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Abstract

In concentrated suspensions of charged colloids, interactions between colloids can be induced by

an external electric field through the polarization of charge distributions (within the diffusive double

layer and the layer of condensed ions) and/or electro-osmotic flow. In case of rod-like colloids, these

field-induced inter-colloidal interactions have recently been shown to lead to anomalous orientation

perpendicular to the external field, and to phase/state transitions and dynamical states, depending on

the field amplitude and frequency of the external field. As a first step towards a (semi-) quantitative

understanding of these phenomena we present a linear-response analysis of the frequency dependent

polarization of the layer of condensed ions on a single, long and thin cylindrical colloid. The in-phase

and out-phase response functions for the charge distribution and the electric potential are calculated

for arbitrary orientation of the cylindrical colloid. The frequency dependent degree of alignment,

which is proportional to the electric-field induced birefringence, is calculated as well, and compared

to experiments on dilute fd-virus suspensions.

1 Introduction

Recent experiments on suspensions of charged rod-like colloids in oscillating external electric fields

revealed a number of unexpected phenomena. Anomalous alignment of fd-virus particles (very long
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and thin, stiff rods) perpendicular to the external field has been found in Ref.[1] at low frequencies

(below 1 kHz) for fd-concentrations above the overlap concentration. The present authors observed

field-induced phase/state transitions, dynamical states and non-equilibrium critical behaviour in con-

centrated fd-virus suspensions [2, 3, 4]. A still ill-understood phenomenon is the experimentally

observed crowding of spheres around rods [5] on applying an external electric field. Field-induced

structures, where short ellipsoidal rods tend to align parallel to each other, have been observed in

Ref.[6]. All these experiments are performed at sufficiently low frequencies (less than about a few tens

of kHz) such that the double-layer charge distribution and the surface charges due to condensed ions

are polarized. These polarization charges, and possibly the accompanied electro-osmotic flow, results

in field-induced rod-rod interactions that are responsible for the observed phenomena.

As yet there is no theory that describes collective phenomena that originate from external field-

induced interactions. Such a theory requires three steps. First of all, the polarization of a single rod

in an oscillating electric field must be considered. Second, up to leading order in the external-field

amplitude, pair-interactions can be calculated from these single-particle polarization results. As a

third step, the collective behaviour should be predicted on the basis of these pair-interactions. This

can not be done through a free energy route, since the system is far out-of equilibrium as far as

the rod-rod interactions are concerned. Instead, kinetic equations should be derived and analyzed,

which incorporate the field-induced interactions. The present paper is devoted to the first step in the

development of a theory to describe the above mentioned non-equilibrium phenomena.

There are two extreme cases that can be considered for the development of an analytical theory.

One extreme case is where the bare surface charge density of the rods is very small. In this case, the

polarization charges are due to accumulation of ions due to the impenetrability of the colloidal core

for ions. It has been shown by the present authors that the induced polarization charges are large

enough to lead to strong inter-rod interactions [7]. The other extreme case is that of very high surface

charge density, where a large portion of the bare charges is compensated by mobile condensed ions. In

this case the field-induced interactions are mainly due to polarization of the layers of condensed ions.

It is the latter case that is addressed in the present paper. The present paper aims at a description
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of the polarization of the layer of condensed ions of a single, cylindrical colloid due to an oscillating

external field. This case is probably relevant for fd-virus suspensions, where approximately 80 % of

the immobile, bare surface charges are neutralized by condensed ions.

The polarization of the diffuse double layer that is present in solution around charged colloids is

solely due to the deflection of ion fluxes, both by the core of the colloids and the electric field arising

from the immobile charges on the surface of the colloidal core. Ions within the diffuse double layer are

not confined, but migrate across the double layer on applying an external field. Ions are drawn into

the double layer and later leave the double layer again. Contrary to ions within the diffuse double

layer, condensed ions are essentially constrained to move within a layer around the core of the colloids

for sufficiently weak external fields. The polarization of the layer of condensed ions is therefore very

different from polarization due to the response of ions in solution, outside the layer of condensed ions.

A simple model is presented, where ions are constrained to reside on the surface of a cylindrical colloid,

subject to the same forces that play a role in standard electro-kinetic theory, namely the Brownian

force due to concentration gradients, and the electric forces.

The discovery of ion condensation and its early development goes back to 1960-1980 (Refs.[8]-[15]

are a selected number of seminal papers). The discrete line-charge model that is relevant for polyelec-

trolytes was introduced by Manning in Ref.[14], where a full theory for condensation phenomena is

given. This theory is based on free energy considerations, where electrostatic interactions between the

condensed ions play an important role. As far as we are aware, the first studies on the polarization

of the charge distribution of condensed ions of a single rod-like polyelectrolyte molecule stem from

Mandel [8], Oosawa [11], Manning [13] and Ray [16]. Very recently, Manning published two papers

[17, 18] on the polarization of an assembly of oriented rods which are either parallel or perpendicular

to a stationary external field. There has been no calculation yet for the polarization of condensed

ions due to an oscillatory external field. In the paper by Manning in this issue [19], the oscillatory

polarization of condensed ions is analyzed for the discrete polyelectrolyte line-charge distribution. The

analysis is based on the free-energy that has been derived in the above mentioned references. The

analysis in the present paper is for a cylindrical colloid with a continuous charge distribution, and is
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based on electro-kinetic equations of motion. Although the two approaches are quite different, the

predictions of the models show remarkable similarities. There are early theories on the polarization

of rod-like polyelectrolytes (a quite detailed overview can be found in Refs.[20, 21]). These theories

assume an over-simplified frequency dependence of the surface conductivity: in the present paper

we explicitly treat the dynamics of condensed ions, and find a frequency dependence for polarization

charge densities that is very different from what is found in these earlier theories.

This paper is organized as follows. The model assumptions and the equations of motion for the

charge density are introduced in section 2. The equations of motion are solved for very long and thin

cylinders in section 3, both for perpendicular and parallel orientation of the cylinder with respect

to the oscillatory external field. This section also contains a discussion of numerical results. The

results of our approach are compared to Manning’s free-energy approach [19] in section 4. In section

5, the electric-field induced orientational order is calculated from the Smoluchowski equation for the

orientational probability density function, and a comparison with birefringence experiments on fd-

virus suspensions is made. One of the assumptions in the analysis of electro-kinetic equations is that

the diffuse double layer in solution as induced by the non-uniform condensate charge distribution is

in instantaneous equilibrium. The validity of this assumption is discussed in section 6. Section 7

contains conclusions and a discussion.

2 The Model and Equations of Motion for the Charge

Density and Potential

As a simple model that probably captures the essential features of frequency-dependent polarization,

the condensed ions are assumed to be confined within a thin layer surrounding the core of the rod-like

colloid (as sketched in Fig.1). For low external field amplitudes, to within linear response, the ions

are supposed not to be removed from this thin layer. The forces between the ions and the colloidal

core that keep the ions to within the thin layer are thus assumed much larger than the force on the

ions due to the external field. The layer will be assumed sufficiently thin with respect to the linear

dimensions of the colloidal particle, so that the ions move essentially tangential to the surface S of
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Figure 1: A sketch of the colloidal rod without an external field, where the black region at the surface is
the thin layer of condensed ions. The dashed line represents the equilibrium double layer.

the core. In the mathematical limit where the thin layer is treated as a surface, the charge density

is formulated in terms of a surface-charge density σ. The aim is to calculate the potential and the

spatial variation of σ over the surface S as induced by the external field.

That condensed ions essentially reside on the surface of macromolecules has been predicted in

Ref.[14] for DNA. The prediction that condensed ions are contained within a layer of 0.7nm thickness

(which is close to the size of the ions) has been verified by computer simulations in Refs.[22, 23]. The

same calculation as in Ref.[14], but now for fd-virus parameters, leads to a layer thickness of 0.2nm

[24]. These observations seem to validate the assumption in our model that the condensed ions are

located right at the macromolecular surface. To within the realm of Poisson-Boltzmann theory, the

spatial extent of the layer of condensed ions, including the core, is approximately equal to
√

a/κ,

where a is the core radius of the rod, and κ−1 is the Debye length which characterizes the extent of

the diffuse double layer [25]-[28]. In the experiments in Refs.[2, 3] on fd-virus suspensions, the ionic

strength is quite low (Debye length is 27 nm), while the radius of the rod is quite small (3.4 nm) as

compared to other colloids. The thickness of the layer of condensed ions for this system is thus equal

to
√

a/κ − a = 6.2 nm. Since the condensed-ion concentration strongly increases towards the core

surface, the majority of condensed ions are within a layer of a few nanometers around the core. Even

for this case of quite low ionic strength and small colloidal core radius, the approximation that the ions

essentially move along the core-surface seems reasonable. An analysis of the dynamics of condensed

ions where the finite extent of the layer of condensed ions is accounted for would be extremely
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complicated and is probably only possible numerically. In addition, the detailed structure of the

ion-concentration profile within a distance of a few nanometers from the core, besides electrostatics,

also depends on solvation effects, the degree of ionization of the chemical groups that are covalently

bonded to the core, ion binding, and chain-hydrophobicity (see, for example, [29]-[33]). The way in

which condensation is affected by these molecular details is nowadays an active area of research. At

this point it is not feasible to account for these structural details, and the present analysis is to be

viewed as the simplest possible approximate theory for the dynamics of condensed ions induced by

an external field. In particular we shall introduce a friction coefficient for the motion of condensed

ions along the core surface, which can be very different from the friction coefficient of ions in bulk

solution. Its precise value is determined by the detailed structure of the layer of condensed ions, the

calculation of which is beyond the scope of the present paper.

The validity of the assumption that condensed ions are constrained to move only along the surface

of the colloid may depend on the type of salt ions. From dielectric spectroscopy measurements it

is known that the hydration of salt ions and their interactions with polyelectrolytes are ion-specific

[34, 35]. It is not yet known to which extent condensed ions are able to migrate in- and out-wards of

the condensation region, and whether there is an ion-specificity here as well.

The assumption that the condensed ions are constrained to move within a given thin layer around

the core of the rods deserves some consideration for interacting rods. As shown in Ref.[36], the

extent of the condensed layer of two parallel oriented rods (without an external field) increases for

intermediate separations, leading to attractive forces between the rods. It is unknown to which extent

this is also important for polarized layers of condensed ions of rods which are not orientated parallel.

The total charge of the mobile condensed ions only partially compensates the bare, immobile

charges on the colloid surface. The remaining, uncompensated charge resides in the diffuse double

layer (represented by the dashed line in Fig.1). In the absence of an external electric field, the potential

due to surface charges is screened over a distance of the order of the Debye length, due to the fact that

the total charge of the core plus the condensed ions and the ions in the diffusive double layer is zero.

In principle, the charge within the double layer is therefore important, since with its neglect there
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would exist an unscreened potential, also in the absence of the external field, which is unphysical. In

the present treatment we will therefore assume that the majority of bare charges is compensated by

condensed ions and hence, that the total charge within the diffuse double layer is relatively small. In

order to prevent an unphysical unscreened contribution to the potential in the absence of the external

field, we neglect the charge within the diffuse double layer, which amounts to the approximation that

the total mobile charge within the condensed layer fully compensates the immobile bare charge. The

constant surface-charge density of the immobile ions is denoted by σ0 and that of the mobile ions by

σm, so that the total surface charge density σ is equal to,

σ = σ0 + σm . (1)

Within the present approach we have,

∮

S
dS σ0(r, t) = −

∮

S
dS σm(r, t) = Q , (2)

with Q the total bare, immobile charge of the rod. Here, the integral ranges over the surface S that

is supposed to contain all the mobile condensed ions as well as the immobile ions.

A realistic model for the bare charge distribution of polyelectrolytes is a line of discrete bare charges.

This is a model that has been used to analyze ion condensation phenomena for polyelectrolytes at low

ionic strengths [9, 11], which theory is commonly referred to as the ”Manning condensation theory”.

For such a discrete line-charge distribution, the line-charge density remains finite even in case of full

condensation (see also Refs.[25]-[28]). Full condensation occurs when the distance b between the bare

charges vanishes, that is, when the number N of bare charges diverges with a fixed length L of the

polyelectrolyte. The number of charges that remain after condensation is (b/lB) N , where lB is the

Bjerrum length. The effective line-concentration is thus equal to (b/lB)N/L = (b/lB) (L/b)/L = 1/lB,

independent of the bare line-concentration 1/b. Also for full condensation there is thus a remaining

finite line charge density. This result is intuitively rather obvious: when condensation took place to

an extent that the remaining separation between open sites is lB, there is no tendency for further

condensation since, by definition of the Bjerrum length, no energy is gained upon further condensation.

The number of mobile ions within the condensed layer is (1−b/lB) N = (1−b/lB) (L/b) = L/b−L/lB
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which diverges as b vanishes. The number of ions in the diffuse double layer is equal to (b/lB) N =

L/lB, and is independent of b. The approximation in our approach is thus that the large number

(L/b−L/lB) of condensed ions overwhelms the polarization due to the relatively few ions (L/lB) in the

double layer that exists due to the remaining finite line-concentration 1/lB. Furthermore, we neglect

the discreteness of the bare charge distribution. These approximations are probably reasonable for

large colloids with many bare charges as compared to polyelectrolytes.

The dynamics of condensed ions within the discrete line-charge distribution model for polylec-

trolytes is analyzed by Manning [19]. We will compare our results for a continuous charge distribution

on a cylindrical colloid with Manning’s results for polyelectrolytes in section 4.

For simplicity we restrict the discussion to the case where there is only a single type of mobile

condensed ion. These mobile ions move under the action of two forces, which are tangential to the

colloidal core since the ions are constrained to move over that surface.

First of all there is a Brownian force,

FBr = −kBT ∇s ln c , (3)

where c is the surface-number concentration of mobile ions, kB is Boltzmann’s constant and T is the

temperature. Furthermore, ∇s is the gradient operator that is tangential to the core surface; the

”surface-gradient operator” (see appendix A for the mathematical definition of the surface-gradient

operator). The effects of the finite curvature can be neglected, since the radius of curvature is much

larger than the linear dimensions of ions. Secondly, there is a tangential electric force,

Fe = −z e∇sΦ , (4)

that arises from the total electric potential Φ, with z the valency of the condensed ions, including the

sign of their charge, and e > 0 the elementary charge.

The tangential velocity of the ions is then given by,

v =
1
ζ

{
FBr + Fe

}
, (5)

where ζ is the friction coefficient of an ion. As mentioned above, this friction coefficient may signif-

icantly differs from that of free ions in bulk solution, and depends on the detailed internal structure
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of the layer of condensed ions. Most probably the friction coefficient ζ is much larger than that for

free ions. The ion fluxes are thus equal to,

j = v c = −D {∇s c + c z e β∇sΦ } . (6)

where β = 1/kB T , and D = kBT/ζ is the diffusion coefficient of the mobile condensed ions. This

is the two-dimensional analogue of the standard electro-kinetic expression for the flux. A possible

convective contribution is omitted here: for incompressible fluids the effect of flow on the charge

distribution is of second order in the electric field amplitude and can thus be neglected to within

linear response.

There are of course also normal Brownian and electric forces acting on the mobile condensed ions.

Within the model adopted here, these forces are balanced by the force arising from interactions with

the colloidal core and the immobile ions on S. This in effect assures that the ions move along the

surface of the core, and implies that the condensed ions are not pealed off the surface by the external

field, which is also assumed in the original theory of Manning in Ref.[15].

The expression (6) can be used in the continuity equation to obtain an explicit equation of motion

for the mobile-ion concentration. The appropriate continuity equation, however, is different from the

usual bulk equation, since the ions are constrained to move tangential to the surface of the colloidal

core. The surface-continuity equation is derived in appendix B, and it is shown there that the resulting

diffusion equation reads,

∂c

∂t
= D

1
h1

[
∂

∂s1
+

1
h2

∂h2

∂s1

] {
1
h1

(
∂c

∂s1
+ c z e β

[
∂Φ
∂s1

− h1 E · t̂1

])}

+ D
1
h2

[
∂

∂s2
+

1
h1

∂h1

∂s2

] {
1
h2

(
∂c

∂s2
+ c z e β

[
∂Φ
∂s2

− h2 E · t̂2

]) }
. (7)

where the variables si and the vectors t̂i have been defined in appendix B: si are variables that

parametrize the surface of the colloid, and t̂i are the associated, mutually orthonormal, tangential

vectors.

The total potential is written as a sum of the potential Ψ that arises from polarization of the

condensate and that of the external electric field E,

Φ = Ψ−E · r . (8)
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The total concentration c of condensed ions is now written as the sum of the uniform surface concen-

tration c̄ of mobile ions that exists in the absence of the external field, and a non-uniform contribution

∆c that is induced by the external electric field,

c = c̄ + ∆c . (9)

Within linear response to the external field,

|∆c/c̄ |¿ 1 . (10)

Note that the surface charged density σ, according to eqs.(1,2), is equal to,

σ = z e∆c . (11)

Since both Ψ and ∆c are linear in the external field, eq.(7) can be linearized to within a linear-response

approximation, leading to,

∂σ

∂t
= D

1
h1

[
∂

∂s1
+

1
h2

∂h2

∂s1

] {
1
h1

(
∂σ

∂s1
+ 2 ε κc

[
∂Ψ
∂s1

− h1 E · t̂1

])}

+ D
1
h2

[
∂

∂s2
+

1
h1

∂h1

∂s2

] {
1
h2

(
∂σ

∂s2
+ 2 ε κc

[
∂Ψ
∂s2

− h2 E · t̂2

])}
, (12)

where ”the condensate-length” κ−1
c is defined as,

κc =
z2 e2 β c̄

2 ε
= 2π z2 lB c̄ , (13)

with ε the dielectric constant of the layer of condensed ions, and lB = β e2/4π ε is the Bjerrum

length. Since c̄ has the dimension m−2, it is immediately seen that κ−1
c has the dimension of a length.

According to eqs.(1,2), the solution of the equation of motion (12) for the surface-charged density

must satisfy the condition,

∮

S
dS σ = 0 . (14)

The ions in solution respond to the non-uniform electric field resulting from the charge distribution

within the layer of condensed ions. The ions in solution tend to form a diffuse electrical double layer

with a local charge density that is opposite in sign to the local condensate charge. Here we will
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Figure 2: A sketch of the condensate-polarization-induced diffuse double layer for a rod that is aligned
perpendicular (left figure) and along (right figure) the external field. Pink indicates positive charge, blue
indicates negative charge. The local condensate charge is equal but opposite in sign to the charge within
the surrounding double layer.

assume that the frequency is sufficiently low that the double can fully develop. This assumption will

be addressed in detail in section 6. The non-uniform double layer is sketched in Fig.2 for perpendicular

and parallel orientation of the rod with respect to the external field. It is thus assumed that there

is a non-uniform double layer present around the colloidal rod, which is in instantaneous equilibrium

with the condensate-charge distribution. The extent of this condensate-induced double layer is equal

to the Debye length κ−1,

κ =

√
2β z2 e2 c0

ε
, (15)

where c0 is the concentration of ions in solution outside the double layer and ε is the static dielectric

constant of the solvent. Since the extent κ−1 is independent of the local condensate charge density,

the total potential due to the condensate charges and the charges within the double layer is equal to,

Ψ(r, t) =
1

4π ε

∮

S
dS

′
σ(r

′
, t)

exp{−κ |r− r
′ |}

|r− r ′ | , (16)

where, as before, σ is the surface-charge density on the core of the colloid. Note that the deformation

of the condensate-induced double layer due to the external field is of second order in the field strength,

since σ itself is already first order. Within a linear response approach we can thus neglect the external

field induced deformation of the double layer, in which case the potential is given by eq.(16). Since
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the double layer is in instantaneous equilibrium, the charge density ρdl(r, t) within the double layer,

to leading order in the external electric field, is obtained by the standard expansion of the Boltzmann

exponential, leading to,

ρdl(r, t) = ε κ2 Ψ(r, t) . (17)

In summary, the following approximations are made in the above discussed model:

• The charge distribution of the condensed ions on the colloid’s surface is assumed continuous.

The typical separation between condensed ions is thus assumed to be much less than the length scale

associated with spatial variations of the density of charges. For polyelectrolytes, a discrete charge

distribution would be more realistic (see the paper by Manning [19]).

• The motion of the mobile condensed ions is supposed to be restricted to the surface of the colloid.

Exchange of ions between the condensed layer and the surrounding solution is thus neglected.

• The total immobile charge that is covalently bonded to the surface is supposed to be equal, but

opposite in sign, to the total charge of the condensed ions. The total charge within the diffuse double

layer (without the external field) is thus assumed to be relatively small as compared to the total charge

of the condensed ions. This assumption is necessary to avoid unphysical unscreened contributions to

the potential.

• Only a single species of mobile condensed ions is considered.

• The dielectric constant within the layer of condensed ions is taken equal to that of the pure

solvent.

• The standard electro-kinetic equations are supposed to describe the motion of ions along the

surface of the colloid. The friction coefficient for motion of the condensed ions along the colloidal

surface can, however, be quite different from that of ions in bulk solution.

These approximations constitute the simplest possible model to analyze the polarization phenom-

ena of the layer condensed ions. The model captures the essential features of condensate polarization,

and can be employed as a starting point for the understanding of various phenomena that are found

experimentally as mentioned in the introduction.

There are four mains issues that could be considered to improve the model. First of all, condensed
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ions might be able to move into the diffuse double layer and visa versa. This results in a source/sink

contribution to the diffusion equation (12), and requires an additional model for the exchange kinetics.

A serious approximation is the neglect of the diffuse double layer. Since the polarization of a diffuse

double layer on its own (in the absence of condensed ions) is already a formidable problem, the coupled

polarization of diffuse double layers and the layer of condensed ions probably requires numerical efforts,

and is not amenable for analytical treatment. Thirdly, the restriction to just a single species of mobile

ions could be relaxed. It turns out, however, that this complicates the analysis considerably, since it

is not possible anymore to derive a closed equation of motion for the charge density. As a last possible

improvement of the model, the dielectric constant of the layer of condensed ions could be accounted

for. The dielectric constant within the layer of condensed ions, which is unknown, differs from that of

bulk solvent due to the large concentration of condensed ions and due to the presence of a structured

solvation layer.

3 Polarization of the Condensate of Cylindrical Colloids

The equations of motion that were formulated in the previous section will be solved here for a cylin-

drical colloidal rod of length L and core radius a, with its center at the origin. The condensed ions

are restricted to move along the mantle of the cylinder, so that the flat ends are uncharged. This is

a good approximation for high-aspect-ratio rods, for which a/L ¿ 1.

The field amplitude can be decomposed in components perpendicular and parallel to the long

axis of the rod. To within linear response, the surface-charge density and the potential for arbitrary

orientation of the rod due to both components can simply be added. We will therefore consider

the two cases of rod orientation perpendicular and parallel to the electric field separately in the two

following subsections.

The external electric field that is considered is spatially uniform and sinusoidally varying with

time,

E(t) = E0 cos{ω t} , (18)

where ω = 2 π ν (with ν the frequency of oscillation), and where the field amplitude E0 is taken along
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the z-direction. The condensate surface-charge density can be written in terms of the in-phase R
′
c

and out-phase R
′′
c response functions,

σ(r |ω, t) = R
′
c(r |ω) cos{ωt}+ R

′′
c (r |ω) sin{ωt} . (19)

Similarly the potential can be written as,

Ψ(r |ω, t) = P
′

c (r |ω) cos{ωt}+ P
′′

c (r |ω) sin{ωt} , (20)

with P
′

c and P
′′

c the in-phase and out-phase potential response functions, respectively. The subscript

”c ” refers to the condensate. The above equations of motion are most easily solved in complex form,

where E(t) = E0 exp{iωt}. The real, and minus the imaginary parts of the resulting complex-valued

surface-charge density and potential are the in-phase and out-phase response functions, respectively.

3.1 Perpendicular orientation

As shown in the second part of appendix A, the surface-diffusion equation (12) for perpendicular

orientation reads,

∂σ(ϕ, t)
∂t

=
D

a2

(
∂2σ(ϕ, t)

∂ϕ2
+ 2 ε κc

[
∂2Ψ(ϕ, y = 0, ρ = a, t)

∂ϕ2
+ aE(t) cos ϕ

])
. (21)

Here, y is the coordinate along the contour of the rod and ϕ is the cylindrical azimuthal angular

coordinate, where the z-axis is chosen along the external electric field (see Fig.9a in appendix A).

Note that with the neglect of end-effects, the potential takes a value independent of y as long as

ρ = a.

The differential equations will be solved in complex form with E(t) = E0 exp{iωt}. As mentioned

above, the real and minus the imaginary parts of the resulting complex-valued σ and Ψ are the

in-phase and out-phase response functions (as defined in eq.(19,20)), respectively.

To within linear response to the external field, the ϕ-dependence of the surface-charge density is

expected to be of the form,

σ(ϕ, t) = A exp{iωt} cosϕ , (22)
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where A is a constant, independent of ϕ and time. This Ansatz will be shown to indeed solve the

differential equations. Note that the Ansatz for σ satisfies the condition (14) for an average zero

charge. The potential is found from eq.(16) to be equal to,

Ψ(y, ρ = a, ϕ, t) =
a A exp{iω t}

2 ε
B(y |κ a) cosϕ , (23)

where,

B(y |κ a) =
1

2π cosϕ

∫ 2π

0
dϕ

′
∫ L/2

−L/2
dy

′
cos{ϕ ′}

exp
{
−κ

√
(y ′ − y)2 + 2 a2 (1− cos{ϕ ′ − ϕ})

}
√

(y ′ − y)2 + 2 a2(1− cos{ϕ ′ − ϕ})
. (24)

Using that cosϕ
′
= cos{ϕ ′ − ϕ} cosϕ − sin{ϕ ′ − ϕ} sinϕ, it is readily found from symmetry that

(with α = ϕ
′− ϕ),

B(y |κ a) =
1

2π

∫ 2π

0
dα

∫ L/2

−L/2
dy

′
cos{α}

exp
{
−κ

√
(y ′ − y)2 + 2 a2 (1− cosα)

}
√

(y ′ − y)2 + 2 a2 (1− cosα)
. (25)

Since the exponent is essentially zero when | y ′ − y | is larger than a few times the Debye length

κ−1, the y
′
-integration range can be extended to (−∞,∞), except for y within a distance of the

order κ−1 from the tips of the rod. For the long rods under consideration, for which κL À 1, the

relative contribution to the integral from the tips can be neglected. Neglecting these end-effects,

B(κ a) ≡ B(y |κ a) is thus equal to,

B(κ a) =
1

2π

∫ 2π

0
dα

∫ ∞

−∞
dx cos{α}

exp
{
−κ

√
x2 + 2 a2 (1− cosα)

}
√

x2 + 2 a2 (1− cosα)

=
1
π

∫ 2 π

0
dα cos{α} K0

(
κ a

√
2 (1− cosα)

)
, (26)

where,

K0(κ z) =
∫ ∞

0
dx

exp
{
−κ

√
x2 + z2

}
√

x2 + z2
, (27)

is the modified Bessel function of the second kind of zeroth order. For small values of κ a, we can use

the asymptotic form K0(x) = − ln x in the integrand in eq.(26), leading to,

B(κ a) = − 1
2π

∫ 2 π

0
dα cos{α} ln(1− cosα) = 1 . (28)
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Figure 3: The function B(κa) in eq.(26). The solid line is obtained by numerical integration, and the
dashed-dotted line is the asymptotic value 1 of B for vanishing κ a.

For larger values of κ a, the integral in eq.(26) must be obtained numerically. The amplitude B

is plotted in Fig.3 as a function of κ a. As can be seen, the approximation (28) is reasonable for

κ a . 0.3− 0.4. The derivative of the potential in the equation of motion (21) is thus equal to,

∂2Ψ(ϕ, y = 0, ρ = a, t)
∂ϕ2

= −aA exp{iω t}
2 ε

B(κ a) cos ϕ . (29)

Substitution of this result into the equation of motion eq.(21), together with the Ansatz (22) for the

surface-charge distribution immediately leads to the following expression for the amplitude A,

A =
2 ε κc a

1 + κc aB(κ a) + iΛ⊥
E0 , (30)

where the dimensionless frequency Λ⊥ is defined as,

Λ⊥ =
ω a2

D
. (31)

This is the frequency dimensionalized by the time a2/D that mobile ions need to diffuse over a distance

equal to the radius of the core of the rod.

The in-phase and out-phase response functions in eq.(19) are thus equal to,

R
′
c,⊥(ϕ |ω) =

2 ε κc a (1 + κc aB(κ a))
(1 + κc aB(κ a))2 + Λ2

⊥
E0 cosϕ ,

R
′′
c,⊥(ϕ |ω) =

2 ε κc aΛ⊥
(1 + κc aB(κ a))2 + Λ2

⊥
E0 cosϕ , (32)
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where the subscript ⊥ indicates that these response functions relate to orientation of the rod perpen-

dicular to the field. The response functions for the potential are found from eqs.(16,32) to be equal

to,

P
′

c,⊥(y, ρ, ϕ |ω) =
κc a2 (1 + κc aB(κ a))[
(1 + κc aB(κ a))2 + Λ2

⊥
] B(y, ρ) E0 cosϕ ,

P
′′

c,⊥(y, ρ, ϕ |ω) =
κc a2 Λ⊥[

(1 + κc aB(κ a))2 + Λ2
⊥

] B(y, ρ) E0 cosϕ , (33)

where,

B(y, ρ) =
1

2π

∫ 2π

0
dα

∫ L/2

−L/2
dx cos{α}

exp
{
−κ

√
(y − x)2 + a2 + ρ2 − 2 a ρ cosα

}
√

(y − x)2 + a2 + ρ2 − 2 a ρ cosα
. (34)

The charge density inside the double layer follows from eq.(17) that connects the double-layer charge

density to the potential (33). This concludes the calculation of response functions for perpendicular

orientation.

3.2 Parallel orientation

In case the rod is oriented along the external electric field, it follows from symmetry that σ and Ψ are

independent of the standard cylindrical angular variable ϕ, and only the dependence on z remains,

so that the diffusion equation (12) reduces to,

∂σ(z, t)
∂t

= D

(
∂2σ(z, t)

∂z2
+ 2 ε κc

∂2Ψ(z, ρ = a, t)
∂z2

)
. (35)

Here, z is the coordinate along the contour of the rod, in the direction of the external field (for a

precise definition of the cylindrical coordinates in this case, see Fig.9b in the second part of appendix

A).

Due to the truncation of S at the ends of the cylinder, a boundary condition must be added

that prevents the mobile ions from ”leaking” at the tips of the rod into the solvent. If we would

have retained the full closed form of the surface S, such a boundary condition would not have been

necessary. The flux in eq.(6) in the z-direction must vanish at the rod-ends, where z = ±1
2L. From

the expression (6) for the flux and eq.(81) in appendix A for the surface-gradient operator, together
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with the decomposition in eqs.(8,9) and eq.(11), leads to the boundary condition,

∂σ

∂z
+ 2 ε κc

(
∂Ψ
∂z

− E(t)
)

= 0 , for ρ = a and z = ±1
2L . (36)

As before, we linearized with respect to external field strength, and the definition (13) for the con-

densate length κ−1
c has been used.

According to eq.(16) the potential within the layer of condensed ions is equal to,

Ψ(Z, ρ = a, t) =
a

4π ε

∫ 2π

0
dϕ

∫ 1

−1
dZ

′
σ(Z

′
, t)

exp
{
−1

2 κL
√

2 p−2 (1− cosϕ) + (Z − Z ′)2
}

√
2 p−2 (1− cosϕ) + (Z − Z ′)2

. (37)

where Z is the dimensionless z-coordinate,

Z = 2 z/L , (38)

and similar for z
′
, and p is the aspect ratio,

p = L/2 a À 1 . (39)

Since κL À 1 and the aspect ratio is large, the integrand in eq.(40) is very sharply peaked around

Z
′

= Z. When the charge density does not vary significantly on length scales of the order of the

Debye length κ−1, the potential in eq.(40) can therefore be approximated as,

Ψ(Z, ρ = a, t) =
a

4π ε
σ(Z, t)

∫ 2π

0
dϕ

∫ ∞

−∞
dZ

′ exp
{
−κ a

√
2 (1− cosϕ) + p2 (Z − Z ′)2

}
√

2 p−2 (1− cosϕ) + (Z − Z ′)2

=
a

ε
σ(Z, t) K(κ a) , (40)

except for the relatively small regions of extent κ−1 near the tips of the rod. Here,

K(κ a) ≡ 1
2π

∫ 2π

0
dϕ K0

(
κ a

√
2 (1− cosϕ)

)
, (41)

where the integral representation (27) for the Bessel function K0 is used. The function K(κa) is

plotted in Fig.4 (the solid line). Like for the perpendicular orientation considered in the previous

subsection, the asymptotic form K0(x) = − lnx for small arguments can be used in case κa . 1.

Using that,

∫ 2π

0
dϕ ln {1− cosϕ} = −2π ln 2 , (42)
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it is thus found that,

K(κ a) ≈ − ln{κ a} , κ a . 1 . (43)

As can be seen from Fig.4, this approximation (the dashed-dotted line) is reasonable for κa . 0.3−0.4.

The potential on the surface of the rod is thus found to be equal to,

Ψ(Z, ρ = a, t) =
a

ε
σ(Z, t) K(κ a) . (44)

Substitution of eq.(44) into the dimensionless form of the diffusion equation (35) leads to the simple

diffusion equation,

∂ σ(Z, t)
∂t

= Deff ∂ 2σ(Z, t)
∂Z2

, (45)

where the ”effective diffusion coefficient” is equal to,

Deff = D [ 1 + 2κc aK(κ a) ] . (46)

Diffusion of condensed ions is thus enhanced by the electric field originating from the surrounding

ions. Such an enhancement of concentration-gradient diffusion due to repulsive inter-particle forces

is well-known for bulk systems: a gradient in concentration relaxes faster when particles repel each

other. The ”bare diffusion coefficient” D of condensed ions can, on the contrary, be very much smaller

than for free ions in solution (see the discussion in the beginning of section 2 and the comparison with

experiments in section 5).

Since the boundary condition should be fulfilled just inside the charge distribution (where σ 6= 0),

and both the potential and the charge density are smooth functions on the length scale set by the

Debye length, it suffices to evaluate the integral in eq.(40), representing the potential within the layer

of condensed ions, for Z equal to ±1 minus a few times κ−1. The no-flux boundary condition is thus

invoked not right at the tips of the rod, but a few times the Debye length away from the tips. For

large aspect ratios, this neglect of end-effects is accurate in describing the polarization of the rod.

Despite the fact that eq.(44) neglects end-effects, we can therefore nevertheless use this result in the

boundary condition (36), which now reads, in dimensionless form,

[ 1 + 2 κc a K(κ a)]
∂ σ(Z, t)

∂Z
= ε κc LE(t) , for Z = ±1 (47)
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Figure 4: The function K(κa) in eq.(41). The solid line is obtained by numerical integration, and the
dashed-dotted line is the logarithmic approximation.

The time dependence of the charge density and potential generated by the ions is made explicit

as,

σ(Z, t) = σ(Z) exp{i ω t} ,

Ψ(Z, ρ, t) = Ψ(Z, ρ) exp{i ω t} . (48)

Note that Ψ and σ are mutually in-phase, according to eq.(16).

The diffusion equation (45) with the boundary condition (47) are now easily solved,

σ(Z) =
ε κc L E0

λ cosh{λ} [1 + 2κc aK(κ a)]
sinh{λZ} . (49)

where Z is, as before, the dimensionless distance defined in eq.(38), and,

λ =
1+i√

2
Λ1/2
‖ , (50)

where Λ‖ is the dimensionless frequency,

Λ‖ =
ω L2

4Deff . (51)

The same dimensionless frequency has been identified by Manning for polarization of the condensate

on a polyelectrolyte with a discrete line-charge distribution (see the paper by Manning [19]). Note
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that the spatial variation of the charge density depends on the frequency as λ ∼ ω1/2. This square-

root dependence for parallel orientation is to be contrasted to the analytical frequency dependence of

response functions for perpendicular orientation.

As will turn out, the frequency ω where Λ‖ ≈ 1 marks the frequency beyond which response

functions begin to deviate from their stationary, zero-frequency behaviour. The frequency ω for

which Λ‖ ≈ 1 is, according to eq.(31), a factor (L/2a)2 smaller than the frequency that is relevant

for perpendicular orientation. The reason for this is obvious, since ions need be displaced only over

distances of the order a in case of perpendicular orientation, while for parallel orientation polarization

occurs when ions are displaced over distances of the order L.

The in-phase and out-phase response functions in eq.(19) are found from eq.(49), and are most

conveniently written as,
(

R
′
c, ‖(z | ω)

R
′′
c, ‖(z | ω)

)
=

ε κc L E0

1 + 2κc aK(κ a)

×
(

F (−)(Ω) F (+)(Ω)
F (+)(Ω) −F (−)(Ω)

)
·
(

cos{2Ω z/L} sinh{2Ω z/L}
sin{2Ω z/L} cosh{2Ω z/L}

)
. (52)

where the subscript ‖ indicates that these response functions relate to orientation of the rod parallel

to the field, where the quantity,

Ω =
(
Λ‖/2

)1/2
, (53)

is introduced for convenience, and,

F (±)(Ω) =
1
Ω

cos{Ω} cosh{Ω} ± sin{Ω} sinh{Ω}
cos{2Ω}+ cosh{2Ω} . (54)

The response functions for the potential outside the condensed layer follow from eqs.(16,52),
(

P
′

c, ‖(z, ρ | ω)
P
′′

c, ‖(z, ρ | ω)

)
=

κc aL E0

4 π [ 1 + 2κc aK(κ a) ]

×
∫ 2 π

0
dα

∫ L/2

−L/2
dx

exp
{
−κ

√
(z − x)2 + ρ2 + a2 − 2 a ρ cosα

}
√

(z − x)2 + ρ2 + a2 − 2 a ρ cosα

×
(

F (−)(Ω) F (+)(Ω)
F (+)(Ω) −F (−)(Ω)

)
·
(

cos{2 λx/L} sinh{2λ x/L}
sin{2λx/L} cosh{2λ x/L}

)
. (55)

These expressions for the potential can be used in eq.(17) to obtain the charge distribution within

the double layer.
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Figure 5: The in-phase (a) and out-phase (b) response functions (52) for the charge density as a function
of the position along the core for various values of the dimensionless frequency Λ‖, as indicated in the

figures. Here, R̃
′
‖ = R

′
‖ × [1 + 2 κc aK(κ a)] /(ε κc LE0, ‖), and similar for R̃

′′
. Note that the response

functions are odd functions of z, so that only the part where z ≥ 0 is plotted.
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The in-phase and out-phase response functions (52) for the condensate charge density are plotted

in Fig.5 as a function of z for various frequencies, as indicated in the figure. For very low frequency, the

in-phase charge density various linearly with z, while the out-phase density is zero. With increasing

frequency, the in-phase density decreases in amplitude, and relatively many ions accumulate at the

tips of the rod. For large frequencies the in-phase density develops a non-monotonic behaviour, where

close to the origin of the rod, the charge is opposite in sign to that at the tips. At instances where

the external field is directed along the positive z-direction, the charge at the end is positive while the

charge density near the center of the rod is negative. At these high frequencies the charge density

therefore exhibits a quadrupolar-like distribution. The same holds for the surrounding condensate-

induced double layer, within which the charge density is, however, opposite to the condensate density.

The out-phase density first increases with increasing frequency and then decreases, as expected. The

frequency dependence of the charge-density response functions is shown in Fig.6, for various positions

along the core of the rod, as indicated in the figure. As can be seen, the charge density at the tips

of the rod is always larger as near the center. The deviation from zero-frequency response occurs at

Λ‖ ≈ 1. The response functions decay to zero at quite high values of Λ‖. The reason for this is that

the dimensionless number that measures the response for parallel orientation is rather Ω in eq.(53)

instead of Λ‖ (note that for Λ‖ = 100, at which there is essentially no response due to the finite

diffusivity of the ions, the value of Ω =
√

Λ‖/2 ≈ 7).

4 A Comparison to Manning’s Free-Energy Approach

In the analysis of the polarization of the layer of condensed ions as given by Manning [19], ion fluxes are

calculated from the free energy of the condensed charge distribution. In such an approach, the forces

on ions arising from the potential set up by their inhomogeneous distribution is implicitly accounted

for, so that the mathematically complicated contributions involving the potential Ψ in the diffusion

equation (35) and the boundary condition (36) do not appear explicitly. In Manning’s approach, the

core of the rod is modeled as a line with discrete bare charges of valency z separated by a distance

b. Manning derives from the free energy of condensed ions the following expression for the effective
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diffusion coefficient (in our notation) [19],

Deff = D
[
1− 2 z2 lB c̄l ln{κ b} ]

, (56)

provided that κ a . 1, where lB is the Bjerrum length, c̄l is the line concentration of condensed ions

in the absence of the external field, that is, the number of condensed ions per unit length, and, as

before, κ−1 is the Debye length (see eq.(15)).

Manning’s expression (56) for the effective diffusion coefficient should be compared to our expres-

sion (46). For small cylinder diameters, the approximation (43) for K(κ a) can be used, so that eq.(46)

reads,

Deff = D [ 1− 2κc a ln{κ a} ] . (57)

Since in eq.(13) for κc, the surface concentration c̄ is equal to N/2π aL, with N the total number

of condensed ions, it immediately follows that,

κc a = z2 lB
N
L

= z2 lB c̄l . (58)

The expression (56) of Manning and our expression (57) for the effective diffusion coefficient are

thus identical as far as the prefactor of the logarithm is concerned. However, the argument of the

logarithm in the two expressions for the effective diffusion coefficient are different: in Manning’s

result the distance b between the discrete charges appears, while in our expression the cylinder radius

a appears. In fact, for the line-charge distribution in Manning’s model the radius a has no meaning,

while in our model with a continuous charge distribution the parameter b plays no role. Instead of

using the free energy for a discrete line-charge distribution, the free energy of a continuous surface

charge distribution renders a free energy where b is replaced by a [9]. This renders identical results

for Manning’s approach and ours.

5 Single-Particle Alignment

In this section we consider the alignment of a single rod in an oscillating external field. The orien-

tational order parameter is calculated and a comparison is made with birefringence experiments on

dilute fd-suspensions performed by the Konstanz group [1].
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The electric forces with which the external field acts on the condensate are fully transferred to the

rod since the condensate is constrained to move along the surface of the core. The electric forces of the

external field on the condensate-induced diffuse double layer, on the contrary, are not mechanically

transferred to the core of the rod. The condensate-induced double layer does, however, contribute to

the total torque on the rod, through the electric forces that it exerts on the rod’s surface charges.

The total torque T on the rod is equal to,

T(û, t) =
∮

S
dS σ(r, t) r× [E(t)−∇s Ψdl(r, t) ] , (59)

where Ψdl is the potential generated by the condensate-induced double layer. The torque is a function

of the unit vector û along the long axis of the rod, which characterizes its orientation. The time

dependence is due to the oscillating external field. For any orientation of the rod, the charge density σ

can be decomposed in its contributions σ‖ and σ⊥ from the field components parallel and perpendicular

to the rod’s long axis, respectively. In this way, the torque can be written as the sum of the torque

T‖ that is due to forces on the charge density induced parallel to the rod’s long axis and the torque

T⊥ due to forces on the perpendicularly induced charge distribution,

T(û, t) = T‖(û, t) + T⊥(û, t) . (60)

The fields that contribute to T‖ are perpendicular to û, while the fields that contribute to T⊥ are

along û. A long calculation leads to (mathematical details are given in appendix C),

T‖(û, t) =
π

4
L3 (û×E0) (û ·E0) ε

× [F1 cos{ω t}+ F2 sin{ω t} ]

× [F3 cos{ω t}+ F4 sin{ω t} ] , (61)

and,

T⊥(û, t) = − π

2
L3

p 2
ε (û×E0) (û ·E0)

× [ H1 cos{ω t}+ H2 sin{ω t} ]

× [ H3 cos{ω t}+ H4 sin{ω t} ] , (62)
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where, as before, p is the aspect ratio, while,

F1 = V (W + 1 ) I(−) ,

F2 = V ( W + 1 )
(
Ω−2 − I(+)

)
,

F3 = 2 ( 1 + κc aB(κ a))2 − κc a (1 + κc aB(κ a)) + 2Λ2
⊥ ,

F4 = −κc aΛ⊥ ,

H1 = V
(

1 + W Ω2 I(+)
)

,

H2 = V W Ω2 I(−) ,

H3 = 1 + κc aB(κ a) ,

H4 = Λ⊥ . (63)

Here, V , W and I(±) stand for,

V (κca,Λ⊥) =
κc a

( 1 + κc aB(κ a))2 + Λ2
⊥

,

W (κca, κa) = − 2κc aK(κ a)
1 + 2 κc a K(κ a)

,

I(±)(Ω) =
1

2 Ω3

sinh{2Ω} ± sin{2Ω}
cosh{2Ω}+ cos{2Ω} . (64)

The above expressions for the torque can be used to calculate the (thermally averaged) orientational

order parameter that is induced in dilute suspensions, where interactions between the rods can be

neglected.

The orientational order parameter, that characterizes to which extent the rods are aligned with

respect to the external field, is defined as,

QE(t) = 3
2

{
< cos2 {ΘE} > −1

3

}
= 3

2

[
< û2

z > −1
3

]
, (65)

where, without loss of generality, the direction of the external field is chosen along the z-direction,

ΘE is the angle between û and the external field, and ûz is the z-component of û, while the brackets

< · · · > denote ensemble averaging. For a time-independent, perfect alignment along the external

field the order parameter is equal to 1, and for perfect alignment in the plane perpendicular to the

external field, the order parameter is −1/2. For a vanishing field amplitude there is an isotropic
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distribution of orientation, so that < û2
z >= 1/3, and hence QE = 0. Therefore, when QE < 0 the

external field tends to align rods perpendicular to the external field, and when QE > 0 there is a

preferred alignment along the external field.

The orientational order parameter can be obtained from the solution of the Smoluchowski equation

for the probability density function (pdf) P (û, t) for the orientation û of a rod, which reads,

∂

∂t
P (û, t) = Dr R̂ ·

[
R̂P (û, t)− β P (û, t)T(û, t)

]
, (66)

where Dr is the single-particle rotational diffusion coefficient, and R̂ is the ”orientational operator”,

R̂ (· · ·) = û×∇û (· · ·) , (67)

with ∇û the gradient operator with respect to the Cartesian coordinates of û. In terms of the pdf

P (û, t), the order parameter is equal to,

QE(t) = 3
2

∮
dû

[
û2

z − 1
3

]
P (û, t) . (68)

where the integral ranges over all directions of û.

Multiplying both sides of the orientational diffusion equation (66) by û2
z, integrating over all

directions of û, and performing a partial integration by means of Stokes’s theorem, leads to,

d

d t
QE(t) = −6 Dr

{ [
1− 1

3 β E2
0 T (t)

]
QE(t)− 1

6 β E2
0 T (t)

[
1− 3 < û4

z >(t)
]}

. (69)

where it is used that (with ûx and ûy the x- and y-components of û, respectively),

R̂ · R̂ û2
z = −6 û2

z + 2 ,

R̂ û2
z = 2 ûz (ûy,− ûx, 0) . (70)

Furthermore, T is defined as,

T(û, t) = T (t) (û×E0) (û ·E0) = E2
0 T (t) ûz (ûy,− ûx, 0) , (71)

for which an explicit expression immediately follows from eqs.(60-64),

T (t) = T‖(t) + T⊥(t) ,
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T‖(t) =
π

4
L3 ε [ F1 cos{ω t}+ F2 sin{ω t} ]

× [ F3 cos{ω t}+ F4 sin{ω t} ] ,

T⊥(t) = − π

2
L3

p 2
ε [H1 cos{ω t}+ H2 sin{ω t} ]

× [ H3 cos{ω t}+ H4 sin{ω t} ] . (72)

To within linear response theory, the right hand-side of eq.(69) is expanded to leading order in E2
0 .

Hence, for the terms in eq.(69) that are multiplied by E2
0 we can use their isotropic values, as if there

is no external field. Since QE = 0 in the absence of the external field, the term ∼ E2
0 QE is of higher

order, and is therefore neglected. Furthermore, the isotropic average of û4
z is equal to 1/5, so that we

finally find the following equation of motion for the orientational order parameter,

d

d t
QE(t) = −6Dr

{
QE(t)− 1

15 β E2
0 T (t)

}
, (73)

the solution of which reads,

QE(t) = 2
5 β Dr E2

0

∫ t

−∞
dτ T (τ) exp {−6Dr (t− τ)} . (74)

Substitution of the expressions (59-64) and performing the τ -integration leads to an explicit expression

for the order parameter, which is given in appendix D. In this rather complicated expression, there

are three time scales of interest: the time 1/Dr on which the rod performs a Brownian rotation,

and the two times a2/D and L2/4Deff on which perpendicular and parallel polarization occurs.

The rotational time scale is by far the longest (for fd virus 1/Dr ≈ 0.05 s). For frequencies where

ω/Dr À 1, the rotational dynamics of the rod is not probed, but the remaining two dimensionless

groups Λ⊥ = ω a2/D and Λ‖ = ω L2/4Deff (or, alternatively, Ω) can be small for such frequencies.

Since experiments are usually performed at frequencies where ω/Dr À 1 (for fd virus ω/Dr ≈ 1 for

ν = 3 Hz), we will only consider the corresponding limiting form of the generally valid expression for

the order parameter in eqs.(123-125) in appendix D. For ω/Dr À 1, the orientational order parameter

is found from eqs.(123-125) to be equal to,

QE = Q‖ + Q⊥ , (75)
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Figure 7: The order parameter QE in units of β E2
0 L3 ε as a function of the frequency ν = ω/2π. In (a)

the order parameter is shown as a function of frequency for two Debye lengths, as indicated in the figure.
In (b) the order parameter for large frequencies is plotted, where it can be seen that there is a tendency
to align perpendicular to the external field. In (a) theoretical plots are given for K = 1/100, 1/50, 1/20
and 1/10 in case of κ−1 = 300 nm, and for K = 1/50 in case of κ−1 = 30 nm, while in (b) K = 1/50.
In (a), the data points ¤ are for c = 0.35 c?, E0 = 12 V/mm, the ◦ for 0.45 c?, E0 = 24 V/mm and M for
c = 0.45 c?, E0 = 12 V/mm, as taken from Figs.8 and 9 in Ref.[1].

with,

Q‖ =
π

120
β E2

0 L3 ε {F1 F3 + F2 F4} ,

Q⊥ = − π

60 p2
β E2

0 L3 ε {H1 H3 + H2 H4} , ω/Dr À 1 , (76)

where, as before, the indices ‖ and ⊥ refer to the contributions arising from the torque on the charge

distribution along and perpendicular to the rod’s long axis, respectively, and the frequency dependent

functions Fi and Hi are given in eq.(63). Note that there is no time-dependencies in eqs.(75,76),

which is due to the fact that the orientation of the rod can not respond to the external field for

frequencies where ω/Dr À 1. The orientational order parameter is thus time-independent, despite an

oscillating external field. For lower frequencies the rod is able to re-orient, resulting in an explicit time

dependence of the order parameter, which is described by the full expression (123-125) in appendix

D.
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The above predictions can be compared to birefringence experiments that have been performed

on fd-virus suspensions in Ref.[1]. For fd-virus particles, the radius of the core is 3.4nm, and its

length is 880nm, while the number of bare charges per nm is about 10. Since the Bjerrum length

for water is 0.7 nm, it follows from eq.(58) that κc a = 7. The ionic strength in Ref.[1] is stated to

be 10−6 M , corresponding to a Debye length of κ−1 = 300 nm, so that κ a = 0.011. The diffusion

coefficient of salt ions in bulk solution is typically 2 × 10−9 m2/s. The diffusion coefficient for the

condensed ions may be quite different. We therefore introduce a factor K, that sets the diffusion

coefficient to 2×K × 10−9 m2/s, that is, the friction coefficient for condensed ions is 1/K times the

friction coefficient of ions in bulk water. This parameter is the only fitting parameter in comparing

experiment with theory.

The order parameter is related to the birefringence ∆n as,

QE = ∆n/∆n , (77)

where ∆n is the maximum birefringence at the given concentration c for perfectly aligned rods. For

fd-viruses,

∆n = 3.8× 10−5 × c [mg/ml] . (78)

The proportionality constant is taken from Ref.[37]. There is different value for the proportionality

constant reported in Ref.[38] which is too large, and leads to unphysical values of the order parameter

for nematic suspensions of fd-virus in equilibrium [39]. The lowest fd-concentrations considered in

Ref.[1] are c = 0.35 c? and 0.45 c? (with c? = 0.04mg/ml the overlap concentration, defined as 1/L3),

and birefringence experiments have been done at field strengths of E0 = 12V/mm and 24V/mm. For

these values of the field amplitude, β E2
0 L3 ε = 16.4 and 65.6, respectively, so that eqs.(77,78) can be

rewritten as,

QE

β E2
0 L3 ε

= 4.0× 104 ×∆n × c?

c
, E0 = 12V/mm ,

= 1.0× 104 ×∆n × c?

c
, E0 = 24V/mm . (79)

Orientational order parameters as obtained from the above theory, using the fd-virus parameters,

are plotted as a function of the frequency ν = ω/2π in Fig.7. The data points in Fig.7a are calculated
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with eq.(79) from Figs.8 and 9 in Ref.[1] (their ∆nmax is our ∆n). For the Debye length of κ−1 =

300 nm, theoretical plots are given in Fig.7a for four values of K: 1/100, 1/50, 1/20 and 1/10. A

reasonable comparison with experimental data is found when K is in between 1/50 and 1/20. That

is, the friction coefficient of the condensed ions is about 20 to 50 times larger than for ions in bulk

solution. This rather large value of the friction coefficient might be due to the fact that the surface

of fd-virus consists of coat proteins, resulting in a rather rough surface.

For the two fd-concentrations of c = 0.35 c? and 0.45 c?, interactions between fd viruses will play

a role. These interactions are responsible for the ”dip” that is found in the measured birefringence in

the frequency range 10− 100Hz (see the data points in Fig.7a). This dip becomes more pronounced

at higher concentrations, and leads to a sign change of the measured birefringence for concentrations

above c? [1]. At these low frequencies and relatively high concentrations the fd viruses preferentially

orient perpendicular to the external field for reasons that are not yet understood. In our present

calculations such interaction effects are absent, so that this dip is not observed in the theoretical

curves in Fig.7a.

We note that the birefringence as plotted in the experimental graphs in Ref.[1], is the contribution

that we consider here plus the amplitude of the oscillating contribution (see eqs.(123-125) in appendix

D). For frequencies larger than ∼ 30 Hz, for which ω/Dr is large, the oscillation part can be neglected.

For lower frequencies, below ∼ 30Hz, the amplitude of the oscillating contribution to the order

parameter might come into play.

At quite high frequencies (larger than about 2× 105 Hz) there is an interesting behaviour of the

order parameter, as can be seen from Fig.7b. The contribution Q⊥ due to perpendicular polarization

is always negative, and thus leads to a preferred orientational orientation perpendicular to the external

field, which is intuitively obvious. The contribution Q‖ is positive for the same obvious reasons, except

for high frequencies (see the dashed-dotted line in Fig.7b). The interpretation is that at these high

frequencies the induced charge density exhibits a large out-of-phase component with the external

field, leading to a dipole moment that is opposite to the external field. This can be seen from Fig.8,

where the in-phase (solid lines) and out-phase (dashed lines) for the dipole moment connected to the

31



10
0

10
2

10
4

10
6

0.0

0.2

0.4

0.6

p
c

n [ Hz ]

~
parallel

(a)

10
0

10
2

10
4

10
6

10
8

0.0

2.0x10
-4

4.0x10
-4

6.0x10
-4

~ (b)

[ Hz ]n

p
c

perpendicular

Figure 8: The dipole moments of the condensate (without the contribution from the diffuse double layer) as
a function of frequency, where p̃c = pc × π

2 ε κc aL3 E0/ [1− 2 κc a ln{κ a} ], where pc is the dipole moment
of the condensate. The parameters are the same as in Fig.7, with K = 1/50 and κ−1 = 300 nm. (a) is for
the dipole due to polarization parallel to the rod’s long axis and (b) for perpendicular polarization. The
solid lines are the in-phase components and the dashed lines to the out-phase components.

condensate charge parallel (a) and perpendicular (b) to the rod’s long axis are plotted. The out-phase

component becomes larger than the in-phase component at sufficiently high frequencies, which leads

to the above mentioned inversion of the order parameter. Note that the inversion frequency is much

larger for perpendicular orientation and that the perpendicular dipole moment is typically a factor

p−2 ≈ 10−5 smaller than the parallel dipole moment. At these high frequencies the internal energy is

decreased by orientation of the rod perpendicular to the field. Note, however, that the corresponding

order parameter is very small as compared to lower frequencies, so that for fd virus suspensions this

effect can not be detected experimentally.

At higher concentrations, alignment is affected by the interactions between the rods through the

induced polarization charges, both of the condensate and the condensate-induced diffuse double layer.

The above mentioned anomalous alignment in concentrated fd-virus suspensions perpendicular to the

external field [1] is the result of such rod-rod interactions. The same interactions are at the origin

of the field-induced phases and dynamical states found for fd-virus suspensions in Refs.[2, 3]. The

field-induced polarization-charge interactions between rods can in principle be calculated from the
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results obtained in the present paper, which is a subject of current work.

6 The Equilibrium Diffuse Double Layer

It has been assumed in our analysis that there is a condensate-induced diffuse double layer in solution

that is in equilibrium with the instantaneous condensate charge distribution. This is a good approxi-

mation when the time period 1/ν of oscillation of the external field (with ν = ω/2π its frequency) is

large compared to the time 1/(2D0 κ2) that ions need to diffuse over a distance equal to the Debye

length κ−1 (where D0 is the diffusion coefficient for ions in bulk water). The Debye length is the

appropriate length scale, since the diffuse double layer is build up most rapidly through diffusion of

ions perpendicular to the rod axis. Additional fluxes, along the long axis of the rod, will diminish the

time scale on which a diffuse double layer is formed. A conservative condition for the presence of an

equilibrium diffuse double layer is thus,

ν

2D0 κ2
¿ 1 . (80)

For such low frequencies the condensate-induced double layer will fully develop, as if it were in

equilibrium with the instantaneous condensate charge distribution. Since typical diffusion coefficients

of ions are of the order 2× 10−9 m2/s, and Debye lengths for aqueous systems typically vary from a

few nanometers to about 100 nm, the condition (80) is fulfilled for frequencies ν less than ∼ 105 Hz.

The response functions for perpendicular polarization begin to develop an out-phase component for

frequencies such that Λ⊥ ≈ 1, that is, ω ≈ D/a2. According to the condition (80), the perpendicular

orientation can therefore exhibit an out-phase component for perpendicular orientation in the presence

of an equilibrium double layer when (D/D0) (κ a)2 ¿ 1 . On the basis of the comparison with

experiments on fd-virus suspensions in section 5 we found that D/D0 ≈ 1/50 to 1/20. One might

therefore conclude that the Debye length must be of the order of, or less than, the rod-core radius in

order that our theory for perpendicular polarization is valid. However, the analysis for perpendicular

orientation remains valid for all frequencies for Debye lengths that are larger than the core radius

a. This is due to the fact that interactions between condensed ions along the circumference of the

cylinder are not affected by the double layer when it is much more extended than the core of the rod.
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Formally this is expressed by the fact that the amplitude B in eq.(23) becomes independent of the

Debye length for κ a . 0.3 − 0.4 (see Fig.3). For such large Debye lengths, the presence of a double

layer is of no consequence for the perpendicular charge distribution. The potential response functions

(33,34) for perpendicular polarization, however, are affected by the double layer for perpendicular

distances of the order κ−1 from the core. Contrary to perpendicular orientation, the presence of an

equilibrium double layer remains important for parallel orientation also for large Debye lengths (for

which κ a . 1), provided that the Debye length is short as compared to the length of the rod.

We note that the numerical results in Fig.7b are somewhat beyond the validity of the condition

(80) for the presence of an equilibrium double layer. The principal effect demonstrated in this figure

remains valid (namely, the development of an out-phase component of the parallel charge distribution,

leading to an anomalous orientation perpendicular to the external field). For smaller Debye lengths

the same anomalous orientation is found within a range of frequencies where the condition (80) is

satisfied.

7 Summary and Conclusions

We analyzed the polarization of the layer of condensed ions on cylindrical colloids under oscillatory

external electric fields, within linear response. The condensed ions are assumed to migrate over the

surface of the cylinder. The theory also applies to surface-conductive ions, other than condensed ions.

Polarization for perpendicular and parallel orientation is analyzed, from which the polarization for

arbitrary rod-orientation can be obtained by decomposing the external field into its components along

and perpendicular to the rod’s long axis. The in- and out-phase response functions for both the charge

distribution and the potential are calculated. The non-uniform charge distribution of condensed ions

induces a diffuse double layer in solution. A criterion is discussed for the existence of an instantaneous

double-layer charge distribution that is in quasi-equilibrium with the condensate. For Debye lengths

that are large compared to the radius of the cylindrical core, the existence of a double layer is of no

consequence for the perpendicular charge distribution. For parallel polarization there is an effective

diffusion coefficient which is a function of the Debye length due to screened interactions between the
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condensed ions.

A comparison is made between our model, where the charge distribution on the cylindrical core is

assumed to be continuous, and a model for polyelectrolytes where a discrete bare line-charge distri-

bution is assumed and a free-energy approach is taken (see the paper by Manning [19]). It turns out

that there are striking similarities between the predictions of both models. The equations of motion

for the parallel charge distribution turn out to be essentially the same, except that the distance b

between the discrete charged in the polyelectrolyte model that occurs in the expression for the effec-

tive diffusion coefficient is the core radius a in our model. However, if one uses the free energy of a

continuous charge distribution of a cylinder with a large Debye length, instead of the discrete charge

distribution, the parameter b is found to be replaced by a. The free-energy approach as developed

by Manning thus renders the same expression for the effective diffusion coefficient as we find in our

approach based on electro-kinetic equations.

The orientational order parameter of very dilute suspensions is calculated from the Smoluchowski

equation for the orientational probability density function. A reasonable comparison with experiments

on fd-virus suspensions is obtained when the friction coefficient of the condensed ions is taken a factor

20 to 50 larger than that of free ions in bulk water. At relatively high frequencies, the torque on the

parallel induced charge distribution changes sign, leading to anomalous orientation perpendicular to

the external field. This sign change is due to the large out-phase component of the induced dipoles.

The motivation for this work comes from the experiments on concentrated fd-virus suspensions

that show unexpected phases and dynamical states depending on the frequency and external field am-

plitude. The necessary theoretical steps to be taken in order to understand the observed phase/state

behaviour in electric fields are (i) to calculate the pair-interactions between the rods due to polar-

ization charges, (ii) to asses the importance of interactions through electro-osmotic flow, and (iii) to

analyze equations of motion for concentration and orientational order to predict collective behaviour

on the basis of pair-interactions. These theoretical steps will be discussed in a separate paper based

on the present analysis.
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Appendix A: The surface-gradient operator and coordi-

nate systems for perpendicular and parallel orientation

The mathematics is most conveniently formulated in terms of a parametrization (s1, s2, s3), where for

a given value of s3 the remaining two variables s1 and s2 parameterize the surface S of the core, that

is, any r ∈ S can be written as r ≡ r(s1, s2, s3 = R), where the given value R of s3 sets the size of

the colloidal core. The surface-gradient operator acting on an arbitrary function f , in terms of such

a parametrization, reads,

∇sf =
1
h1

t̂1
∂f

∂s1
+

1
h2

t̂2
∂f

∂s2
, (81)

where,

t̂i =
1
hi

∂r(s1, s2, s3 = R)
∂si

, (82)

are unit vectors, tangential to S (for i = 1 and 2), with,

hi = | ∂r(s1, s2, s3 = R)
∂si

| . (83)

The parametrization is assumed such that t̂1 ⊥ t̂2, and the unit vectors are chosen such that t̂3 =

t̂1× t̂2 is the unit normal on S that points outwards of the core (which complies with a right-handed

coordinate system).

For an orientation of the rod perpendicular to the external field, we use cylindrical coordinates as

defined in Fig.9a. These are the standard cylindrical coordinates except that the axis are interchanged.

Here, s1 = ϕ, s2 = y and s3 = ρ, while r = (ρ sinϕ, y, ρ cosϕ). Hence, from eqs.(82,83),

t̂1 = (cosϕ, 0,− sinϕ) ,
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Figure 9: (a) The cylindrical coordinates for parametrization of the sides of a rod for perpendicular
orientation. (b) The cylindrical coordinates for parametrization of the sides of a rod for parallel orientation.

t̂2 = (0, 1, 0) , (84)

t̂3 = (sinϕ, 0, cosϕ) ,

and,

h1 = ρ , h2 = 1 , h3 = 1 . (85)

For a rod with a high aspect ratio, the charge density is essentially independent of y. For long and

thin rods the relatively small contributions from the ends can be neglected, which amounts to the

approximation that σ is only a function of the angle ϕ. Substitution of these expressions in the general

form (12) leads to eq.(21).

In case of parallel orientation, the standard cylindrical coordinates can be used to parameterize

the surface of the rod, with s1 = ϕ, s2 = z and s3 = ρ, and r = (ρ cos{ϕ}, ρ sin{ϕ}, z). Using the

definitions as given in Fig.9b, the three basis vectors are,

t̂1 = (− sinϕ, cosϕ, 0) ,

t̂2 = (0, 0, 1) , (86)

t̂3 = (cosϕ, sinϕ, 0) ,
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Figure 10: An arbitrary subsurface A on the surface S of the core of the colloidal rod. The boundary of
A is a closed curve on S which is denoted by ∂A. The unit vector n̂A is perpendicular to the surface, t̂ is
tangential to both the curve ∂A and S, while n̂ is perpendicular to ∂A and tangential to S.

and,

h1 = ρ , h2 = 1 , h3 = 1 . (87)

Substitution into the general form (12) of the diffusion equation now immediately leads to eq.(35).

Appendix B: The continuity equation on a surface

Consider a flux j(r) that is defined for any position r in <3. In this appendix we shall not denote

time dependencies for brevity. Let A be an arbitrary part of a surface S, as sketched in Fig.10. In

our case the latter surface is the surface of the colloidal core. The number of ions within A is equal

to the surface integral of c ranging over A,

NA =
∫

A
dS c , (88)

where dS is an infinitesimal small surface element. Let t̂ denote the unit tangential vector to the

boundary ∂A of A, and n̂ the unit normal pointing outward of A, both of which are tangential to the

core’s surface S (see also Fig.10). The orientation of t̂ is such that it points into the anti-clockwise

orientation of the curve ∂A. The time-rate of change of the number of ions in A due to in- and

out-flux through the boundary ∂A is equal to,

dNA
dt

= −
∮

∂A
dl n̂ · j , (89)
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where j is understood to be tangential to the surface S. Since, n̂ = t̂ × n̂A, where n̂A is the unit

normal on the volume that is bounded by the surface S (see again Fig.10), it follows that,

dNA
dt

= −
∮

∂A
dl

(
t̂× n̂A

) · j = −
∮

∂A
dl · ( n̂A × j ) , (90)

where dl = t̂ dl. From Stokes’s theorem and eq.(88) is follows that,
∫

A
dS

{
∂c

∂t
+ n̂A · [∇× ( n̂A × j ) ]

}
= 0 . (91)

Since this holds for any arbitrary integration range (embedded in S), it follows that, assuming conti-

nuity,

∂c

∂t
+ n̂A · [∇× ( n̂A × j ) ] = 0 . (92)

Since,

∇× ( n̂A × j ) = n̂A∇ · j− j∇ · n̂A + ( j · ∇ ) n̂A − ( n̂A · ∇ ) j , (93)

while

n̂A · [ j∇ · n̂A ] = 0 ,

n̂A · [ ( j · ∇ ) n̂A ] = 0 , (94)

it follows that,

∂c

∂t
= −∇ · j + n̂A n̂A : ∇ j = −

[
Î− n̂A n̂A

]
: ∇ j , (95)

where Î is the identity. Using that,

Î = t̂1 t̂1 + t̂2 t̂2 + n̂A n̂A , (96)

for any two mutually orthogonal unit vectors which are tangential to S, it is thus found that,

∂c

∂t
= − [

t̂1 t̂1 + t̂2 t̂2

]
: ∇ j . (97)

Since t̂1 t̂1 + t̂2 t̂2 is the projection operator onto the core surface S, the gradient operator in the

above equation can be replaced by the surface-gradient operator ∇s, which leads to the continuity

equation,

∂c

∂t
= − [

t̂1 t̂1 + t̂2 t̂2

]
: ∇s j . (98)
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Substitution of eq.(81) and using orthonormality of the two unit surface vectors leads to,

∂c

∂t
= − 1

h1
t̂1 · ∂j

∂s1
− 1

h2
t̂2 · ∂j

∂s2
. (99)

Writing the flux in terms of the two surface unit vectors,

j = j1 t̂1 + j2 t̂2 , (100)

and using the two identities,

t̂i · ∂t̂i

∂sj
= 0 ,

t̂i · ∂t̂j

∂si
=

1
hj

∂hi

∂sj
, i 6= j , (101)

the equation of motion (99) is most conveniently rewritten as,

∂c

∂t
= −

[
1
h1

∂j1

∂s1
+

1
h2

∂j2

∂s2

]
− 1

h1 h2

[
j1

∂h2

∂s1
+ j2

∂h1

∂s2

]
. (102)

For the specific flux in eq.(6), this leads to the diffusion equation (7).

Appendix C: Derivation of eq.(60-64) for the torque

The external electric field is decomposed in its component E‖ = ûû ·E parallel to the rods orientation

and its perpendicular component E⊥ = [ Î− ûû ] ·E, where Î is the identity. Within linear response,

the condensate charge can be written as,

σ = σ‖ + σ⊥ , (103)

where σ ‖,⊥ is the charge density that is induced by E ‖,⊥. The potential of the double layer is similarly

written as,

Ψdl = Ψ‖ + Ψ⊥ , (104)

with Ψ‖,⊥ the potential that is induced by E ‖,⊥.

In order to perform the integrations, the two unit vectors v̂ and ŵ are introduced, which define

a mutually orthonormal coordinate system with û. The surface of the cylinder is now parametrized

with the variables l ∈ [−L/2, L/2] and ϕ ∈ [0, 2π),

r = − a sin{ϕ} v̂ + a cos{ϕ} ŵ + l û . (105)
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The unit vectors v̂, ŵ and û form an orthonormal right-handed coordinate system, that is,

û× v̂ = ŵ ,

ŵ × û = v̂ ,

v̂ × ŵ = û . (106)

where v̂ is perpendicular to the external field,

v̂ ·E(t) = 0 . (107)

The electric field can thus be written as,

E =
[
E0,⊥ ŵ + E0, ‖ û

]
exp{i ω t} , (108)

where E0, ‖ and E0,⊥are the amplitudes of the electric field in the direction parallel and perpendicular

to the rod, respectively. The variable ϕ is the same that we used before, where polarization for parallel

and perpendicular orientation is analyzed. Since Ψ‖ is a function of l only, and Ψ⊥ is a function of

ϕ, the surface gradient of the double-layer potential is equal to,

∇sΨ(r, t) = − 1
a

[ v̂ cosϕ + ŵ sinϕ ]
∂Ψ⊥(ϕ, t)

∂ϕ
+ û

∂Ψ‖(l, t)
∂ l

. (109)

Note that the condensate can not exert a torque on itself, so that the total potential can be used

instead of just its contribution from the double layer.

Using eqs.(33,52) and û× ŵ = −v̂, and noting that σ⊥ ∼ Ψ⊥ ∼ cos{ϕ}, while σ‖ and Ψ‖ are odd

functions of l, it is found that,

T = T‖ + T⊥ , (110)

where,

T‖(û, t) = − a v̂
∫ L/2

−L/2
dl

∫ 2 π

0
dϕ l σ‖(l, t)

[
1
a

sin{ϕ} ∂Ψ⊥(ϕ, t)
∂ϕ

+ E⊥(t)
]

, (111)

and,

T⊥(û, t) = − a2 v̂
∫ L/2

−L/2
dl

∫ 2 π

0
dϕ cos{ϕ} σ⊥(ϕ, t)

[
∂Ψ‖(l, t)

∂l
− E‖(t)

]
. (112)
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The torque T‖ is the contribution to the total torque due to forces on the parallel charge distribution,

while T⊥ is due to forces on the perpendicular charge distribution.

As this point, the time dependencies have to be made explicit. Using that E(t) = E0 cos{ω t},

and expressing the charge densities and the potentials in terms of the response functions, leads to,

T‖(û, t) = − a v̂
∫ L/2

−L/2
dl

∫ 2 π

0
dϕ l

[
R
′
‖(l) cos{ω t}+ R

′′
‖ (l) sin{ω t}

]

×
[

1
a

sin{ϕ}
(

dP
′
⊥(ϕ)
dϕ

cos{ω t}+
dP

′′
⊥ (ϕ)
dϕ

sin{ω t}
)

+ E0,⊥ cos{ω t}
]

, (113)

and,

T⊥(û, t) = − a2 v̂
∫ L/2

−L/2
dl

∫ 2 π

0
dϕ cos{ϕ}

[
R
′
⊥(ϕ) cos{ω t}+ R

′′
⊥(ϕ) sin{ω t}

]

×
[(

dP
′
‖ (l)

dl
cos{ω t}+

dP
′′
‖ (l)

dl
sin{ω t}

)
− E0, ‖ cos{ω t}

]
, (114)

where we used obvious abbreviated notations for the response functions. Here, E0, ‖ and E0,⊥ are the

parallel and perpendicular components of the field amplitude E0.

For the purpose of calculating the torques, the response functions for parallel orientation are most

conveniently written as,

R
′
‖(l) =

[
K

(−)
‖ cos{2Ω l/L} sinh{2Ω l/L}+ K

(+)
‖ sin{2 Ω l/L} cosh{2Ω l/L}

]
E0, ‖ ,

R
′′
‖ (l) =

[
K

(+)
‖ cos{2Ω l/L} sinh{2Ω l/L} −K

(−)
‖ sin{2 Ω l/L} cosh{2Ω l/L}

]
E0, ‖ ,

P
′
‖ (l) =

a

ε
K(κ a)R

′
‖(l) ,

P
′′
‖ (l) =

a

ε
K(κ a)R

′′
‖ (l) , (115)

where,

K
(±)
‖ =

ε κc L

1 + 2κc aK(κ a)
F (±)(Ω) . (116)

The response functions for perpendicular orientation are written as,

R
′
⊥(ϕ) = K

′
⊥ cos{ϕ}E0,⊥ ,

R
′′
⊥(ϕ) = K

′′
⊥ cos{ϕ}E0,⊥ ,

P
′
⊥(ϕ) =

a

2 ε
R
′
⊥(ϕ) ,

P
′′
⊥ (ϕ) =

a

2 ε
R
′′
⊥(ϕ) , (117)
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where,

K
′
⊥ =

2 ε κc a (1 + κc aB(κ a))
(1 + κc aB(κ a))2 + Λ2

⊥
,

K
′′
⊥ =

2 ε κc aΛ⊥
(1 + κc aB(κ a))2 + Λ2

⊥
. (118)

Using the identities,

∫ L/2

−L/2
dl l cos{2Ω l/L} sinh{2Ω l/L} =

L2

4
1
Ω2

[− sin{Ω} cosh{Ω}+ Ω cos{Ω} cosh{Ω}+ Ω sin{Ω} sinh{Ω} ] , (119)

and,

∫ L/2

−L/2
dl l sin{2Ω l/L} cosh{2Ω l/L} =

L2

4
1
Ω2

[ cos{Ω} sinh{Ω}+ Ω sin{Ω} sinh{Ω} − Ω cos{Ω} cosh{Ω} ] , (120)

a long but straightforward calculation finally leads to,

T‖(û, t) = −π

4
L3 v̂ E0,⊥E0, ‖

ε κc a

( 1 + κc aB(κ a))2 + Λ2
⊥

1
1 + 2κc aK(κ a)

×
[
I(−)(Ω) cos{ω t}+

(
Ω−2 − I(+)(Ω)

)
sin{ω t}

]

×
[{

2 ( 1 + κc a B(κ a))2 − κc a (1 + κc a B(κ a)) + 2Λ2
⊥
}

cos{ω t}

−κc aΛ⊥ sin{ω t} ] , (121)

and,

T⊥(û, t) =
π

2
L3

p 2
v̂ E0,⊥E0, ‖

ε κc a

( 1 + κc aB(κ a))2 + Λ2
⊥

×
[

cos{ω t} − 2κc aK(κ a)
1 + 2κc aK(κ a)

Ω 2
(

I(+)(Ω) cos{ω t}+ I(−)(Ω) sin{ω t}
)]

× [ ( 1 + κc aB(κ a)) cos{ω t}+ Λ⊥ sin{ω t} ] , (122)

where I(±)(Ω) is given in eq.(64).

From the definitions of E0, ‖ and E0,⊥ in terms of û as given in the beginning of this appendix,

it is readily found that E0,‖E0,⊥ = E2
0 | sin{γ} cos{γ} |, where γ is the angle between E0 and û (the
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absolute value renders this expression independent on whether the smallest or largest angle between

E0 and û is used). Since |sin γ |=|Ê0 × û | and |cos γ |=|Ê0 · û |, while v̂ is in the direction of Ê0 × û,

with Ê0 the unit vector along E0, this finally leads to eqs.(61,62) for the two torques.

Appendix D: The full expression for the orientational or-

der parameter

From substitution of eq.(72) for T into eq.(74) it follows that,

QE(t) = Q‖(t) + Q⊥(t) , (123)

with,

Q‖(t) =
π β Dr E2

0 L3 ε

10 [ (6Dr)2 + (2ω)2 ]

×
{

F1 F3

[
ω2

3Dr
+ cos{ω t} ( 6Dr cos{ω t}+ 2 ω sin{ω t} )

]

+F2 F4

[
ω2

3Dr
+ sin{ω t} ( 6Dr sin{ω t} − 2ω cos{ω t} )

]

+
1
2

( F1 F4 + F2 F3 ) ( 6Dr sin{2ω t} − 2 ω cos{2ω t} )
}

, (124)

and,

Q⊥(t) = − π β Dr E2
0 L3 ε

5 p2 [ (6Dr)2 + (2ω)2 ]

×
{

H1 H3

[
ω2

3Dr
+ cos{ω t} ( 6Dr cos{ω t}+ 2 ω sin{ω t} )

]

+H2 H4

[
ω2

3Dr
+ sin{ω t} ( 6Dr sin{ω t} − 2ω cos{ω t} )

]

+
1
2

( H1 H4 + H2 H3 ) ( 6 Dr sin{2ω t} − 2ω cos{2ω t} )
}

. (125)

where, as before, the indices ‖ and ⊥ refer to the contributions arising from the torque on the charge

distribution along and perpendicular to the rod’s long axis, respectively.

This expression is valid for all frequencies. The largest time scale appearing in these expressions is

the time 1/Dr for the rod to rotate (for fd this is about 0.05 s). This time is very much larger than the

times a2/D and L2/4Deff that condensed ions need to give rise to polarization in the perpendicular

and parallel direction, respectively.
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