001     15102
005     20240711085659.0
024 7 _ |2 DOI
|a 10.1007/s00542-011-1257-3
024 7 _ |2 WOS
|a WOS:000289442300008
037 _ _ |a PreJuSER-15102
041 _ _ |a eng
082 _ _ |a 510
084 _ _ |2 WoS
|a Engineering, Electrical & Electronic
084 _ _ |2 WoS
|a Nanoscience & Nanotechnology
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a van Gestel, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB61604
245 _ _ |a Nano-structured solid oxide fuel cell design with superior power output at high and intermediate operation temperatures
260 _ _ |a Berlin
|b Springer
|c 2011
300 _ _ |a 233 - 242
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Microsystem Technologies
|x 0946-7076
|0 13462
|y 2
|v 17
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a A solid oxide fuel cell (SOFC) with a thin-film yttria-stabilized zirconia (YSZ) electrolyte was developed and tested. This novel SOFC shows a similar multilayer set-up as other current anode-supported SOFCs and is composed of a Ni/8YSZ anode, a gas-tight 8YSZ electrolyte layer, a dense Sr-diffusion barrier layer and a LSCF cathode. To increase the power density and lower the SOFC operating temperature, the thickness of the electrolyte layer was reduced from around 10 mu m in current cells to 1 mu m, using a nanoparticle deposition method. By using the novel 1 mu m electrolyte layer, the current density of our SOFC progressed to 2.7, 2.1 and 1.6 A/cm(2) at operation temperatures of 800, 700 and 650 degrees C, respectively, and outperforms all similar cells reported to date in the literature. An important consideration is also that cost-effective dip-coating and spin-coating methods are applied for the fabrication of the thin-film electrolyte. Processing of 1 mu m layers on the very porous anode substrate material was initially experienced as very difficult and therefore 8YSZ nanoparticle coatings were developed and optimized on porous 8YSZ model substrates and transferred afterwards to regular anode substrates. In this paper, the preparation of the novel SOFC is shown and its morphology is illustrated with high resolution SEM pictures. Further, the performance in a standard SOFC test is demonstrated.
536 _ _ |a Rationelle Energieumwandlung
|c P12
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK402
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|x 1
|f SOFC
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Han, F.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB69624
700 1 _ |a Sebold, D.
|b 2
|u FZJ
|0 P:(DE-Juel1)129662
700 1 _ |a Buchkremer, H.P.
|b 3
|u FZJ
|0 P:(DE-Juel1)129594
700 1 _ |a Stöver, D.
|b 4
|u FZJ
|0 P:(DE-Juel1)129666
773 _ _ |a 10.1007/s00542-011-1257-3
|g Vol. 17, p. 233 - 242
|p 233 - 242
|q 17<233 - 242
|0 PERI:(DE-600)1476561-5
|t Microsystem technologies
|v 17
|y 2011
|x 0946-7076
856 7 _ |u http://dx.doi.org/10.1007/s00542-011-1257-3
856 4 _ |u https://juser.fz-juelich.de/record/15102/files/FZJ-15102_PV.pdf
|z Published final document.
|y Restricted
909 C O |o oai:juser.fz-juelich.de:15102
|p VDB
913 1 _ |k P12
|v Rationelle Energieumwandlung
|l Rationelle Energieumwandlung
|b Energie
|0 G:(DE-Juel1)FUEK402
|x 0
913 2 _ |a DE-HGF
|b Forschungsbereich Energie
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IEK-1
|l Werkstoffsynthese und Herstellverfahren
|g IEK
|0 I:(DE-Juel1)IEK-1-20101013
|x 0
970 _ _ |a VDB:(DE-Juel1)127689
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21