000015115 001__ 15115
000015115 005__ 20240711085617.0
000015115 0247_ $$2ISSN$$a1866-1793
000015115 0247_ $$2Handle$$a2128/4358
000015115 020__ $$a978-3-89336-687-3
000015115 037__ $$aPreJuSER-15115
000015115 041__ $$aEnglish
000015115 082__ $$a500
000015115 082__ $$a333.7
000015115 082__ $$a620
000015115 1001_ $$0P:(DE-Juel1)VDB98459$$aMeng, Li$$b0$$eCorresponding author$$uFZJ
000015115 245__ $$aImproved hydrogen sorption kinetics in wet ball milled Mg hydrides
000015115 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2011
000015115 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis
000015115 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook
000015115 3367_ $$02$$2EndNote$$aThesis
000015115 3367_ $$2DRIVER$$adoctoralThesis
000015115 3367_ $$2BibTeX$$aPHDTHESIS
000015115 3367_ $$2DataCite$$aOutput Types/Dissertation
000015115 3367_ $$2ORCID$$aDISSERTATION
000015115 4900_ $$0PERI:(DE-600)2445288-9$$aSchriften des Forschungszentrums Jülich : Energie & Umwelt / Energy & Environment$$v93$$x1866-1793
000015115 502__ $$aRuhr-Universität Bochum, Fakultät für Maschinenbau, Diss., 2010$$bDr. (Univ.)$$cUniversität Bochum$$d2011
000015115 500__ $$3POF3_Assignment on 2016-02-29
000015115 500__ $$aRecord converted from JUWEL: 18.07.2013
000015115 500__ $$aRecord converted from VDB: 12.11.2012
000015115 520__ $$aIn this work, wet ball milling method is used in order to improve hydrogen sorption behavior due to its improved microstructure of solid hydrogen materials. Compared to traditional ball milling method, wet ball milling has benefits on improvement of MgH$_{2}$ microstructure and further influences on its hydrogen sorption behavior. With the help of solvent tetrahydrofuran (THF), wet ball milled MgH$_{2}$ powder has much smaller particle size and its specific surface area is 7 times as large as that of dry ball milled MgH2 powder. Although after ball milling the grain size is decreased a lot compared to as-received MgH$_{2}$ powder, the grain size of wet ball milled MgH$_{2}$ powder is larger than that of dry ball milled MgH$_{2}$ powder due to the lubricant effect of solvent THF during wet ball milling. The improved particle size and specific surface area of wet ball milled MgH$_{2}$ powder is found to be determining its hydrogen sorption kinetics especially at relatively low temperatures. And it also shows good cycling sorption behavior, which decides on its industrial applicability. With three different catalysts MgH$_{2}$ powder shows improved hydrogen sorption behavior as well as the cyclic sorption behavior. Among them, the Nb$_{2}$O$_{5}$ catalyst is found to be the most effective one in this work. Compared to the wet ball milled MgH$_{2}$ powder, the particle size and specific surface area of the MgH$_{2}$ powder with catalysts are similar to the previous ones, while the grain size of the MgH$_{2}$ with catalysts is much finer. In this case, two reasons for hydrogen sorption improvement are suggested: one is the reduction of the grain size. The other may be as pointed out in some literatures that formation of new oxidation could enhance the hydrogen sorption kinetics, which is also the reason why its hydrogen capacity is decreased compared to without catalysts. After further ball milling, the specific surface area of wet ball milled MgH$_{2}$ with Nb$_{2}$O$_{5}$ is much larger than the standard wet ball milled MgH$_{2}$ with Nb$_{2}$O$_{5}$ and the corresponding sorption behavior is also much improved. Furthermore, a simple model is built up in which the key parameter is main specific surface area and it follows the experimental desorption results quite well.
000015115 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000015115 655_7 $$aHochschulschrift$$xDissertation (Univ.)
000015115 8564_ $$uhttps://juser.fz-juelich.de/record/15115/files/Energie%26Umwelt_93.pdf$$yOpenAccess
000015115 8564_ $$uhttps://juser.fz-juelich.de/record/15115/files/Energie%26Umwelt_93.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000015115 8564_ $$uhttps://juser.fz-juelich.de/record/15115/files/Energie%26Umwelt_93.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000015115 8564_ $$uhttps://juser.fz-juelich.de/record/15115/files/Energie%26Umwelt_93.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000015115 909CO $$ooai:juser.fz-juelich.de:15115$$pdnbdelivery$$pVDB$$popen_access$$pdriver$$popenaire
000015115 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000015115 9141_ $$y2011
000015115 9131_ $$0G:(DE-Juel1)FUEK402$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000015115 9132_ $$0G:(DE-HGF)POF3-139H$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lSpeicher und vernetzte Infrastrukturen$$vAddenda$$x0
000015115 920__ $$lyes
000015115 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$gIEK$$kIEK-1$$lWerkstoffsynthese und Herstellverfahren$$x0
000015115 970__ $$aVDB:(DE-Juel1)127704
000015115 9801_ $$aFullTexts
000015115 980__ $$aVDB
000015115 980__ $$aConvertedRecord
000015115 980__ $$aphd
000015115 980__ $$aI:(DE-Juel1)IEK-1-20101013
000015115 980__ $$aUNRESTRICTED
000015115 980__ $$aJUWEL
000015115 980__ $$aFullTexts
000015115 981__ $$aI:(DE-Juel1)IMD-2-20101013