000015103 001__ 15103
000015103 005__ 20240711085613.0
000015103 0247_ $$2Handle$$a2128/14525
000015103 0247_ $$2ISSN$$a1866-1793
000015103 020__ $$a978-3-89336-694-1
000015103 037__ $$aPreJuSER-15103
000015103 041__ $$aEnglish
000015103 082__ $$a333.7
000015103 082__ $$a620
000015103 1001_ $$0P:(DE-Juel1)VDB69624$$aHan, Feng$$b0$$eCorresponding author$$uFZJ
000015103 245__ $$aSol-gel and nano-suspension electrolyte layers for high performance solid oxide fuel cells
000015103 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2010
000015103 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis
000015103 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook
000015103 3367_ $$02$$2EndNote$$aThesis
000015103 3367_ $$2DRIVER$$adoctoralThesis
000015103 3367_ $$2BibTeX$$aPHDTHESIS
000015103 3367_ $$2DataCite$$aOutput Types/Dissertation
000015103 3367_ $$2ORCID$$aDISSERTATION
000015103 4900_ $$0PERI:(DE-600)2445288-9$$aSchriften des Forschungszentrums Jülich : Energie & Umwelt / Energy & Environment$$v100$$x1866-1793
000015103 502__ $$aRuhr-Universität Bochum, Diss., 2010$$bDr. (Univ.)$$cRuhr-Universität Bochum$$d2010
000015103 500__ $$aRecord converted from VDB: 12.11.2012
000015103 520__ $$aSolid oxide fuel cell (SOFC) is regarded as one of the most efficient and environmental-friendly devices for direct conversion of chemical energy into electricity. For commercialization of SOFCs, the long-term stability and as well as reliability of the system have to be guaranteed, and the manufacturing cost has to be reduced. This can be realized by reducing the operation temperature down to 650 ºC, while maintaining adequate system power output. In this work, low-cost wet-chemical processing techniques have been applied to fabricate thin gas-tight electrolyte layers for high performance SOFC applications. The focus of this work is threefold: (1) to prepare sols with nano-scaled particle size distribution and excellent layer formation properties, (2) to deposit thin gas-tight electrolyte with thickness of about 1 μm and a rather low helium leak rate under 2.0x10$^{-5}$ (hPa·dm$^{3}$)/(s·cm$^{2}$), (3) to manufacture and characterize SOFCs with high electrochemical performance. The as-prepared single cells with thin gas-tight electrolyte layers showed excellent electrochemical performance. At a cell voltage of 0.7 V, the cells reached high current densities of more than 3 A/cm$^{2}$, 1.5 A/cm$^{2}$ and 1.0 A/cm$^{2}$ at 800 °C, 650 °C and 600 °C, respectively, which are the SOFCs with the highest power density ever since reported. According to the electrochemical impedance spectroscopy investigation, the area specific ohmic resistances of the single cells are more than 80% lower than the cells with conventional 10 $\mu$m thick electrolytes manufactured by Forschungszentrum Jülich. Due to the excellent performance, the life time and stability of the SOFCs is expected to be improved by operating the cells at reduced temperature (650 ºC to 700 ºC) and increased cell voltage. Additionally, the manufacturing cost of the SOFC system can be effectively reduced.
000015103 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000015103 655_7 $$aHochschulschrift$$xDissertation (Univ.)
000015103 8564_ $$uhttps://juser.fz-juelich.de/record/15103/files/FZJ-15103.pdf$$yOpenAccess$$zPrepress version for printing
000015103 909CO $$ooai:juser.fz-juelich.de:15103$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000015103 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000015103 9141_ $$y2010
000015103 9131_ $$0G:(DE-Juel1)FUEK402$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000015103 920__ $$lyes
000015103 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$gIEK$$kIEK-1$$lWerkstoffsynthese und Herstellverfahren$$x0
000015103 970__ $$aVDB:(DE-Juel1)127690
000015103 9801_ $$aFullTexts
000015103 980__ $$aVDB
000015103 980__ $$aConvertedRecord
000015103 980__ $$aphd
000015103 980__ $$aI:(DE-Juel1)IEK-1-20101013
000015103 980__ $$aUNRESTRICTED
000015103 981__ $$aI:(DE-Juel1)IMD-2-20101013