecyer

Figure[12 shows the angular velocity = v¢/R, where .
g g ty= vt/ center density is

v¢ is the center-of-mass velocity of a flagellum aRds the
distance between the mass center of the flagellum and the Gre(lr =) = so(r, 1) - psc(r’, . (4.3)
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\ parison of AF and MPC simulations clearly shows that struc-
'\ ] tures in the vortices in the AF model are considerably more
/ﬁ\.\ ordered, which leads to pronounced oscillations of theezorr
_/' = lations functions. In the AF simulation&; ¢ nearly vanishes
/./ \J,H_.w at x =~ Dy, indicating that the area occupied by the trajectory
~ i centers in a vortex is significantly smaller thBpg, in agree-
\‘. . ment with our circle SPPs observations. In the MPC-fluid sim-
- s s (-a) ulations, the weaker correlations indicate a larger ditsecs
x/D vortex sizes but also a larger mobility of the vortices.

108 | \ ' ' ' b to the average distance between neighbor vortices. A com-
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A comparison of the snapshots and correlation functions
in Figs.[11 and_T3b with those of sea-urchin sperm vortices
in Ref.l& shows that the phenomena observed in AF simula-
tions are more similar to the experimental behavior thaseho
in MPC simulations. Furthermore, the results of our AF sim-
ulations agree much better with those of our circle SPPs sim-
ulations. We attribute the deviations of the MPC-simulatio
results from those of the experiments to the very strong hy-
drodynamic interactions in the two-dimensional model sys-
tem. Indeed, the flow field around a dragged point particle
in two spatial dimensions decays only logarithmically with
distancer, while in three dimensions it decays much faster,
like 1/r, and even faster in the presence of a wall. In the ex-
sity 5, (r). Both densities; (r) andp; o(r) are averaged over a time periments, the motion of sperm near a wall is governed by
interval AT = 30/ fo. The parameters am, = 30.7a, poDZ = 2.36, three-dimensional hydrodynamics. Thus, we conclude that a
ando = 0%. The symbols indicate the results of MPC-fluid (red detailed numerical investigation of the importance of faydr
bullets) and of AF (black squares) simulations. dynamic interactions for the formation of sperm vortices re

quires full three-dimensional hydrodynamic simulatiofke
two-dimensional MPC simulation still provide the importan
wherepc(r,t) = prc(r,t)/pr0 andpsc(r) is the number den-  information that the synchronized flagellum beating of the
sity of the centers of flagellum trajectorieg @nd timet. Fig-  sea-urchin sperms in a vortex is the result of hydrodynamaic i
ured IBa,b show examples®f, andGs ¢, respectively. Both  teractions between the beating tails, as indicated by tap-sn
correlation functions approach a constant at large dis®nc shot in Fig[Tla (see also R 12 16). In the remainder
indicating the absence of long-range order and a liquie-lik of this section, we focus on the analysis of the systems with
arrangement of vortices, similarly as discussed for ci&®s  anisotropic friction.
in Sec[IITA. Long-range order of vortices, such as a hexago-
nal arrangement, is not observed even for large flagellum den

2.0

0.5

0.0

FIG. 13. (Color online) Correlation functions of (a) the malized
flagellum density; (r) and (b) the normalized trajectory center den-

sities. However, a local hexagonal order is still possihle d C. \Vortices of flagella in the anisotropic-friction model
to the volume exclusion between vortices, as indicated by th
higher-order peaks @3(r) and shown in real-space snapshots Figure[I# shows the average vortex diam&gand the
in Fig.[I1c. average vortex distand®,, as functions opo, Do, ando-. In

The interpretation of the correlation function is of coursethe low-density limit, the flagella move without touchingha
very similar as for correlations functions of circle SPPs inother. ThusD, must approaciy andD,, must approach the
SecIITA. The first local maximum o6+, corresponds to average distance between flagella. As the density increases
the average vortex diameter, the first local maximunGeg D, and D,y increase slowly, as shown in Flg.]14a. As in the



13

22 ' ' - ' ' ' ' ' 22f ' ' -
20} i

20} - 20} ]
sl —=—p/p, | M 1 s} 1
- 1.6k D /D, | &' Db, N D/D, ]
g S 14 .1y 19 14} —*—D/D, |
10 1 121 E 12} ]
10} W i 1.0 -M i

0.8 . . . @) . . . . , (b) (©)

’ 1 2z 3 4 13 26 39 52 65 08 1 -
2D, D ja o (%)

FIG. 14. (Color online) Vortex diametdd, and average distance between vortibgsas a function of (a) the flagellum densjty, (b) the
spontaneous trajectory diamef®g, and (c) the variance of frequency distribution in AF simulations.

circle SPPs systems, compare Fids. 4[@nB7andD,y, also  urchin sperm experiment even though there is a spread of beat
increase and levelfbwhen 2 < png < 4. However, the ing frequency of about 9 perce32].

drop of Dy andD,y nearpng = 2 for circle SPPs systems, Figure[I% shows that the order paramelemwhich rep-
which indicates the transition from the light-vortex-doraied  resents the degree of aggregation and is closely relatéukto t
to the heavy-vortex-dominated state, is not seen in theetlirv  weight average of vortex mass, grows with increaginand
flagella system. On the other hand, the incread@,afan also Dy, Interestingly, in the stationary state of the flagellasyst
partially be attributed to the volume exclusion between-flag S increases linearly with flagellum density whegD3 < 3,
ella, so that the orbit at radiuin the vortex can be occupied which is reminiscent of the linear relation betweandooD3
only by a limited number of flagella. Similarlip,y increases for t/Tg < 100 in circle SPPs systems (Fig. 9b). However, in
with poD3 due to volume exclusion, which generates fia@  circle SPPs systemS, continues to increase aftgiTy = 100.
tive repulsion between the neighboring vortices. We attribute the linear relation & andpg in the flagella sys-

When we change the preferred trajectory diamBigof tem to the &ect of volume exclusion. The linear dependence
the curved flagella, the diameter of a vortex varieBas: Do, of S on the flagellum density agrees very well with the exper-
as shown in Figl4b, in good agreement with the behavior ofmental observations for sea-urchin sperm. On the othedt,han
the circle SPPs systems. However, over a wide rangg of S iS found to increase & ~ D, see FiglIbb, indicating the
Do, Dw/Do remains nearly independent of these parametergnportance of a second length scale, which should be related
and fluctuates around a valu®% 0.2. This value oD,,/D,  (© the flagellum length.
is found for the interaction rang# Dy = 0.9 to 10 in circle
SPPs systems (Figl 7b). Thus, we conclude that fleztive ] )
size of the interaction region of a curved flagellum is approx D. Discussion
imately the same as the diameter of its circular trajectory. ) o
The dfect of volume exclusion and synchronization of
lagellar beat manifests itself in the following threeima

aspects.

In the sea-urchin sperm vortex experiméﬂ [32], the raype ¢
dius of the sperm vortex i®,/2 = 132 + 2.8um, and the
average vortex distance B,y = 49 + 9um. Therefore,
D\/Dy = 1.86+ 0.52 in the experiment, in excellent agree-
ment withD,,/Dy = 1.8 + 0.2 in our AF simulations. In our
circle SPPs simulation®),,/D, = 1.83 = 0.10 for systems
with d = 0.9Dg in the heavy-vortex-dominated state.

First, as shown in Fid.11bc, the flagellum vortices are
closed rings composed of synchronized flagella. This closed
structure makes the fusion of large vortices to happen very i
frequently, because the necessary force to open such a struc
ture to fuse two neighboring vortices is very large. Therefo

The vortex formation is not sensitive to the width of the as suggested by our circle SPPs simulations, the flagellum
beating-frequency distribution of the flagella, as showlRign ~ system experiences vortex formation and reorganizatitn on
[I4c, although it leads to a range of flagellar velocities.sThi during the early stages of structure formation, correspand
insensitivity explains the emergency of the vortices ingdba-  to period | in the circle SPP system, which leads to vortices
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FIG. 15. Order paramet& as a function of (a) the scaled densigD2, with Do = 30.7a ando = 0%, (b) the scaled circle argdD3, with
po = 0.002%2 ando = 0%, and (c) the widtlo- of the fregency distribution, witpoDZ = 2.36.

described by an order parame&which depends linearly on array BZ] is a clue for this close packing. A further increas
the particle density. The next step to raise the aggregatioaf the surface density of sperm is not possible because highe
number, corresponding to period Il in the circle SPP systemdensity will cause more frequent collision and conseqyentl
which requires the fusion of heavy vortices, is prevented byexpel some sperm from the near-substrate layer. It seems not
their nearly impenetrable closed structure. possible] to obtain a higher surface density of sperm tha

Second, an extraordinary heavy vortex cannot exist fofOOQMNY, the largest density investigated in Ref| 32. For

long, because the maximum mass of a vortex is determined Hjjgher densities in the experiments, multiple layers ofspe
the balance of forces between flagella. For a flagellum swimd€veloped, and the layers on top were neither ordered nor de-
ming at a distanc® from the center, the prevalent trajectory S0Ying the pattern belovﬂb?]. A possibility to increate t
curvature is IR, while the preferred trajectory curvature of a d€nsity further in experiments might be to restrict the sper
flagellum is 2Dg. WhenR < Dg/2, the flagellum aR pushes
outwards and exert an outward force on other flagella in out
layers; similarly, wherR > Dy/2, a flagellum aiR pushes
inwards and exerts an inward force on other flagella in inne
layers. WherR exceeddDy, an instability should develop,
which leads to a breakup into smaller vortices of radgg2.

For systems with largeDy, the regionR < Dg/2 is larger
and the typical dterence between/R and 2Dy is smaller,

so that the maximum vortex mass is larger than for system
with smallerDgy. Therefore,S increases with increasingg

for fixed pg, as shown in Fid.15ab.

in a narrow slit of one layer thickness between two flat sub-
eptrates.

The variancer of the frequency distribution also influ-
gnce the order parameter, as shown in [Fi¢. ks not sen-
sitive to o wheno < 5%, but decreases with increasing
for o > 5%. When there are largeftirences between the
frequencies of flagella in a vortex, the collisions betwe®n t
undulating shapes increase the short-range repulsioa; sep
tate the flagella and cause a looser vortex structure, so that
vortex break up more easily in collisions with other vorsice
At small & < 5%, this dfect is small. Note that even for
o = 30%, vortices still exist, as indicated by the density cor-
relation functions. However, stable structures hardlgtebar
a long time. The frequent fission and fusion of vortices make
S small, although the system is not completely disordered.

Third, consider now a large flagellum density, for which
the system is already full of vortices of similar mass, fre-
guently colliding with each other (see movie S3 in supplemen
tal material ]). A further increase @f starts to destroy
the vortex structure and the order param&eatecreases, as

shown in Fig[Iba fopoDZ > 3. Such a decrease 8fwas V. SUMMARY & CONCLUSIONS
not observed in the sea-urchin sperm experin@ﬂ [32] becaus
the experimental system was not strictly two-dimensiova. We have simulated systems of self-propelled particles

conjecture that at a certain surface density of sperm, the suwith preferred circular trajectories (circle SPPs) inttireg
strate is completely packed with vortices and cannot absorbia a velocity-trajectory coordination rule, and systenfis o
any more cells. The local hexagonal order of the sperm vortegurved flagella propelled by a sinusoidal beating motion. In
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both systems, we observe the formation of vortex arrays, coras well as the phenomenon observed in the sea-urchin sperm
trolled by particle density, interaction range, and diaanef experiments|3p2]. As in the circle SPPs system, the average
the preferred circular trajectory. size of the vortice®, equals approximatellpg, and slightly

For the circle-SPP systems, the vortex array showsncreases with the flagellum density. By comparihg with
liquid-like rather than hexagonal spatial order. The disane the circle SPPs systems, we find that the size of ffective
of the vorticesD,, is about the diameter of a single particle interaction region of a curved flagellum can be approxinyatel
trajectoryDg with a slight increase with the diameter of the identified with Q9 ~ 1.0Dy. The order paramet& increases
interaction regiord, but is not sensitive to the particle density with pg as well asDy. The fractionD,, /D, = 1.8 + 0.2 coin-
po- The average distance between neighbor vortibgg,is  cides the value .86 + 0.52 calculated by using the data from
also not sensitive tpg, but increases quickly with increasing [@] for sea-urchin sperm system.

d. A transition from a light-vortex-dominated state (at lpw In conclusion, the collective motion of self-propelled
and smalid) to a heavy-vortex-dominated state (at hy@or  particles, which leads to the formation of vortex arrays, loa
larged) is observed. well reproduced by circle SPPs with a velocity-trajectasy<

We use an order paramet®rto characterize the degree pjing interaction. The velocity-trajectory coordinatiarle is
of the vortex formation. By comparing the time evolution of g giferentinteraction type than the velocity coordinationsule
S, we find that the vortex formation can be divided into threeemployed since the Vicsek modEtZl] for the simulations of
time periods. During period |, the particles collect neighb ¢qjective motion. Such an interaction mimics, for example
ones to form vortices anl increase quickly with time. The e hard-core interaction of curved, sinusoidal beating-fla
increase o8(t) during period | is slightly elevated wihy, but  g|ja. The analysis of a more specific model of beating flagella
is not sensitive tal. In the subsequent period 8(t) increases  gjjows to elucidate the features related to an explicit ptop

very slowly. In period Ill, the vortex mass increases againsion mechanism and physical interactions.
more rapidly through vortex collision and fusion. Note that

environmental noise is not described in our model. Theesfor
the fission, fusion and displacement of vortices is puredy th
result of multi-particle interactions of circle SPPs. VI. ACKNOWLEDGMENTS
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