000151162 001__ 151162
000151162 005__ 20220930130026.0
000151162 0247_ $$2doi$$a10.3389/fphy.2014.00002
000151162 0247_ $$2Handle$$a2128/12531
000151162 0247_ $$2altmetric$$aaltmetric:2078431
000151162 037__ $$aFZJ-2014-01161
000151162 082__ $$a530
000151162 1001_ $$0P:(DE-Juel1)128781$$aMercurio, Giuseppe$$b0$$eCorresponding author
000151162 245__ $$aX-ray standing wave simulations based on Fourier vector analysis as a method to retrieve complex molecular adsorption geometries
000151162 260__ $$aLausanne$$bFrontiers Media$$c2014
000151162 3367_ $$2DRIVER$$aarticle
000151162 3367_ $$2DataCite$$aOutput Types/Journal article
000151162 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1524663716_16844
000151162 3367_ $$2BibTeX$$aARTICLE
000151162 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000151162 3367_ $$00$$2EndNote$$aJournal Article
000151162 520__ $$aWe present an analysis method of normal incidence x-ray standing wave (NIXSW) data that allows detailed adsorption geometries of large and complex molecules to be retrieved. This method (Fourier vector analysis) is based on the comparison of both the coherence and phase of NIXSW data to NIXSW simulations of different molecular geometries as the relevant internal degrees of freedom are tuned. We introduce this analysis method using the prototypical molecular switch azobenzene (AB) adsorbed on the Ag(111) surface as a model system. The application of the Fourier vector analysis to AB/Ag(111) provides, on the one hand, detailed adsorption geometries including dihedral angles, and on the other hand, insights into the dynamics of molecules and their bonding to the metal substrate. This analysis scheme is generally applicable to any adsorbate, it is necessary for molecules with potentially large distortions, and will be particularly valuable for molecules whose distortion on adsorption can be mapped on a limited number of internal degrees of freedom.
000151162 536__ $$0G:(DE-HGF)POF3-142$$a142 - Controlling Spin-Based Phenomena (POF3-142)$$cPOF3-142$$fPOF III$$x0
000151162 588__ $$aDataset connected to CrossRef, juser.fz-juelich.de
000151162 7001_ $$0P:(DE-HGF)0$$aMaurer, Reinhard J.$$b1
000151162 7001_ $$0P:(DE-HGF)0$$aHagen, Sebastian$$b2
000151162 7001_ $$0P:(DE-HGF)0$$aLeyssner, Felix$$b3
000151162 7001_ $$0P:(DE-HGF)0$$aMeyer, Jörg$$b4
000151162 7001_ $$0P:(DE-HGF)0$$aTegeder, Petra$$b5
000151162 7001_ $$0P:(DE-HGF)0$$aSoubatch, Sergey$$b6
000151162 7001_ $$0P:(DE-HGF)0$$aReuter, Karsten$$b7
000151162 7001_ $$0P:(DE-Juel1)128791$$aTautz, F. S.$$b8$$ufzj
000151162 773__ $$0PERI:(DE-600)2721033-9$$a10.3389/fphy.2014.00002$$p1-13/ 2$$tFrontiers in physics$$v2$$x2296-424X$$y2014
000151162 8564_ $$uhttps://juser.fz-juelich.de/record/151162/files/fphy-02-00002.pdf$$yOpenAccess
000151162 8564_ $$uhttps://juser.fz-juelich.de/record/151162/files/fphy-02-00002.gif?subformat=icon$$xicon$$yOpenAccess
000151162 8564_ $$uhttps://juser.fz-juelich.de/record/151162/files/fphy-02-00002.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000151162 8564_ $$uhttps://juser.fz-juelich.de/record/151162/files/fphy-02-00002.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000151162 8564_ $$uhttps://juser.fz-juelich.de/record/151162/files/fphy-02-00002.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000151162 8564_ $$uhttps://juser.fz-juelich.de/record/151162/files/fphy-02-00002.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000151162 8767_ $$92014-01-06$$d2014-01-15$$eAPC$$jZahlung erfolgt
000151162 909CO $$ooai:juser.fz-juelich.de:151162$$popenCost$$pVDB$$pdriver$$pOpenAPC$$popen_access$$popenaire$$pdnbdelivery
000151162 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b6$$kFZJ
000151162 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128791$$aForschungszentrum Jülich$$b8$$kFZJ
000151162 9131_ $$0G:(DE-HGF)POF3-142$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Spin-Based Phenomena$$x0
000151162 9141_ $$y2014
000151162 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000151162 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000151162 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000151162 915__ $$0LIC:(DE-HGF)CCBYNV$$2V:(DE-HGF)$$aCreative Commons Attribution CC BY (No Version)$$bDOAJ
000151162 9201_ $$0I:(DE-Juel1)PGI-3-20110106$$kPGI-3$$lFunktionale Nanostrukturen an Oberflächen$$x0
000151162 980__ $$ajournal
000151162 980__ $$aVDB
000151162 980__ $$aI:(DE-Juel1)PGI-3-20110106
000151162 980__ $$aAPC
000151162 980__ $$aUNRESTRICTED
000151162 9801_ $$aAPC
000151162 9801_ $$aFullTexts