001     151149
005     20250129092426.0
024 7 _ |a 10.1109/JBHI.2013.2261820
|2 doi
024 7 _ |a WOS:000329516400020
|2 WOS
037 _ _ |a FZJ-2014-01149
082 _ _ |a 610
100 1 _ |a Yao, Yu
|0 P:(DE-Juel1)144822
|b 0
|e Corresponding author
245 _ _ |a Model-Based Verification of a Non-Linear Separation Scheme for Ballistocardiography
260 _ _ |a New York, NY
|c 2014
|b IEEE
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1392365858_25731
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a The current rise in popularity of ballisto-cardiography-related research has led to the development of new sensor concepts and recording methods. Measuring the ballistocardiogram using bed mounted pressure sensors opens up new possibilities for home monitoring applications. The signals measured with these sensors contain a mixture of cardiac and respiratory components, which can be used for detection of comorbidities of heart failure like apnea or arrhythmia. However, the separation of the cardiac and respiratory components has proven to be difficult, since there is significant overlap in the spectra of both components. In this paper, an algorithm for the separation task is presented, which can overcome the problem of overlapping spectra. Additionally, a model has been developed for the generation of artificial ballistocardiograms, which are used to analyze the separation performance. Furthermore, the algorithm is tested on preliminary data from a clinical study.
536 _ _ |a 332 - Imaging the Living Brain (POF2-332)
|0 G:(DE-HGF)POF2-332
|c POF2-332
|x 0
|f POF II
588 _ _ |a Dataset connected to CrossRef, juser.fz-juelich.de
700 1 _ |a Bruser, Christoph
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Pietrzyk, Uwe
|0 P:(DE-Juel1)131667
|b 2
|u fzj
700 1 _ |a Leonhardt, Steffen
|0 P:(DE-HGF)0
|b 3
700 1 _ |a van Waasen, Stefan
|0 P:(DE-Juel1)142562
|b 4
700 1 _ |a Schiek, Michael
|0 P:(DE-Juel1)133935
|b 5
773 _ _ |a 10.1109/JBHI.2013.2261820
|p 174-182
|n 1
|0 PERI:(DE-600)2687987-6
|t IEEE journal of biomedical and health informatics
|v 18
|x 2168-2194
856 4 _ |u https://juser.fz-juelich.de/record/151149/files/FZJ-2014-01149.pdf
|y Restricted
909 _ _ |p VDB
|o oai:juser.fz-juelich.de:151149
909 C O |o oai:juser.fz-juelich.de:151149
|p VDB
|p OpenAPC
|p openCost
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 0
|6 P:(DE-Juel1)144822
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131667
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 4
|6 P:(DE-Juel1)142562
910 1 _ |a Zentralinstitut für Elektronik
|0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|b 5
|6 P:(DE-Juel1)133935
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-579H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Gesundheit
|l Funktion und Dysfunktion des Nervensystems
|1 G:(DE-HGF)POF2-330
|0 G:(DE-HGF)POF2-332
|2 G:(DE-HGF)POF2-300
|v Imaging the Living Brain
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a Peer Review unknown
|0 StatID:(DE-HGF)0040
|2 StatID
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)ZEA-2-20090406
|k ZEA-2
|l Zentralinstitut für Elektronik
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)ZEA-2-20090406
980 _ _ |a APC
981 _ _ |a I:(DE-Juel1)PGI-4-20110106
981 _ _ |a I:(DE-Juel1)ZEA-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21