000151266 001__ 151266
000151266 005__ 20210129213439.0
000151266 037__ $$aFZJ-2014-01257
000151266 1001_ $$0P:(DE-Juel1)132268$$aSpeck, Robert$$b0$$eCorresponding author$$ufzj
000151266 245__ $$aInexact spectral deferred corrections using single-cycle multigrid
000151266 260__ $$c2014
000151266 3367_ $$0PUB:(DE-HGF)25$$2PUB:(DE-HGF)$$aPreprint$$bpreprint$$mpreprint$$s1436422582_18817
000151266 3367_ $$2ORCID$$aWORKING_PAPER
000151266 3367_ $$2DRIVER$$apreprint
000151266 3367_ $$2DataCite$$aOutput Types/Working Paper
000151266 3367_ $$028$$2EndNote$$aElectronic Article
000151266 3367_ $$2BibTeX$$aARTICLE
000151266 520__ $$aSpectral deferred correction (SDC) methods are an attractive approach to iteratively computing collocation solutions to an ODE by performing so-called sweeps with a low-order time stepping method. SDC allows to easily construct high order split methods where e.g. stiff terms of the ODE are treated implicitly. This requires the solution to full accuracy of multiple linear systems of equations during each sweep, e.g. with a multigrid method. In this paper, we present an inexact variant of SDC, where each solve of a linear system is replaced by a single multigrid V-cycle and thus significantly reduces the cost for each sweep. For the investigated examples, this strategy results only in a small increase of the number of required sweeps and we demonstrate that 'inexact spectral deferred corrections' can provide a dramatic reduction of the overall number of multigrid V-cycles required to complete an SDC time step.
000151266 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000151266 588__ $$aDataset connected to arXivarXiv
000151266 7001_ $$0P:(DE-HGF)0$$aRuprecht, Daniel$$b1
000151266 7001_ $$0P:(DE-HGF)0$$aMinion, Michael$$b2
000151266 7001_ $$0P:(DE-HGF)0$$aEmmett, Matthew$$b3
000151266 7001_ $$0P:(DE-HGF)0$$aKrause, Rolf$$b4
000151266 8564_ $$uhttp://arxiv.org/abs/1401.7824
000151266 909CO $$ooai:juser.fz-juelich.de:151266$$pVDB
000151266 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132268$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000151266 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bPOF III$$lKey Technologies$$vSupercomputing & Big Data $$x0
000151266 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000151266 9141_ $$y2014
000151266 920__ $$lyes
000151266 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000151266 980__ $$apreprint
000151266 980__ $$aVDB
000151266 980__ $$aI:(DE-Juel1)JSC-20090406
000151266 980__ $$aUNRESTRICTED