
EuroPar‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

EuroPar’13 Tutorial:
Tools for

High Productivity Supercomputing

26 August 2013

Brian Wylie
Jülich Supercomputing Centre

Martin Schulz
Lawrence Livermore Nat’l Lab

EuroPar‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Agenda

Time Topic Presenter
09:00 Introduction to VI-HPS & Linux ISO

Parallel application engineering & workflow
Extreme-scale case studies

10:30 Break
11:00 Execution monitoring, checking & debugging

Demo: MUST MPI correctness checking J. Protze
12:30 Lunch
14:30 Integrated application execution profile & trace analysis

Demo: Scalasca/Score-P instrumentation & measurement B. Wylie
Demo: Vampir interactive trace analysis R. Tschüter
Demo: Periscope on-line automated analysis I. Compres

16:00 Break
16:30 Complementary tools & utilities

Demo: O|SS parallel performance framework M. Schulz
17:45 Review & discussion
18:00 Adjourn

2

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Introduction to VI-HPS

Brian Wylie
Jülich Supercomputing Centre

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Virtual Institute – High Productivity Supercomputing

Goal: Improve the quality and accelerate the development
process of complex simulation codes running on highly-parallel
computer systems

• Start-up funding (2006–2011) by
Helmholtz Association of
German Research Centres

• Activities
– Development and integration of HPC programming tools

• Correctness checking & performance analysis
– Training workshops
– Service

• Support email lists
• Application engagement

– Academic workshops

http://www.vi-hps.org
2

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

VI-HPS partners (founders)

3

Forschungszentrum Jülich
■ Jülich Supercomputing Centre

RWTH Aachen University
■ Centre for Computing & Communication

Technical University of Dresden
■ Centre for Information Services & HPC

University of Tennessee (Knoxville)
■ Innovative Computing Laboratory

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

VI-HPS partners (cont.)

4

Barcelona Supercomputing Center
■ Centro Nacional de Supercomputación

German Research School
■ Laboratory of Parallel Programming

Lawrence Livermore National Lab.
■ Centre for Applied Scientific Computing

Technical University of Munich
■ Chair for Computer Architecture

University of Oregon
■ Performance Research Laboratory

University of Stuttgart
■ HPC Centre

University of Versailles St-Quentin
■ LRC ITACA

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Productivity tools

MUST
■ MPI usage correctness checking

PAPI
■ Interfacing to hardware performance counters

Periscope
■ Automatic analysis via an on-line distributed search

Scalasca
■ Large-scale parallel performance analysis

TAU
■ Integrated parallel performance system

Vampir
■ Interactive graphical trace visualization & analysis

Score-P
■ Community instrumentation & measurement infrastructure

5

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Productivity tools (cont.)

KCachegrind
■ Callgraph-based cache analysis [x86 only]

MAQAO
■ Assembly instrumentation & optimization [x86 only]

mpiP/mpiPview
■ MPI profiling tool and analysis viewer

Open MPI
■ Integrated memory checking

Open|Speedshop
■ Integrated parallel performance analysis environment

Paraver/Extrae
■ Event tracing and graphical trace visualization & analysis

Rubik
■ Process mapping generation & optimization [BG only]

SIONlib
■ Optimized native parallel file I/O

STAT
■ Stack trace analysis tools

6

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Technologies and their integration

7

Optimization

Visual trace
analysis

Automatic
profile & trace

analysis

Error & anomaly
detection

Hardware
monitoring

Execution

SCALASCA

VAMPIR / PARAVER

PAPI

MUST

PERISCOPE

KCACHEGRIND TAU

RUBIK /
MAQAO

SYSMON /
SIONLIB /
OPENMPI

STAT

SCORE-P

MPIP /
O|SS /
LWM2

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Disclaimer

Tools will not automatically make you,
your applications or computer systems

more productive.
However, they can help you understand

how your parallel code executes and
when / where it's necessary to work on
correctness and performance issues.

8

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

VI-HPS training & Tuning Workshops

• Goals
– Give an overview of the programming tools suite
– Explain the functionality of individual tools
– Teach how to use the tools effectively
– Offer hands-on experience and expert assistance using tools
– Receive feedback from users to guide future development

• For best results, bring & analyze/tune your own code(s)!

• VI-HPS Hands-on Tutorial series
– SC’08, ICCS’09, SC’09, Cluster’10, SC’10, SC’11, EuroMPI’12,

XSEDE’13 (San Diego), SC’13 (Denver)
• VI-HPS Tuning Workshop series

– 2008 (Aachen & Dresden), 2009 (Jülich & Bremen),
2010 (Garching & Amsterdam/NL), 2011 (Stuttgart & Aachen),
2012 (St-Quentin/F & Garching), 2013 (Saclay/F & Jülich)

9

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Recent & upcoming events

• SC’13 Hands-on Tutorials (17&18 Nov 2013, Denver)
– Score-P/Scalasca/Vampir/TAU, MUST, O|SS, Paraver

• 12th VI-HPS Tuning Workshop (7-11 Oct 2013, Jülich)
– Hosted by Jülich Supercomputing Centre, FZJ, Germany
– Using PRACE Tier-0 Juqueen BlueGene/Q system
– Score-P, Scalasca, Vampir, TAU, Periscope, Paraver, MUST, ...

• Further events to be determined
– (one-day) tutorials

• With guided exercises usually using a Live-DVD
– (multi-day) training workshops

• With your own applications on actual HPC systems

• Check www.vi-hps.org/training for announced events
• Contact us if you might be interested in hosting an event

10

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

VI-HPS Linux Live DVD/ISO

• Bootable Linux installation on DVD (or USB memory stick)
• Includes everything needed to try out our parallel tools on

an 64-bit x86-architecture notebook computer
• VI-HPS tools: MUST, PAPI, Score-P,

Periscope, Scalasca, TAU, Vampir*
• Also: Eclipse/PTP, TotalView*, etc.

 * time/capability-limited
evaluation licences provided
for commercial products

• GCC (w/ OpenMP), OpenMPI
• Manuals/User Guides
• Tutorial exercises & examples

• Produced by U. Oregon PRL
• Sameer Shende

11

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

VI-HPS Linux Live ISO

• ISO image approximately 4GB
– download latest version from website
– http://www.vi-hps.org/training/livedvd
– optionally create bootable DVD or USB drive

• Boot directly from disk
– enables hardware counter access and offers best performance,

but no save/resume

• Boot within virtual machine
– faster boot time and can save/resume state,

but may not allow hardware counter access

• Boots into Linux environment for HPC
– supports building and running provided MPI and/or OpenMP

parallel application codes
– and experimentation with VI-HPS (and third-party) tools

12

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Introduction to
Parallel Performance Engineering

Markus Geimer, Brian Wylie
Jülich Supercomputing Centre

(with content used with permission from tutorials

by Bernd Mohr/JSC and Luiz DeRose/Cray)

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Performance: an old problem

2

“The most constant difficulty in contriving
the engine has arisen from the desire to
reduce the time in which the calculations
were executed to the shortest which is
possible.”

Charles Babbage
1791 – 1871

Difference Engine

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Today: the “free lunch” is over

■ Moore's law is still in charge, but
■ Clock rates no longer increase
■ Performance gains only through

increased parallelism

■ Optimizations of applications more
difficult

■ Increasing application complexity
■ Multi-physics
■ Multi-scale

■ Increasing machine complexity
■ Hierarchical networks / memory
■ More CPUs / multi-core

Every doubling of scale reveals a new bottleneck!

3

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Example: XNS

■ CFD simulation of unsteady flows
■ Developed by CATS / RWTH Aachen
■ Exploits finite-element techniques, unstructured 3D meshes,

iterative solution strategies

■ MPI parallel version
■ >40,000 lines of Fortran & C
■ DeBakey blood-pump data set (3,714,611 elements)

4

Hæmodynamic flow
pressure distribution Partitioned finite-element mesh

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

XNS wait-state analysis on BG/L (2007)

5

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Performance factors of parallel applications

■ “Sequential” factors
■ Computation

Choose right algorithm, use optimizing compiler
■ Cache and memory

Tough! Only limited tool support, hope compiler gets it right
■ Input / output

Often not given enough attention

■ “Parallel” factors
■ Partitioning / decomposition
■ Communication (i.e., message passing)
■ Multithreading
■ Synchronization / locking

More or less understood, good tool support

6

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Tuning basics

■ Successful engineering is a combination of
■ The right algorithms and libraries
■ Compiler flags and directives
■ Thinking !!!

■ Measurement is better than guessing
■ To determine performance bottlenecks
■ To compare alternatives
■ To validate tuning decisions and optimizations

After each step!

7

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

However…

■ It's easier to optimize a slow correct program than to
debug a fast incorrect one
Nobody cares how fast you can compute a wrong answer...

8

“We should forget about small efficiencies,
say 97% of the time: premature optimization

is the root of all evil.”

Charles A. R. Hoare

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Performance engineering workflow

9

■ Prepare application (with symbols),
insert extra code (probes/hooks)

■ Collection of data relevant to
execution performance analysis

■ Calculation of metrics, identification
of performance metrics

■ Presentation of results in an
intuitive/understandable form

■ Modifications intended to eliminate/reduce
performance problems

Preparation

Measurement

Analysis

Examination

Optimization

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

The 80/20 rule

■ Programs typically spend 80% of their time in 20% of
the code

■ Programmers typically spend 20% of their effort to get
80% of the total speedup possible for the application
Know when to stop!

■ Don't optimize what does not matter

Make the common case fast!

10

“If you optimize everything,
you will always be unhappy.”

Donald E. Knuth

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Metrics of performance

■ What can be measured?
■ A count of how often an event occurs

■ E.g., the number of MPI point-to-point messages sent
■ The duration of some interval

■ E.g., the time spent these send calls
■ The size of some parameter

■ E.g., the number of bytes transmitted by these calls

■ Derived metrics
■ E.g., rates / throughput
■ Needed for normalization

11

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Example metrics

■ Execution time
■ Number of function calls
■ CPI

■ CPU cycles per instruction

■ FLOPS
■ Floating-point operations executed per second

12

“math” Operations?
 HW Operations?
 HW Instructions?

 32-/64-bit? …

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Execution time

■ Wall-clock time
■ Includes waiting time: I/O, memory, other system activities
■ In time-sharing environments also the time consumed by other

applications

■ CPU time
■ Time spent by the CPU to execute the application
■ Does not include time the program was context-switched out

■ Problem: Does not include inherent waiting time (e.g., I/O)
■ Problem: Portability? What is user, what is system time?

■ Problem: Execution time is non-deterministic
■ Use mean or minimum of several runs

13

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

■ Inclusive
■ Information of all sub-elements aggregated into single value

■ Exclusive
■ Information cannot be subdivided further

Inclusive

Inclusive vs. Exclusive values

Exclusive

14

int foo()
{
 int a;
 a = 1 + 1;

 bar();

 a = a + 1;
 return a;
}

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?

■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

15

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Sampling

16

■ Running program is periodically interrupted
to take measurement

■ Timer interrupt, OS signal, or HWC overflow
■ Service routine examines return-address stack
■ Addresses are mapped to routines using

symbol table information

■ Statistical inference of program behavior
■ Not very detailed information on highly

volatile metrics
■ Requires long-running applications

■ Works with unmodified executables

Time

main foo(0) foo(1) foo(2)

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Measurement

t9 t7 t6 t5 t4 t1 t2 t3 t8

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Instrumentation

17

Time

Measurement

■ Measurement code is inserted such that
every event of interest is captured directly

■ Can be done in various ways

■ Advantage:
■ Much more detailed information

■ Disadvantage:
■ Processing of source-code / executable

necessary

■ Large relative overheads for small functions

int main()
{
 int i;

 for (i=0; i < 3; i++)
 foo(i);

 return 0;
}

void foo(int i)
{

 if (i > 0)
 foo(i – 1);

}

Time

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14

main foo(0) foo(1) foo(2)

Enter(“main”);

Leave(“main”);

Enter(“foo”);

Leave(“foo”);

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Instrumentation techniques

■ Static instrumentation
■ Program is instrumented prior to execution

■ Dynamic instrumentation
■ Program is instrumented at runtime

■ Code is inserted
■ Manually
■ Automatically

■ By a preprocessor / source-to-source translation tool
■ By a compiler
■ By linking against a pre-instrumented library / runtime system
■ By binary-rewrite / dynamic instrumentation tool

18

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Critical issues

■ Accuracy
■ Intrusion overhead

■ Measurement itself needs time and thus lowers performance
■ Perturbation

■ Measurement alters program behaviour
■ E.g., memory access pattern

■ Accuracy of timers & counters

■ Granularity
■ How many measurements?
■ How much information / processing during each measurement?

Tradeoff: Accuracy vs. Expressiveness of data

19

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

20

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Profiling / Runtime summarization

■ Recording of aggregated information
■ Total, maximum, minimum, …

■ For measurements
■ Time
■ Counts

■ Function calls
■ Bytes transferred
■ Hardware counters

■ Over program and system entities
■ Functions, call sites, basic blocks, loops, …
■ Processes, threads

Profile = summarization of events over execution interval

21

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Types of profiles

■ Flat profile
■ Shows distribution of metrics per routine / instrumented region
■ Calling context is not taken into account

■ Call-path profile
■ Shows distribution of metrics per executed call path
■ Sometimes only distinguished by partial calling context

(e.g., two levels)

■ Special-purpose profiles
■ Focus on specific aspects, e.g., MPI calls or OpenMP constructs
■ Comparing processes/threads

22

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Tracing

■ Recording information about significant points (events)
during execution of the program

■ Enter / leave of a region (function, loop, …)
■ Send / receive a message, …

■ Save information in event record
■ Timestamp, location, event type
■ Plus event-specific information (e.g., communicator,

sender / receiver, …)

■ Abstract execution model on level of defined events

Event trace = Chronologically ordered sequence of
 event records

23

Event tracing

void foo() {

 ...

 send(B, tag, buf);
 ...

}

Process A

void bar() {

 ...
 recv(A, tag, buf);

 ...

}

Process B

MONITOR

MONITOR

sy
nc

hr
on

iz
e(

d)

void bar() {
 trc_enter("bar");
 ...
 recv(A, tag, buf);
 trc_recv(A);
 ...
 trc_exit("bar");
}

void foo() {
 trc_enter("foo");
 ...
 trc_send(B);
 send(B, tag, buf);
 ...
 trc_exit("foo");
}

instrument

Global trace view

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

merge

unify

1 foo

2 bar

...

58 ENTER 1

62 SEND B

64 EXIT 1

...

...

Local trace A

Local trace B

foo 1

...

bar 1

...

60 ENTER 1

68 RECV A

69 EXIT 1

...

...

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Tracing vs. Profiling

■ Tracing advantages
■ Event traces preserve the temporal and spatial relationships

among individual events ( context)
■ Allows reconstruction of dynamic application behaviour on any

required level of abstraction
■ Most general measurement technique

■ Profile data can be reconstructed from event traces

■ Disadvantages
■ Traces can very quickly become extremely large
■ Writing events to file at runtime causes perturbation
■ Writing tracing software is complicated

■ Event buffering, clock synchronization, ...

25

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Classification of measurement techniques

■ How are performance measurements triggered?
■ Sampling
■ Code instrumentation

■ How is performance data recorded?
■ Profiling / Runtime summarization
■ Tracing

■ How is performance data analyzed?
■ Online
■ Post mortem

26

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Online analysis

■ Performance data is processed during measurement run
■ Process-local profile aggregation

■ More sophisticated inter-process analysis using

■ “Piggyback” messages

■ Hierarchical network of analysis agents

■ Inter-process analysis often involves application steering
to interrupt and re-configure the measurement

27

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Post-mortem analysis

■ Performance data is stored at end of measurement run

■ Data analysis is performed afterwards
■ Automatic search for bottlenecks

■ Visual trace analysis

■ Calculation of statistics

28

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Example: Time-line visualization

29

1 foo

2 bar

3 ...

58 A ENTER 1

60 B ENTER 2

62 A SEND B

64 A EXIT 1

68 B RECV A

...

69 B EXIT 2

...

main
foo
bar

58 60 62 64 66 68 70

B

A

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

No single solution is sufficient!

30

A combination of different methods, tools and techniques is
typically needed!

■ Analysis
■ Statistics, visualization, automatic analysis, data mining, ...

■ Measurement
■ Sampling / instrumentation, profiling / tracing, ...

■ Instrumentation
■ Source code / binary, manual / automatic, ...

Euro-Par’13: Tools for High Productivity Supercomputing (Aachen, Germany)

Typical performance analysis procedure

■ Do I have a performance problem at all?
■ Time / speedup / scalability measurements

■ What is the key bottleneck (computation / communication)?
■ MPI / OpenMP / flat profiling

■ Where is the key bottleneck?
■ Call-path profiling, detailed basic block profiling

■ Why is it there?
■ Hardware counter analysis, trace selected parts to keep trace size

manageable

■ Does the code have scalability problems?
■ Load imbalance analysis, compare profiles at various sizes

function-by-function

31

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

VI-HPS productivity tools suite

Brian Wylie
Jülich Supercomputing Centre

Martin Schulz
Lawrence Livermore National Laboratory

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

VI-HPS technologies and their integration

2

Optimization

Visual trace
analysis

Automatic
profile & trace

analysis

Error & anomaly
detection

Hardware
monitoring

Execution

SCALASCA

VAMPIR / PARAVER

PAPI

MUST

PERISCOPE

KCACHEGRIND TAU

RUBIK /
MAQAO

SYSMON /
SIONLIB /
OPENMPI

STAT

SCORE-P

MPIP /
O|SS /
LWM2

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Execution monitoring, checking & debugging

• system/batchqueue monitoring (PTP/SysMon)
• lightweight execution monitoring/screening (LWM2)
• portable performance counter access (PAPI)
• MPI library profiling (mpiP)
• MPI execution outlier detection (AutomaDeD)
• MPI memory usage checking (memchecker)
• MPI correctness checking (MUST)
• lightweight stack trace analysis (STAT)
• task dependency debugging (Temanejo)

3

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Integrated appl. execution profile & trace analysis

• instrumentation & measurement (Score-P, Extrae)
• profile analysis examination (CUBE, ParaProf)
• execution trace exploration (Vampir, Paraver)
• automated trace analysis (Scalasca)
• on-line automated analysis (Periscope)

4

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Extended VI-HPS tools suite

• parallel performance frameworks (O|SS, TAU)
• performance analysis data-mining (PerfExplorer)
• parallel execution parametric studies (Dimemas)
• cache usage analysis (kcachegrind)
• assembly code optimization (MAQAO)
• process mapping generation/optimization (Rubik)

• parallel file I/O optimization (SIONlib)
• PMPI tools virtualization (PNMPI)
• component-based tools framework (CBTF)

5

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

UNITE

• Uniform integrated tool environment
– Manages installation & access to program development tools

• based on software environment management “modules”
• commonly used on most cluster and HPC systems
• configurable for multiple MPI libraries & compiler suites

– Specifies how & where tools packages get installed
• including integrating tools where possible

– Defines standard module names and different versions
– Supplies pre-defined module files
– Configurable to co-exist with local installations & policies

• Developed by JSC, RWTH & TUD
– Available as open-source from

http://www.vi-hps.org/projects/unite/

6

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

UNITE module setup

• First activate the UNITE modules environment

• then check modules available for tools and utilities
(in various versions and variants)

7

% module avail
------ /usr/local/UNITE/modulefiles/tools ------
must/1.2.0-openmpi-gnu
periscope/1.5-openmpi-gnu
scalasca/1.4.3-openmpi-gnu(default)
scalasca/1.4.3-openmpi-intel
scalasca/2.0-openmpi-gnu
scorep/1.2-openmpi-gnu(default)
scorep/1.2-openmpi-intel
tau/2.19-openmpi-gnu
vampir/8.1
------ /usr/local/UNITE/modulefiles/utils ------
cube/3.4.3-gnu papi/5.1.0-gnu sionlib/1.3p7-openmp-gnu

% module load UNITE
UNITE loaded

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

UNITE module help

• then load the desired module(s)

• and/or read the associated module help information

8

% module help scalasca
Module specific help for
/usr/local/UNITE/modulefiles/tools/scalasca/1.4.3-openmpi-gnu-papi

Scalasca: Scalable performance analysis toolset
version 1.4.3 (for OpenMPI, Intel compiler, PAPI)

Basic usage:
1.Instrument application with “scalasca –instrument”
2.Collect & analyze execution measurement with “scalasca –analyze”
3.Examine analysis report with “scalasca –examine”

For more information
-See ${SCALASCA_ROOT}/doc/manuals/QuickReference.pdf
-http://www.scalasca.org
-mailto:scalasca@fz-juelich.de

% module load scalasca/1.4.3-openmpi-gnu-papi
cube/3.4.2-gnu loaded
scalasca/1.4.3-openmpi-gnu-papi loaded

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Application execution monitoring,
checking & debugging

9

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Execution monitoring, checking & debugging

• system/batchqueue monitoring (PTP/SysMon)
• lightweight execution monitoring/screening (LWM2)
• portable performance counter access (PAPI)
• MPI library profiling (mpiP)
• MPI execution outlier detection (AutomaDeD)
• MPI memory usage checking (memchecker)
• MPI correctness checking (MUST)
• lightweight stack trace analysis (STAT)
• task dependency debugging (Temanejo)

10

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

SysMon

• System monitor
– Stand-alone or Eclipse/PTP plug-in
– Displays current status of (super)computer systems

• System architecture, compute nodes, attached devices (GPUs)
• Jobs queued and allocated

– Simple GUI interface for job creation and submission
• Uniform interface to LoadLeveler, LSF, PBS, SLURM, Torque
• Authentication/communication via SSH to remote systems

• Developed by JSC and contributed to Eclipse/PTP
– Documentation and download from

http://wiki.eclipse.org/PTP/System_Monitoring_FAQ
– Supports Linux, Mac, Windows

(with Java)

11

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

SysMon status display (Trestles@SDSC)

12

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

SysMon status display (Juqueen BG/Q)

13

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Parallel execution launch configuration

14

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

LWM2

• Light-Weight Monitoring Module
– Provides basic application performance feedback

• Profiles MPI, pthread-based multithreading (including OpenMP),
CUDA & POSIX file I/O events

• CPU and/or memory/cache utilization via PAPI hardware counters
– Only requires preloading of LWM2 library

• No recompilation/relinking of dynamically-linked executables
– Less than 1% overhead suitable for initial performance screening
– System-wide profiling requires a central performance database,

and uses a web-based analysis front-end
• Can identify inter-application interference for shared resources

• Developed by GRS Aachen
– Supports x86 Linux
– Available from http://www.vi-hps.org/projects/hopsa/tools/

15

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

LWM2 job digest report

16

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

PAPI

• Portable performance counter library & utilities
– Configures and accesses hardware/system counters
– Predefined events derived from available native counters
– Core component for CPU/processor counters

• instructions, floating point operations, branches predicted/taken,
cache accesses/misses, TLB misses, cycles, stall cycles, …

• performs transparent multiplexing when required
– Extensible components for off-processor counters

• InfiniBand network, Lustre filesystem, system hardware health, …
– Used by multi-platform performance measurement tools

• Score-P, Periscope, Scalasca, TAU, LWM2, Open|SpeedShop, ...

• Developed by UTK-ICL
– Available as open-source for most modern processors

http://icl.cs.utk.edu/papi/

17

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

PAPI preset counters (and their definitions)

18

• juropa$ papi_avail
• Available events and hardware information.

PAPI Version : 4.1.0.0
Vendor string and code : GenuineIntel (1)
Model string and code : Intel(R) Xeon(R) CPU
X5570 @ 2.93GHz (26)
CPU Revision : 5.000000
CPUID Info : Family: 6 Model: 26
Stepping: 5
CPU Megahertz : 1600.000000
CPU Clock Megahertz : 1600
Hdw Threads per core : 2
Cores per Socket : 4
NUMA Nodes : 2
CPU's per Node : 8
Total CPU's : 16
Number Hardware Counters : 16
Max Multiplex Counters : 512

 Name Code Avail Deriv Description

• PAPI_L1_DCM 0x80000000 Yes No
 Level 1 data cache misses

• PAPI_L1_ICM 0x80000001 Yes No
 Level 1 instruction cache misses
...

• Of 107 possible events, 35 are available, of which 9 are
derived.

• juropa$ papi_avail -d
• ...

Symbol Event Code Count |Short Descr.|
 |Long Description|
 |Developer's Notes|
 |Derived|
 |PostFix|
 Native Code[n]: <hex> |name|

• PAPI_L1_DCM 0x80000000 1 |L1D cache misses|
 |Level 1 data cache misses|
 ||
 |NOT_DERIVED|
 ||
 Native Code[0]: 0x40002028 |L1D:REPL|

• PAPI_L1_ICM 0x80000001 1 |L1I cache misses|
 |Level 1 instruction cache misses|
 ||
 |NOT_DERIVED|
 ||
 Native Code[0]: 0x40001031 |L1I:MISSES|

• PAPI_L2_DCM 0x80000002 2 |L2D cache misses|
 |Level 2 data cache misses|
 ||
 |DERIVED_SUB|
 ||
 Native Code[0]: 0x40000437 |L2_RQSTS:MISS|
 Native Code[1]: 0x40002037 |L2_RQSTS:IFETCH_MISS|

• ...

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

PAPI native counters (and qualifiers)

19

• juropa$ papi_native_avail
• Available native events and hardware information.
• ...
• Event Code Symbol | Long Description |

--
0x40000000 UNHALTED_CORE_CYCLES | count core clock cycles whenever the cloc |
 | k signal on the specific core is running (not halted). Alias to e |
 | vent CPU_CLK_UNHALTED:THREAD |
--
0x40000001 INSTRUCTION_RETIRED | count the number of instructions at retire |
 | ment. Alias to event INST_RETIRED:ANY_P |
--
...

• --
0x40000086 UNC_SNP_RESP_TO_REMOTE_HOME | Remote home snoop response - LLC d |
 | oes not have cache line |
 40000486 :I_STATE | Remote home snoop response - LLC does not have cache |
 | line |
 40000886 :S_STATE | Remote home snoop response - LLC has cache line in S |
 | state |
 40001086 :FWD_S_STATE | Remote home snoop response - LLC forwarding cache |
 | line in S state. |
 40002086 :FWD_I_STATE | Remote home snoop response - LLC has forwarded a |
 | modified cache line |
 40004086 :CONFLICT | Remote home conflict snoop response |
 40008086 :WB | Remote home snoop response - LLC has cache line in the M s |
 | tate |
 40010086 :HITM | Remote home snoop response - LLC HITM |
--
Total events reported: 135

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

PAPI counter combinations

20

• juropa$ papi_event_chooser PRESET \
 PAPI_FP_OPS PAPI_DP_OPS

• Event Chooser: Available events which can be added with
given events.

 …
 Name Code Deriv Description (Note)
• PAPI_TOT_INS 0x80000032 No

 Instructions completed
• PAPI_FP_INS 0x80000034 No

 Floating point instructions
• PAPI_TOT_CYC 0x8000003b No

 Total cycles
• PAPI_VEC_SP 0x80000069 No

 Single precision vector/SIMD instructions
• PAPI_VEC_DP 0x8000006a No

 Double precision vector/SIMD instructions

• Total events reported: 5.

• juropa$ papi_command_line \
 PAPI_FP_OPS PAPI_DP_OPS PAPI_L1_DCM

• Successfully added PAPI_FP_OPS
• Successfully added PAPI_DP_OPS
• Failed adding: PAPI_L1_DCM
• because: PAPI_ECNFLCT

• PAPI_FP_OPS : 42142167
• PAPI_DP_OPS : 42142167
• PAPI_L1_DCM : ---------

 Verification: Checks for valid event name.
• This utility lets you add events from the command line

interface to see if they work.

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiP

• Lightweight MPI profiling
– only uses PMPI standard profiling interface

• static (re-)link or dynamic library preload
– accumulates statistical measurements for MPI library routines

used by each process
– merged into a single textual output report
– MPIP environment variable for advanced profiling control

• stack trace depth, reduced output, etc.
– MPI_Pcontrol API for additional control from within application
– optional separate mpiPview GUI

• Developed by LLNL & ORNL
– BSD open-source license
– http://mpip.sourceforge.net/

21

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

So, You Need to Look at a New Application …

Scenarios:
• New application development
• Analyze/Optimize external application
• Suspected bottlenecks
First goal: overview of …
• Communication frequency and intensity
• Types and complexity of communication
• Source code locations of expensive MPI calls
• Differences between processes

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Basic Principle of Profiling MPI

Intercept all MPI API calls
• Using wrappers for all MPI calls
Aggregate statistics over time
• Number of invocations
• Data volume
• Time spent during function execution
Multiple aggregations options/granularity
• By function name or type
• By source code location (call stack)
• By process rank

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiP: Efficient MPI Profiling

Open source MPI profiling library
• Developed at LLNL, maintained by LLNL & ORNL
• Available from sourceforge
• Works with any MPI library
Easy-to-use and portable design
• Relies on PMPI instrumentation
• No additional tool daemons or support infrastructure
• Single text file as output
• Optional: GUI viewer

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Running with mpiP 101 / Experimental Setup

mpiP works on binary files
• Uses standard development chain
• Use of “-g” recommended
Run option 1: Relink
• Specify libmpi.a/.so on the link line
• Portable solution, but requires object files
Run option 2: library preload
• Set preload variable (e.g., LD_PRELOAD) to mpiP
• Transparent, but only on supported systems

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Running with mpiP 101 / Running

bash-3.2$ srun –n4 smg2000
mpiP:
mpiP:
mpiP: mpiP V3.1.2 (Build Dec 16 2008/17:31:26)
mpiP: Direct questions and errors to mpip-
help@lists.sourceforge.net
mpiP:
Running with these driver parameters:
 (nx, ny, nz) = (60, 60, 60)
 (Px, Py, Pz) = (4, 1, 1)
 (bx, by, bz) = (1, 1, 1)
 (cx, cy, cz) = (1.000000, 1.000000, 1.000000)
 (n_pre, n_post) = (1, 1)
 dim = 3
 solver ID = 0
===
Struct Interface:
===
Struct Interface:
 wall clock time = 0.075800 seconds
 cpu clock time = 0.080000 seconds

===
Setup phase times:
===
SMG Setup:
 wall clock time = 1.473074 seconds
 cpu clock time = 1.470000 seconds
===
Solve phase times:
===
SMG Solve:
 wall clock time = 8.176930 seconds
 cpu clock time = 8.180000 seconds

Iterations = 7
Final Relative Residual Norm = 1.459319e-07

mpiP:
mpiP: Storing mpiP output in [./smg2000-p.4.11612.1.mpiP].
mpiP:
bash-3.2$

Header

Output File

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiP 101 / Output – Metadata

@ mpiP

@ Command : ./smg2000-p -n 60 60 60

@ Version : 3.1.2

@ MPIP Build date : Dec 16 2008, 17:31:26

@ Start time : 2009 09 19 20:38:50

@ Stop time : 2009 09 19 20:39:00

@ Timer Used : gettimeofday

@ MPIP env var : [null]

@ Collector Rank : 0

@ Collector PID : 11612

@ Final Output Dir : .

@ Report generation : Collective

@ MPI Task Assignment : 0 hera27

@ MPI Task Assignment : 1 hera27

@ MPI Task Assignment : 2 hera31

@ MPI Task Assignment : 3 hera31

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiP 101 / Output – Overview

--

@--- MPI Time (seconds) ------------------------------------

--

Task AppTime MPITime MPI%

 0 9.78 1.97 20.12

 1 9.8 1.95 19.93

 2 9.8 1.87 19.12

 3 9.77 2.15 21.99

 * 39.1 7.94 20.29

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiP 101 / Output – Callsites

@--- Callsites: 23 --

 ID Lev File/Address Line Parent_Funct MPI_Call

 1 0 communication.c 1405 hypre_CommPkgUnCommit Type_free

 2 0 timing.c 419 hypre_PrintTiming Allreduce

 3 0 communication.c 492 hypre_InitializeCommunication Isend

 4 0 struct_innerprod.c 107 hypre_StructInnerProd Allreduce

 5 0 timing.c 421 hypre_PrintTiming Allreduce

 6 0 coarsen.c 542 hypre_StructCoarsen Waitall

 7 0 coarsen.c 534 hypre_StructCoarsen Isend

 8 0 communication.c 1552 hypre_CommTypeEntryBuildMPI Type_free

 9 0 communication.c 1491 hypre_CommTypeBuildMPI Type_free

 10 0 communication.c 667 hypre_FinalizeCommunication Waitall

 11 0 smg2000.c 231 main Barrier

 12 0 coarsen.c 491 hypre_StructCoarsen Waitall

 13 0 coarsen.c 551 hypre_StructCoarsen Waitall

 14 0 coarsen.c 509 hypre_StructCoarsen Irecv

 15 0 communication.c 1561 hypre_CommTypeEntryBuildMPI Type_free

 16 0 struct_grid.c 366 hypre_GatherAllBoxes Allgather

 17 0 communication.c 1487 hypre_CommTypeBuildMPI Type_commit

 18 0 coarsen.c 497 hypre_StructCoarsen Waitall

 19 0 coarsen.c 469 hypre_StructCoarsen Irecv

 20 0 communication.c 1413 hypre_CommPkgUnCommit Type_free

 21 0 coarsen.c 483 hypre_StructCoarsen Isend

 22 0 struct_grid.c 395 hypre_GatherAllBoxes Allgatherv

 23 0 communication.c 485 hypre_InitializeCommunication Irecv

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiP 101 / Output – per Function Timing

--

@--- Aggregate Time (top twenty, descending, milliseconds) ---

--

Call Site Time App% MPI% COV

Waitall 10 4.4e+03 11.24 55.40 0.32

Isend 3 1.69e+03 4.31 21.24 0.34

Irecv 23 980 2.50 12.34 0.36

Waitall 12 137 0.35 1.72 0.71

Type_commit 17 103 0.26 1.29 0.36

Type_free 9 99.4 0.25 1.25 0.36

Waitall 6 81.7 0.21 1.03 0.70

Type_free 15 79.3 0.20 1.00 0.36

Type_free 1 67.9 0.17 0.85 0.35

Type_free 20 63.8 0.16 0.80 0.35

Isend 21 57 0.15 0.72 0.20

Isend 7 48.6 0.12 0.61 0.37

Type_free 8 29.3 0.07 0.37 0.37

Irecv 19 27.8 0.07 0.35 0.32

Irecv 14 25.8 0.07 0.32 0.34

...

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiP 101 / Output – per Function Message Size

@--- Aggregate Sent Message Size (top twenty, descending, bytes) ------

Call Site Count Total Avrg Sent%

Isend 3 260044 2.3e+08 885 99.63

Isend 7 9120 8.22e+05 90.1 0.36

Isend 21 9120 3.65e+04 4 0.02

Allreduce 4 36 288 8 0.00

Allgatherv 22 4 112 28 0.00

Allreduce 2 12 96 8 0.00

Allreduce 5 12 96 8 0.00

Allgather 16 4 16 4 0.00

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiP 101 / Output – per Callsite Timing

@--- Callsite Time statistics (all, milliseconds): 92 ---------------------

Name Site Rank Count Max Mean Min App% MPI%

Allgather 16 0 1 0.034 0.034 0.034 0.00 0.00

Allgather 16 1 1 0.049 0.049 0.049 0.00 0.00

Allgather 16 2 1 2.92 2.92 2.92 0.03 0.16

Allgather 16 3 1 3 3 3 0.03 0.14

Allgather 16 * 4 3 1.5 0.034 0.02 0.08

Allgatherv 22 0 1 0.03 0.03 0.03 0.00 0.00

Allgatherv 22 1 1 0.036 0.036 0.036 0.00 0.00

Allgatherv 22 2 1 0.022 0.022 0.022 0.00 0.00

Allgatherv 22 3 1 0.022 0.022 0.022 0.00 0.00

Allgatherv 22 * 4 0.036 0.0275 0.022 0.00 0.00

Allreduce 2 0 3 0.382 0.239 0.011 0.01 0.04

Allreduce 2 1 3 0.31 0.148 0.046 0.00 0.02

Allreduce 2 2 3 0.411 0.178 0.062 0.01 0.03

Allreduce 2 3 3 1.33 0.622 0.062 0.02 0.09

Allreduce 2 * 12 1.33 0.297 0.011 0.01 0.04

...

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiP 101 / Output – per Callsite Message Size

@--- Callsite Message Sent statistics (all, sent bytes) -------------------

Name Site Rank Count Max Mean Min Sum

Allgather 16 0 1 4 4 4 4

Allgather 16 1 1 4 4 4 4

Allgather 16 2 1 4 4 4 4

Allgather 16 3 1 4 4 4 4

Allgather 16 * 4 4 4 4 16

Allgatherv 22 0 1 28 28 28 28

Allgatherv 22 1 1 28 28 28 28

Allgatherv 22 2 1 28 28 28 28

Allgatherv 22 3 1 28 28 28 28

Allgatherv 22 * 4 28 28 28 112

Allreduce 2 0 3 8 8 8 24

Allreduce 2 1 3 8 8 8 24

Allreduce 2 2 3 8 8 8 24

Allreduce 2 3 3 8 8 8 24

Allreduce 2 * 12 8 8 8 96

...

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Fine Tuning the Profile Run

mpiP Advanced Features
• User controlled stack trace depth
• Reduced output for large scale experiments
• Application control to limit scope
• Measurements for MPI I/O routines
Controlled by MPIP environment variable
• Set by user before profile run
• Command line style argument list
• Example: MPIP = “-c –o –k 4”

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiP Parameters

Param. Description Default
-c Concise Output / No callsite data

-f dir Set output directory
-k n Set callsite stack traceback size to n 1
-l Use less memory for data collection
-n Do not truncate pathnames
-o Disable profiling at startup

-s n Set hash table size 256
-t x Print threshold 0.0
-v Print concise & verbose output

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Controlling the Stack Trace

Callsites are determined using stack traces
• Starting from current call stack going backwards
• Useful to avoid MPI wrappers
• Helps to distinguishes library invocations
Tradeoff: stack trace depth
• Too short: can’t distinguish invocations
• Too long: extra overhead / too many call sites
User can set stack trace depth
• -k <n> parameter

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Challenges with mpiP at Scale

37

@ mpiP
@ Version: 3.1.1
// 10 lines of mpiP and experiment configuration options
// 8192 lines of task assignment to BlueGene topology information

@--- MPI Time (seconds) ---
Task AppTime MPITime MPI%
 0 37.7 25.2 66.89
// ...
8191 37.6 26 69.21
 * 3.09e+05 2.04e+05 65.88

@--- Callsites: 26 --
 ID Lev File/Address Line Parent_Funct MPI_Call
 1 0 coarsen.c 542 hypre_StructCoarsen Waitall
// 25 similar lines

@--- Aggregate Time (top twenty, descending, milliseconds) --------
Call Site Time App% MPI% COV
Waitall 21 1.03e+08 33.27 50.49 0.11
Waitall 1 2.88e+07 9.34 14.17 0.26
// 18 similar lines

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Challenges with mpiP at Scale (cont.)

38

@--- Aggregate Sent Message Size (top twenty, descending, bytes) --
Call Site Count Total Avrg Sent%
Isend 11 845594460 7.71e+11 912 59.92
Allreduce 10 49152 3.93e+05 8 0.00
// 6 similar lines

@--- Callsite Time statistics (all, milliseconds): 212992 ---------
Name Site Rank Count Max Mean Min App% MPI%
Waitall 21 0 111096 275 0.1 0.000707 29.61 44.27
// ...
Waitall 21 8191 65799 882 0.24 0.000707 41.98 60.66
Waitall 21 * 577806664 882 0.178 0.000703 33.27 50.49
// 213,042 similar lines

@--- Callsite Message Sent statistics (all, sent bytes) -----------
Name Site Rank Count Max Mean Min Sum
Isend 11 0 72917 2.621e+05 851.1 8 6.206e+07
//...
Isend 11 8191 46651 2.621e+05 1029 8 4.801e+07
Isend 11 * 845594460 2.621e+05 911.5 8 7.708e+11
// 65,550 similar lines

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Concise Output

Output file contains many details
• Users often only interested in summary
• Per callsite/task data harms scalability
Option to provide concise output
• Same basic format
• Omit collection of per callsite/task data
User controls output format through parameters
• -c = concise output only
• -v = provide concise and full output files

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Limiting Scope

By default, mpiP measures entire execution
• Any event between MPI_Init and MPI_Finalize
Optional: controlling mpiP from within the application
• Disable data collection at startup (-o)
• Enable using MPI_Pcontrol(x)

– x=0: Disable profiling
– x=1: Enable profiling
– x=2: Reset profile data
– x=3: Generate full report
– x=4: Generate concise report

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Limiting Scope / Example

for(i=1; i < 10; i++)
{ switch(i)
 {
 case 5:
 MPI_Pcontrol(2);
 MPI_Pcontrol(1);
 break;
 case 6:
 MPI_Pcontrol(0);
 MPI_Pcontrol(4);
 break;
 default:
 break; }
 /* ... compute and communicate for one timestep ... */
}

Reset & Start in Iteration 5

Stop & Report in Iteration 6

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiP Platforms

Highly portable design
• Built on top of PMPI, which is part of any MPI
• Very few dependencies
Tested on many platforms, including
• Linux (x86, x86-64, IA-64, MIPS64)
• BG/L & BG/P
• AIX (Power 3/4/5)
• Cray XT3/4/5 with Catamount and CNL
• Cray X1E

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiP Installation

Download from http://sourceforge.net/projects/mpip
• Current release version: 3.1.2
• CVS access to development version
Autoconf-based build system with options to
• Disable I/O support
• Pick a timing option
• Choose name demangling scheme
• Build on top of the suitable stack tracer
• Set maximal stack trace depth

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiPView: The GUI for mpiP

• Optional: displaying mpiP data in a GUI
• Implemented as part of the Tool Gear project
• Reads mpiP output file
• Provides connection to source files
• Usage process
• First: select input metrics
• Hierarchical view of all callsites
• Source panel once callsite is selected
• Ability to remap source directories

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

mpiPView GUI example

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

memchecker

• Helps find memory errors in MPI applications
– e.g, overwriting of memory regions used in non-blocking comms,

use of uninitialized input buffers
– intercepts memory allocation/free and checks reads and writes

• Part of Open MPI based on valgrind Memcheck
– Need to be configured when installing Open MPI 1.3 or later,

with valgrind 3.2.0 or later available

• Developed by HLRS
– www.vi-hps.org/Tools/MemChecker.html

46

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

MUST

• Tool to check for correct MPI usage at runtime
– Checks conformance to MPI standard

• Supports Fortran & C bindings of MPI-2.2
– Checks parameters passed to MPI
– Monitors MPI resource usage

• Implementation
– C++ library gets linked to the application
– Does not require source code modifications
– Additional process used as DebugServer

• Developed by RWTH Aachen, TU Dresden, LLNL & LANL
– BSD license open-source initial release in November 2011

as successor to MARMOT
– http://tu-dresden.de/zih/must/

47

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

MUST: Need for runtime error checking

• Programming MPI is error-prone
• Interfaces often define requirements for function

arguments
– non-MPI Example: memcpy has undefined behaviour for

overlapping memory regions

• MPI-2.2 Standard specification has 676 pages

– Who remembers all requirements mentioned there?

• For performance reasons MPI libraries run no checks

• Runtime error checking pinpoints incorrect, inefficient &
unsafe function calls

48

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

MUST features

• Local checks:
− Integer validation
− Integrity checks (pointer validity, etc.)
− Operation, Request, Communicator, Datatype & Group

object usage
− Resource leak detection
− Memory overlap checks

• Non-local checks:
− Collective verification
− Lost message detection
− Type matching (for P2P and collectives)
− Deadlock detection (with root cause visualization)

49

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

MUST usage

• Compile and link application as usual
– Static re-link with MUST compilers when required

• Execute replacing mpiexec with mustrun
– Extra DebugServer process started automatically
– Ensure this extra resource is allocated in jobscript

• Add --must:nocrash if application doesn’t crash to
disable checks and improve execution performance

• View MUST_Output.html report in browser

50

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

MUST/Marmot reports

51

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

STAT: Aggregating Stack Traces for Debugging

 Existing debuggers don’t scale
• Inherent limits in the approaches
• Need for new, scalable methodologies

 Need to pre-analyze and reduce data
• Fast tools to gather state
• Help select nodes to run

conventional debuggers on

 Scalable tool: STAT
• Stack Trace Analysis Tool
• Goal: Identify equivalence classes
• Hierarchical and distributed aggregation

of stack traces from all tasks
• Stack trace merge <1s from 200K+ cores

(Project by LLNL, UW, UNM)

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Distinguishing Behavior with Stack Traces

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Appl

Appl

Appl

Appl

Appl …

…

3D-Trace Space/Time Analysis

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Scalable Representation

288 Nodes / 10 Snapshots

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

STAT GUI

56

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Experience with STAT

• Equivalence classes
– Scenario 1: pick one representative for each class
– Scenario 2: pick one “suspicious” equivalence class
– Focus debugger on subset of processes

• Highly effective tool at large scale
– Quick overview capturing hung tasks
– Allows to focus interactive debugger to only a few tasks

• Typically used as first line of defense
– Easy to use and non intrusive
– Attach option for already running jobs

• Enables identification of software and hardware bugs
– Detects outliers independent of cause

 57

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Case Study: STAT at > 1 MPI Million Processes

Single Outlier Task

All Remaining Task at Barrier

Node List
of N-1 Tasks

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

AutomaDeD: Probabilistic Bug Detection

• Goal: identify root cause a bug
– Exploit static code and dynamic properties
– Probabilistic anomaly detection
– Identify least progressed task as likely culprit
– Combine with static slicing to detect code location

• Status: release available in the next months

59

Process 1

Process 2

Process 3

Process N

. . .

Create models
at runtime

Failure

Examples:
 - Application hangs
 - Process x is slow

Machine Learning:
Clustering, Nearest

Neighbor

Progress
Dependence

Graph

Find what caused
the failure

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Each MPI Tasks is Modeled as a Markov Model

foo() {
 MPI_gather()
 // Computation code
 for (…) {
 // Computation code
 MPI_Send()
 // Computation code
 MPI_Recv()
 // Computation code
 }

Sample code

MPI_Gather

Comp. Code 1

MPI_Send

Comp. Code 2 Comp. Code 3

MPI_Recv

1.0

1.0

1.0

1.0

1.0

0.6

0.3

0.75

Markov Model

MPI calls wrappers:
- Gather call stack
- Create states in the model

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Identifying the Root Cause

task A

task B task C

task D

wait wait

wait

MPI program

task A Code region

• Facilitates finding the origin of performance faults
• Allows programmer to focus on the origin of the problem:

The least progressed task
• Distributed Algorithm to infer this from Markov models

Basis: Progress Dependence Graph

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Bug Progress Dependence Graph

[3136]

[0, 2048,3072]

[1-2047,3073-
3135,…] [6841-

7995]

[6840]

Hang with ~8,000 MPI tasks on BlueGene/L

• AutomaDeD finds that task 3136 is the origin of the hang
• How did it reach its current state?

[3136] Least-progressed task

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Finding the Faulty Code Region: Program Slicing

Task 1

Task 2

Task 3 Task 4

done = 1;

for (...) {
 if (event) {
 flag = 1;
 }
}

if (flag == 1) {
 MPI_Recv();
 ...
}
...
if (done == 1) {
 MPI_Barrier();
}

Progress
dependence

graph

Task 1
State

Task 2
State

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Slice with Origin of the Bug

dataWritten = 0
for (…) {
 MPI_Probe(…, &flag,…)
 if (flag == 1) {
 MPI_Recv()
 MPI_Send()
 dataWritten = 1
 }
 MPI_Send()
 MPI_Recv()
 // Write data
}
if (dataWritten == 0) {
 MPI_Recv()
 MPI_Send()
}
Reduce()
Barrier()

Dual condition occurs in BlueGene/L
• A task is a writer and a non-writer

MPI_Probe checks for source, tag and
comm of a message
• Another writer intercepted wrong

message

Programmer used unique MPI tags to
isolate different I/O groups Least-

progressed
task State

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Temanejo

65

• Tool for debugging task-based programming models
– Intuitive GUI to display and control program execution
– Shows tasks and dependencies to analyse their properties
– Controls task dependencies and synchronisation barriers

• Currently supports SMPSs and basic MPI usage
– support in development for OpenMP, OmpSs, etc., and hybrid

combinations with MPI
– based on Ayudame runtime library

• Developed by HLRS

– Available from
http://www.hlrs.de/organization/av/spmt/research/temanejo/

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Temanejo task debugger GUI

66

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Integrated application execution
profiling and trace analysis

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Integrated appl. execution profile & trace analysis

• instrumentation & measurement (Score-P, Extrae)
• profile analysis examination (CUBE, ParaProf)
• execution trace exploration (Vampir, Paraver)
• automated trace analysis (Scalasca)
• on-line automated analysis (Periscope)

68

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Score-P

• Scalable performance measurement infrastructure
– Supports instrumentation, profiling & trace collection,

as well as online analysis of HPC parallel applications
• MPI, OpenMP & CUDA (including combinations)

– Used by latest versions of Periscope, Scalasca, TAU & Vampir
– Based on updated tool components

• CUBE4 profile data utilities & GUI
• OA online access interface to performance measurements
• OPARI2 OpenMP & pragma instrumenter
• OTF2 open trace format

• Created by BMBF SILC & US DOE PRIMA projects
– JSC, RWTH, TUD, TUM, GNS, GRS, GWT & UO PRL
– Available as BSD open-source from http://www.score-p.org/

69

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Score-P architecture

70

Instrumentation wrapper

Application (MPI×OpenMP×CUDA)

Vampir Scalasca Periscope TAU

Compiler

Compiler

OPARI 2

POMP2

CUDA

CUDA

User

User

PDT

TAU

Score-P measurement infrastructure

Event traces (OTF2) Call-path profiles
(CUBE4, TAU)

Online interface

Counters (PAPI, rusage)

PMPI

MPI

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Score-P workflow (runtime summarization)

71

Instr.
target
application

Measurement
library

HWC

Summary
report

Optimized measurement configuration

Instrumenter
compiler /

linker

Instrumented
executable

Source
modules

R
ep

or
t

m
an

ip
ul

at
io

n

Which problem? Where in the
program?

Which
process?

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Scalasca automated analysis

Score-P workflow (trace collection & analyses)

72

Instr.
target
application

Measurement
library

HWC
Parallel wait-
state search

Wait-state
report

Local event
traces

Summary
report

Optimized measurement configuration

Instrumenter
compiler /

linker

Instrumented
executable

Source
modules

R
ep

or
t

m
an

ip
ul

at
io

n

Which problem? Where in the
program?

Which
process?

Why? /
When?

Va
m

pi
r a

na
ly

si
s

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Preparation and initial analysis commands

• Use instrumenter as preposition for source compilation &
link commands to produce instrumented executable

• Use measurement nexus as execution preposition to

configure measurement collection and analysis

• Score measurement to assess quality, determine
routines to filter and expected trace buffer content

73

% OMP_NUM_THREADS=4 scan –s mpiexec –np 4 bt-mz.4
-> scorep_bt-mz_4x4_sum

% square –s scorep_bt-mz_4x4_sum
-> scorep_bt-mz_4x4_sum/scorep.score

% scorep –-user mpif77 –fopenmp –O3 –c bt.f
% scorep –-user mpif77 –fopenmp –O3 –o bt_mz.4

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Measurement and analysis commands

• Revise measurement configuration as appropriate

• Collected trace automatically analysed in parallel using
the same execution configuration

• Postprocess intermediate analysis report(s) to derive
additional metrics and hierarchy, then explore with GUIs

74

% OMP_NUM_THREADS=4 scan –f scorep.filt -t mpiexec –np 4 bt-mz.4
-> scorep_bt-mz_4x4_trace

% square scorep_bt-mz_4x4_trace
-> scorep_bt-mz_4x4_trace/trace.cubex
-> [CUBE GUI]
% vampir scorep_bt-mz_4x4_trace/traces.otf2
-> [Vampir GUI]

% export SCOREP_METRIC_PAPI=PAPI_FP_OPS,PAPI_L2_DCM
% OMP_NUM_THREADS=4 scan –f scorep.filt mpiexec –np 4 bt-mz.4
-> scorep_bt-mz_4x4_sum

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

CUBE

• Parallel program analysis report exploration tools
– Libraries for XML report reading & writing
– Algebra utilities for report processing
– GUI for interactive analysis exploration

• Used by Score-P and Scalasca for analysis reports
– Non-GUI libraries required by Score-P for scoring reports
– Can also be installed independently of Score-P, e.g.,

on laptop or desktop, for local analysis exploration with GUI

• Developed originally as part of Scalasca toolset
– New BSD open-source license
– www.scalasca.org

75

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Analysis presentation and exploration

• Representation of values (severity matrix)
on three hierarchical axes
– Performance property (metric)
– Call path (program location)
– System location (process/thread)

• Three coupled tree browsers

• CUBE displays severities

– As value: for precise comparison
– As colour: for easy identification of hotspots
– Inclusive value when closed & exclusive value when expanded
– Customizable via display modes

 76

Call
path

P
ro

pe
rty

Location

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Analysis presentation

77

How is it
distributed across

processes / threads?

What kind of
performance

metric?

Where is it in the
source code?

In what context?

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Scalasca

• Automatic performance analysis toolset
– Scalable performance analysis of large-scale applications

• particularly focused on MPI & OpenMP paradigms
• analysis of communication & synchronization overheads

– Automatic and manual instrumentation capabilities
– Runtime summarization and/or event trace analyses
– Automatic search of event traces for patterns of inefficiency

• Scalable trace analysis based on parallel replay
– Interactive exploration GUI and algebra utilities for XML callpath

profile analysis reports

• Developed by JSC & GRS
– Open-source with New BSD license
– http://www.scalasca.org/

78

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Scalasca automatic trace analysis report

79

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Scalasca hybrid analysis report

80

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Scalasca automatic trace analysis report

81

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Vampir

• Interactive event trace analysis
– Alternative & supplement to automatic trace analysis
– Visual presentation of dynamic runtime behaviour

• event timeline chart for states & interactions of processes/threads
• communication statistics, summaries & more

– Interactive browsing, zooming, selecting
• linked displays & statistics adapt to selected time interval (zoom)
• scalable server runs in parallel to handle larger traces

• Developed by TU Dresden ZIH
– Open-source VampirTrace library bundled with OpenMPI 1.3
– http://www.tu-dresden.de/zih/vampirtrace/
– Vampir Server & GUI have a commercial license
– http://www.vampir.eu/

82

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Vampir interactive trace analysis GUI

83

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Vampir interactive trace analysis GUI

84

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Vampir interactive trace analysis GUI (zoom)

85

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Periscope

• Automated profile-based performance analysis
– Iterative on-line performance analysis

• Multiple distributed hierarchical agents
– Automatic search for bottlenecks based on properties formalizing

expert knowledge
• MPI wait states, OpenMP overheads and imbalances
• Processor utilization hardware counters

– Clustering of processes/threads with similar properties
– Eclipse-based integrated environment

• Supports
– SGI Altix Itanium2, IBM Power and x86-based architectures

• Developed by TU Munich
– Released as open-source
– http://www.lrr.in.tum.de/periscope

 86

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Periscope properties & strategies (examples)

• MPI
– Excessive MPI communication time
– Excessive MPI time due to many small messages
– Excessive MPI time in receive due to late sender
– …

• OpenMP
– Load imbalance in parallel region/section
– Sequential computation in master/single/ordered region
– ...

• Hardware performance counters (platform-specific)
– Cycles lost due to cache misses

• High L1/L2/L3 demand load miss rate
– Cycles lost due to no instruction to dispatch
– ...

87

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Periscope plug-in to Eclipse environment

88

SIR outline view

Properties view

Project view

Source code view

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Paraver & Extrae

• Interactive event trace analysis
– Visual presentation of dynamic runtime behaviour

• event timeline chart for states & interactions of processes
• Interactive browsing, zooming, selecting

– Large variety of highly configurable analyses & displays

• Developed by Barcelona Supercomputing Center
– Paraver trace analyser and Extrae measurement library
– Dimemas message-passing communication simulator
– Open source available from http://www.bsc.es/paraver/

89

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Paraver interactive trace analysis GUI

90

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Paraver interactive trace analyses

91

 Timelines

Raw data

2/3D tables
(Statistics)

Goal = Flexibility
No semantics

Programmable

 Configuration files

Distribution
Your own

Comparative analyses
Multiple traces

Synchronize scales

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Paraver interactive trace analysis

Useful Duration

Instructions

IPC

L2 miss ratio

• View and measure to understand execution performance
– Example: Imbalance in computation due to

• IPC imbalance related to L2 cache misses – check memory access
• Instructions imbalance – redistribute work

92

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Paraver interactive trace analysis

93

• View and measure to understand execution performance
– Example: 6 months later

Useful Duration

Instructions

IPC

L2 miss ratio

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Dimemas – message passing simulator

• Reads & writes Paraver traces
• Key factors influencing performance

– Abstract architecture
– Basic MPI protocols
– No attempt to model details

• Objectives
– Simple / general
– Fast simulations

• Linear components
– Point2point
– CPU/block speed

• Non-linear components
– Synchronization
– Resources contention

• Network of SMPs / GRID

CPU

Local

Memory

B

CPU

CPU

L

CPU

CPU

CPU
Local

Memory

L

CPU

CPU

CPU
Local

Memory

L

T= MessageSize
BW

+L

94

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Dimemas – message passing simulator

• Predictions to find application limits

Real run

Ideal network: infinite bandwidth, no latency

Time in MPI with
ideal network caused
by serializations of
the application

95

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Extended VI-HPS tools suite

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Extended VI-HPS Tool Suite

• parallel performance frameworks (O|SS, TAU)
• performance analysis data-mining (PerfExplorer)
• parallel execution parametric studies (Dimemas)
• cache usage analysis (kcachegrind)
• assembly code optimization (MAQAO)
• process mapping generation/optimization (Rubik)

• parallel file I/O optimization (SIONlib)
• PMPI tools virtualization (PNMPI)
• component-based tools framework (CBTF)

97

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Open|SpeedShop Tool Set

• Open Source Performance Analysis Tool Framework
– Most common performance analysis steps all in one tool
– Combines tracing and sampling techniques
– Extensible by plugins for data collection and representation
– Gathers and displays several types of performance information

• Flexible and Easy to use
– User access through:

GUI, Command Line, Python Scripting, convenience scripts
• Several Instrumentation Options

– All work on unmodified application binaries
– Offline and online data collection / attach to running codes

• Supports a wide range of systems
– Extensively used and tested on a variety of Linux clusters
– New: Cray XT/XE/XK and Blue Gene P/Q support

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Central Concept: Performance Experiments

• Users pick experiments:
– What to measure and from which sources?
– How to select, view, and analyze the resulting data?

• Two main classes:
– Statistical Sampling

• Periodically interrupt execution and record location
• Useful to get an overview
• Low and uniform overhead

– Event Tracing
• Gather and store individual application events
• Provides detailed per event information
• Can lead to huge data volumes

• O|SS can be extended with additional experiments

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Sampling Experiments in O|SS

• PC Sampling (pcsamp)
– Record PC repeatedly at user defined time interval
– Low overhead overview of time distribution
– Good first step, lightweight overview

• Call Path Profiling (usertime)
– PC Sampling and Call stacks for each sample
– Provides inclusive and exclusive timing data
– Use to find hot call paths, whom is calling who

• Hardware Counters (hwc, hwctime, hwcsamp)
– Access to data like cache and TLB misses
– hwc, hwctime:

• Sample a HWC event based on an event threshold
• Default event is PAPI_TOT_CYC overflows

– hwcsamp:
• Periodically sample up to 6 counter events based (hwcsamp)
• Default events are PAPI_FP_OPS and PAPI_TOT_CYC

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Tracing Experiments in O|SS

• Input/Output Tracing (io, iop, iot)
– Record invocation of all POSIX I/O events
– Provides aggregate and individual timings
– Lightweight I/O profiling (iop)
– Store function arguments and return code for each call (iot)

• MPI Tracing (mpi, mpit, mpiotf)
– Record invocation of all MPI routines
– Provides aggregate and individual timings
– Store function arguments and return code for each call (mpit)
– Create Open Trace Format (OTF) output (mpiotf)

• Floating Point Exception Tracing (fpe)
– Triggered by any FPE caused by the application
– Helps pinpoint numerical problem areas

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Performance Analysis in Parallel

• O|SS supports MPI and threaded codes
– Automatically applied to all tasks/threads
– Default views aggregate across all tasks/threads
– Data from individual tasks/threads available
– Thread support (incl. OpenMP) based on POSIX threads

• Specific parallel experiments (e.g., MPI)
– Wraps MPI calls and reports

• MPI routine time
• MPI routine parameter information

– The mpit experiment also store function arguments and return
code for each call

• Specialized views
– Load balance information (min/mean/max process)
– Cluster analysis to detect common tasks

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

srun –n4 –N1 smg2000 –n 65 65 65 osspcsamp “srun –n4 –N1 smg2000 –n 65 65 65” MPI Application

Post-mortem O|SS

http://www.openspeedshop.org/

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Example Run with Output

• osspcsamp “mpirun –np 2 smg2000 –n 65 65 65” (1/2)
Bash> osspcsamp "mpirun -np 2 ./smg2000 -n 65 65 65"
[openss]: pcsamp experiment using the pcsamp experiment default sampling rate: "100".
[openss]: Using OPENSS_PREFIX installed in /opt/OSS-mrnet
[openss]: Setting up offline raw data directory in /tmp/jeg/offline-oss
[openss]: Running offline pcsamp experiment using the command:
"mpirun -np 2 /opt/OSS-mrnet/bin/ossrun "./smg2000 -n 65 65 65" pcsamp"

Running with these driver parameters:
 (nx, ny, nz) = (65, 65, 65)
 …
 <SMG native output>
…
Final Relative Residual Norm = 1.774415e-07
[openss]: Converting raw data from /tmp/jeg/offline-oss into temp file X.0.openss

Processing raw data for smg2000
Processing processes and threads ...
Processing performance data ...
Processing functions and statements …

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Example Run with Output

• osspcsamp “mpirun –np 2 smg2000 –n 65 65 65” (2/2)

[openss]: Restoring and displaying default view for:
 /home/jeg/DEMOS/demos/mpi/openmpi-1.4.2/smg2000/test/smg2000-pcsamp-1.openss
[openss]: The restored experiment identifier is: -x 1

 Exclusive CPU time % of CPU Time Function (defining location)
 in seconds.
 3.630000000 43.060498221 hypre_SMGResidual (smg2000: smg_residual.c,152)
 2.860000000 33.926453144 hypre_CyclicReduction (smg2000: cyclic_reduction.c,757)
 0.280000000 3.321470937 hypre_SemiRestrict (smg2000: semi_restrict.c,125)
 0.210000000 2.491103203 hypre_SemiInterp (smg2000: semi_interp.c,126)
 0.150000000 1.779359431 opal_progress (libopen-pal.so.0.0.0)
 0.100000000 1.186239620 mca_btl_sm_component_progress (libmpi.so.0.0.2)
 0.090000000 1.067615658 hypre_SMGAxpy (smg2000: smg_axpy.c,27)
 0.080000000 0.948991696 ompi_generic_simple_pack (libmpi.so.0.0.2)
 0.070000000 0.830367734 __GI_memcpy (libc-2.10.2.so)
 0.070000000 0.830367734 hypre_StructVectorSetConstantValues (smg2000: struct_vector.c,537)
 0.060000000 0.711743772 hypre_SMG3BuildRAPSym (smg2000: smg3_setup_rap.c,233)

 View with GUI: openss –f smg2000-pcsamp-1.openss

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Default Output Report View

Toolbar to switch
Views

Graphical
Representation

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Associate Source & Performance Data

Double click to open
source window

Selected performance
data point

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Alternative Interfaces

• Scripting language
– Immediate command interface
– O|SS interactive command line (CLI)

• Python module

Experiment Commands
 expAttach
 expCreate
 expDetach
 expGo
 expView

List Commands
 list –v exp
 list –v hosts
 list –v src

Session Commands
 setBreak
 openGui

import openss

my_filename=openss.FileList("myprog.a.out")
my_exptype=openss.ExpTypeList("pcsamp")
my_id=openss.expCreate(my_filename,my_exptype)

openss.expGo()

My_metric_list = openss.MetricList("exclusive")
my_viewtype = openss.ViewTypeList("pcsamp”)
result = openss.expView(my_id,my_viewtype,my_metric_list)

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Inclusive vs. Exclusive Timing

Function
A

Function
B

Function
C

Function
D

Function
E

 Usertime Experiment
 Gather stack traces for each

sample

 Enable calculation of
inclusive/exclusive times
 Time spent inside a function

only (exclusive)
• See: Function B

 Time spent inside a function
and its children (inclusive)

• See Function C and children

 Tradeoffs
 Pro: Obtain additional context

information
 Con: Higher overhead/lower

sampling rate

Inclusive Time for C

Exclusive Time for B

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Reading Inclusive/Exclusive Timings

• Default View
– Similar to pcsamp view from first example
– Calculates inclusive versus exclusive times Exclusive

Time
Inclusive

Time

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Stack Trace Views: Hot Call Path

111

Access to call paths:
•All call paths (C+)
•All call paths for selected
function (C)

Hot Call Path

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Interpreting Call Context Data

• Inclusive versus exclusive times
– If similar: child executions are insignificant

• May not be useful to profile below this layer
– If inclusive time significantly greater than exclusive time:

• Focus attention to the execution times of the children

• Hotpath analysis
– Which paths takes the most time?

• Butterfly analysis (similar to gprof)
– Should be done on “suspicious” functions

• Functions with large execution time
• Functions with large difference between implicit and explicit time
• Functions of interest
• Functions that “take unexpectedly long”

– Shows split of time in callees and callers

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Stack Trace Views: Butterfly View

Pivot routine
“hypre_SMGSolve”

Callers of
“hypre_SMGSolve”

Callees of
“hypre_SMGSolve”

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Comparing Performance Data

• Key functionality for any performance analysis
– Absolute numbers often don’t help
– Need some kind of baseline / number to compare against

• Typical examples
– Before/after optimization
– Different configurations or inputs
– Different ranks, processes or threads

• Open|SpeedShop includes support to line up profiles
– Perform multiple experiments and create multiple databases
– Script to load all experiments and create multiple columns

• Advanced functionality in GUI
– Arbitrary number of columns with data to compare
– Use “CC” (Custom Comparison) button

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Summary: Basic Steps

• Place the way you run your application normally in quotes
and pass it as an argument to osspcsamp
– Similar for any of the other experiment
– osspcsamp “srun –N 8 –n 64 ./mpi_application app_args”

• Open|SpeedShop sends a summary profile to stdout
• Open|SpeedShop creates a database file
• Display alternative views of the data with the GUI via:

– openss –f <database file>
• Display alternative views of the data with the CLI via:

– openss –cli –f <database file>
• On clusters, need to set OPENSS_RAWDATA_DIR

– Should point to a directory in a shared file system
– More on this later – usually done in a module or dotkit file.

• Start with pcsamp for overview of performance
• Then home into performance issues with other experiments

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Summary: Digging Deeper

• Multiple interfaces
– GUI for easy display of performance data
– CLI makes remote access easy
– Python module allows easy integration into scripts

• Dedicated views for parallel executions
– Load balance view
– Use custom comparison to compare ranks or threads

• Usertime experiments provide inclusive/exclusive times
– Time spent inside a routine vs. its children
– Key view: butterfly

• Comparisons
– Between experiments to study improvements/changes
– Between ranks/threads to understand differences/outliers

116

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

TAU Performance System

• Integrated performance toolkit
– Instrumentation, measurement, analysis & visualization

• Highly customizable installation, API, envvars & GUI
• Supports multiple profiling & tracing capabilities

– Performance data management & data mining
– Targets all parallel programming/execution paradigms

• Ported to a wide range of computer systems
– Performance problem solving framework for HPC
– Extensive bridges to/from other performance tools

• PerfSuite, Scalasca, Vampir, ...

• Developed by U. Oregon/PRL
– Broadly deployed open-source software
– http://tau.uoregon.edu/

117

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

TAU Performance System components

118

SC ’10: Hands-on Practical Parallel Application Performance Engineering

118

TAU Architecture Program Analysis

Parallel Profile Analysis

PD
T

PerfD

M
F

ParaProf

Performance Data Mining

Performance Monitoring TA
U

overSuperm
on

PerfExplorer

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

TAU ParaProf GUI displays (selected)

119

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

TAU PerfExplorer data mining

120

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

KCachegrind

• Cachegrind: cache analysis by simple cache simulation
– Captures dynamic callgraph
– Based on valgrind dynamic binary instrumentation
– Runs on x86/PowerPC/ARM unmodified binaries

• No root access required
– ASCII reports produced

• [KQ]Cachegrind GUI
– Visualization of cachegrind output

• Developed by TU Munich
– Released as GPL open-source
– http://kcachegrind.sf.net/

121

Profile

Binary

2-level $ Simulator

Memory
Accesses Event Counters

Debug Info

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

KCachegrind GUI

Source code view

Machine code
annotation

Event cost tree map

Call graph view

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

MAQAO

• Modular Assembler Quality Analyzer & Optimizer
– Framework for binary manipulation

• using plugins and scripting language
– Tool exploiting framework to produce reports

• fast prototyping and batch interface
– STAN static performance model
– MIL instrumentation language for dynamic analysis

• building custom performance evaluation tools using HWCs
• instrumentation of functions, loops, blocks & instructions

• Developed by UVSQ Exascale Computing Research lab
– Supports Intel x86_64 microarchitecture
– Available from www.maqao.org

123

Challnges with mpiP at Scale Challnges with mpiP at Scale Challnges with mpiP at Scale

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

• Network topologies getting more complex
– Interactions with communication topology non-trivial
– Node placement has huge impact on performance

• Require tools to help with defining layouts
– Easier specification and visualization of layouts
– Capture basic optimization steps at an abstract level

Challenge: Optimize Node Mappings

quadpartite
64.7 TF

xyz (default)
39.5 TF

64% speedup!

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Utilizing the Full Capacity of the Torus

• Dimension independent transformations/tilting
– Tilting optimization allows higher bandwidth on torus links
– Tilting is easily extended into higher dimensions (5D, etc.)

Black links are “spare” links that can handle extra traffic that
comes through the cube.

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Rubik: Easy Generation of BG Mapping Files

http://scalability.llnl.gov/

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Additional Rubik Operations

div tile mod cut

tilt
zorder

zigzag

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

• Problems setup as a series of 2D slabs
– During each step: X/Y phases within a slab
– Looking at realized bandwidth for each step

Example: an LLNL Laser Code

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Mappings for the Laser Code

• Improved bandwidth from 50 MB/s to over 201 MB/s
• Can be implemented as a single, short Python script
• Works for any dimensionality
• Integrated visualization of mappings (for 3D)

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

VI-HPS component technologies

• Key tool components also provided as open-source
– Program development & system environment

• Eclipse PTP ETFw, SysMon
– Program/library instrumentation

• COBI, OPARI, PDToolkit
– Runtime measurement systems

• PnMPI, UniMCI
– Scalable optimized file I/O

• SIONlib
– Libraries & tools for handling (and converting) traces

• EPILOG, OTF, PEARL
– Component Based Tool Framework (CBTF)

• Communication framework to create custom tools

130

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

SIONlib

• Portable native parallel I/O library & utilities
– Scalable massively-parallel I/O to task-local files
– Manages single or multiple physical files on disk

• optimizes bandwidth available from I/O servers by matching
blocksizes/alignment, reduces metadata-server contention

– POSIX-I/O-compatible sequential & parallel API
• adoption requires minimal source-code changes

– Tuned for common parallel filesystems
• GPFS (BlueGene), Lustre (Cray), ...

– Convenient for application I/O, checkpointing,
• Used by Scalasca tracing (when configured)

• Developed by JSC
– Available as open-source from
– http://www.fz-juelich.de/jsc/sionlib/

131

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

• PMPI interception of MPI calls
– Easy to include in applications
– Limited to a single tool

PNMPI: Virtualizing PMPI Tools

Application
mpiP

MPI Library

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

• PMPI interception of MPI calls
– Easy to include in applications
– Limited to a single tool

• PNMPI virtualized PMPI
– Multiple tools concurrently
– Dynamic loading of tools
– Configuration through text file
– Tools are independent
– Tools can collaborate

PNMPI: Virtualizing PMPI Tools

Application
PMPI Tool 1
PMPI Tool 2
MPI Library

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

• PMPI interception of MPI calls
– Easy to include in applications
– Limited to a single tool

• PNMPI virtualized PMPI
– Multiple tools concurrently
– Dynamic loading of tools
– Configuration through text file
– Tools are independent
– Tools can collaborate

• Transparently adding context
– Select tool based on

MPI context
– Transparently isolate tool instances

Customizing Profiling with PNMPI

Application
PMPI Tool 1
PMPI Tool 2

MPI Library

Switch

PMPI Tool 4 PMPI Tool 3
mpiP mpiP

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Example: Defining Switch Modules in PNMPI

Default
Stack

Target
Stack 1

Target
Stack 2

Multiple profiling
instances

Switch Module

Arguments
controlling

switch module

Configuration file:

module commsize-switch
argument sizes 8 4
argument stacks column row
module mpiP

stack row
module mpiP1

stack column
module mpiP2

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Communicator Profiling Results for QBox

AMD Opteron/Infiniband Cluster

1000 Mo atoms:
112 Ry cutoff
12 electrons/atom
1 k-point

Dual Core MM
Optimal Node Mapping
Complex Arithmetic
Comm. Optimizations

• Lessons learned from QBox
– Node mappings are critical
– Performance effects often

show only at scale
– Need to understand behavior

and customize tool behavior
– Need for tools to break black

box abstractions

Operation Sum Global Row Column
Send 317245 31014 202972 83259

Allreduce 319028 269876 49152 0
Alltoallv 471488 471488 0 0

Recv 379265 93034 202972 83259
Bcast 401042 11168 331698 58176

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

• Component Based Tool Framework (CBTF)
– Independent components connected by typed pipes
– Transforming data coming from the application on the way to the

user
– External specification of which components to connect
– Each combination of components is/can be “a tool”
– Shared services

• Partners
– Krell Institute
– LANL, LLNL, SNLs
– ORNL
– UW, UMD
– CMU

Shared Tool Frameworks

Services
Services

Services

Services
Services

Tool Component Framework

Pipeline
Comp.

Pipeline
Comp.

Pipeline
Comp.

Ap
pl

ic
at

io
n

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

CBTF Modules

 Data-Flow Model
• Accepts Inputs
• Performs Processing
• Emits Outputs

 C++ Based
 Provide Metadata

• Type & Version
• Input Names & Types
• Output Names & Types

 Versioned
• Concurrent Versions

 Packaging
• Executable-Embedded
• Shared Library
• Runtime Plugin

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

CBTF Component Networks

 Components
• Specific Versions

 Connections
• Matching Types

 Arbitrary Component
Topology
• Pipelines
• Graphs with cycles
• ….

 Recursive
• Network itself is a component

 XML-Specified

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Specifying Component Networks to Create
New Tools

….
<Type>ExampleNetwork</Type>
<Version>1.2.3</Version>
<SearchPath>.:/opt/myplugins</SearchPath>
<Plugin>myplugin</Plugin>
 <Component>
 <Name>A1</Name>
 <Type>TestComponentA</Type>
 </Component>
…
 <Network>
…
 <Connection>
 <From>
 <Name>A1</Name>
 <Output>out</Output>
 </From>
 <To>
 <Name>A2</Name>
 <Input>in</Input>
 </To>
 </Connection>
…
 </Network>

 Users can create new tools
by specifying new networks
• Combine existing functionality
• Reuse general model
• Add application specific details

— Phase/context filters
— Data mappings

 Connection information
• Which components?
• Which ports connected?
• Grouping into networks

 Implemented as XML
• User writable
• Could be generated by a GUI

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

CBTF Structure and Dependencies

 Minimal Dependencies
• Easier Builds

 Tool-Type Independent
• Performance Tools
• Debugging Tools
• etc…

 Completed Components
• Base Library (libcbtf)
• XML-Based Component

Networks (libcbtf-xml)
• MRNet Distributed

Components (libcbtf-mrnet)

 Planned Components
• TCP/IP Distributed Component

Networks
• GUI Definition of Component

Networks

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

• Open|SpeedShop v2.0
– CBTF created by componentizing

the existing Open|SpeedShop
– Motivation:

scalability & maintainability

• Extensions for O|SS in CBTF
(planned for 10/13)
– Threading overheads
– Memory consumption
– I/O profiling

• Further tools in progress
– GPU performance analysis
– Tools for system administration and health monitoring

Tools on Top of CBTF

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

• We need frameworks that enable …
– Independently created and maintained components
– Flexible connection of components
– Assembly of new tools from these components by the user

• CBTF is designed as a generic tool framework
– Components are connected by typed pipes
– Infrastructure for hierarchical aggregation with user defined

functions
– Component specification is external through XML files
– Tailor tools by combining generic and application specific tools

• CBTF is available as a pre-release version
– First prototype of Open|SpeedShop v2.0 working
– New extensions for O|SS exploiting CBTF advantages
– Several new tools built on top of CBTF
– Wiki at http://ft.ornl.gov/doku/cbtfw/start
– Code available on sourceforge

Summary: The Need for Components

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Review

Brian Wylie
Jülich Supercomputing Centre

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Summary

You’ve been introduced to a variety of widely-available
tools, and seen their basic use demonstrated

– with some guidance to apply and use the tools most effectively

• Tools provide complementary capabilities
– computational kernel & processor analyses
– communication/synchronization analyses
– load-balance, scheduling, scaling, …

• Tools are designed with various trade-offs
– general-purpose versus specialized
– platform-specific versus agnostic
– simple/basic versus complex/powerful

2

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Tool selection

• Which tools you use and when you use them likely to
depend on situation
– which are available on (or for) your computer system
– which support your programming paradigms and languages
– which you are familiar (comfortable) with using

• also depends on the type of issue you have or suspect

• Awareness of (potentially) available tools can help finding
the most appropriate tools

3

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Workflow (getting started)

• First ensure that the parallel application runs correctly
– no-one will care how quickly you can get invalid answers or

produce a directory full of corefiles
– parallel debuggers help isolate known problems

• STAT can help reducing focus to smaller sets of processes
– correctness checking tools can help identify other issues
– (that might not cause problems right now, but will eventually)

• e.g., race conditions, invalid/non-compliant usage

• Generally valuable to start with an overview of execution
performance
– fraction of time spent in computation vs comm/synch vs I/O
– which sections of the application/library code are most costly

• and how it changes with scale or different configurations
– processes vs threads, mappings, bindings

4

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Workflow (communication/synchronization)

• Communication/synchronization issues generally apply
to every computer system (to different extents) and
typically grow with the number of processes/threads
– Weak scaling: fixed computation per thread, and perhaps fixed

localities, but increasingly distributed
– Strong scaling: constant total computation, increasingly divided

amongst threads, while communication grows
– Collective communication (particularly of type “all-to-all”) result in

increasing data movement
– Synchronizations of larger groups are increasingly costly
– Load-balancing becomes increasingly challenging, and

imbalances increasingly expensive
• generally manifests as waiting time at following collective ops

– Mapping of processes / threads can also be important

5

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Workflow (wasted waiting time)

• Waiting times are difficult to determine in basic profiles
– Part of the time each process/thread spends in communication &

synchronization operations may be wasted waiting time
– Need to correlate event times between processes/threads

• Periscope uses augmented messages to transfer timestamps and
additional on-line analysis processes

• Post-mortem event trace analysis avoids interference and provides
a complete history

• Scalasca automates trace analysis and ensures waiting times are
completely quantified

• Vampir allows interactive exploration and detailed examination of
reasons for inefficiencies

6

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Workflow (core computation)

Effective computation within processors/cores is also vital
– Optimized libraries may already be available
– Optimizing compilers can also do a lot

• provided the code is clearly written and not too complex
• appropriate directives and other hints can also help

– Processor hardware counters can also provide insight
• although hardware-specific interpretation required

– Tools available from processor and system vendors help
navigate and interpret processor-specific performance issues

7

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

VI-HPS tools portfolio and their integration

8

Optimization

Visual trace
analysis

Automatic
profile & trace

analysis

Error & anomaly
detection

Hardware
monitoring

Execution

SCALASCA

VAMPIR / PARAVER

PAPI

MUST

PERISCOPE

KCACHEGRIND TAU

RUBIK /
MAQAO

SYSMON /
SIONLIB /
OPENMPI

STAT

SCORE-P

MPIP /
O|SS /
LWM2

Euro-Par‘13: Tools for High Productivity Supercomputing (Aachen, Germany)

Further information

• Website
– Introductory information about the VI-HPS portfolio of tools for

high-productivity parallel application development
• links to individual tools sites for details and download

– Training material
• tutorial slides
• latest ISO image of VI-HPS Linux DVD with productivity tools
• user guides and reference manuals for tools

– News of upcoming events
• tutorials and workshops
• mailing-list sign-up for announcements

http://www.vi-hps.org

10

