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The time-dependent numerical renormalization group (TDNRG) method [Anders et al., Phys. Rev. Lett. 95,
196801 (2005)] offers the prospect of investigating in a nonperturbative manner the time dependence of local
observables of interacting quantum impurity models at all time scales following a quantum quench. Here, we
present a generalization of this method to arbitrary finite temperature by making use of the full density matrix
approach [Weichselbaum et al., Phys. Rev. Lett. 99, 076402 (2007)]. We show that all terms in the projected
full density matrix ρi→f = ρ++ + ρ−− + ρ+− + ρ−+ appearing in the time evolution of a local observable may
be evaluated in closed form at finite temperature, with ρ+− = ρ−+ = 0. The expression for ρ−− is shown to
be finite at finite temperature, becoming negligible only in the limit of vanishing temperatures. We prove that
this approach recovers the short-time limit for the expectation value of a local observable exactly at arbitrary
temperatures. In contrast, the corresponding long-time limit is recovered exactly only for a continuous bath, i.e.,
when the logarithmic discretization parameter � → 1+. Since the numerical renormalization group approach
breaks down in this limit, and calculations have to be carried out at � > 1, the long-time behavior following an
arbitrary quantum quench has a finite error, which poses an obstacle for the method, e.g., in its application to the
scattering-states numerical renormalization group method for describing steady-state nonequilibrium transport
through correlated impurities [Anders, Phys. Rev. Lett. 101, 066804 (2008)]. We suggest a way to overcome
this problem by noting that the time dependence, in general, and the long-time limit, in particular, become
increasingly more accurate on reducing the size of the quantum quench. This suggests an improved generalized
TDNRG approach in which the system is time evolved between the initial and final states via a sequence of small
quantum quenches within a finite time interval instead of by a single large and instantaneous quantum quench.
The formalism for this is provided, thus generalizing the TDNRG method to multiple quantum quenches, periodic
switching, and general pulses. This formalism, like our finite-temperature generalization of the single-quench
case, rests on no other approximation than the NRG approximation. The results are illustrated numerically by
application to the Anderson impurity model.
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I. INTRODUCTION

The numerical renormalization group (NRG) [1–4] has
proven to be one of the most powerful methods for dealing
with equilibrium properties of strongly correlated quantum
impurity systems [5], allowing the calculation at arbitrary tem-
peratures, and in a nonperturbative manner, of thermodynamic
[1–3,6–8], dynamic [9–16], and, linear transport properties
[17–19] of such systems. The method is also applicable, within
dynamical mean-field theory (DMFT) [20–23], to correlated
lattice models, such as the Kondo lattice [24,25], Anderson
lattice [26], or Hubbard [27,28] and Hubbard-Holstein models
[29]. The introduction of the correlation self-energy [12],
the reduced density matrix [13], the complete basis set of
eliminated states [14], novel non-Abelian symmetries [30,31],
and new discretization schemes [32–35] have significantly im-
proved NRG calculations, particularly for dynamic [15,16,36]
and transport properties of single- and multichannel models
[19,35,37,38].

A further application of the method, based on the complete
basis set, in combination with the reduced density matrix, is
to the time-dependent transient response of quantum impurity
systems following a quantum quench [14]. The use of the
complete basis set is particularly important here, as it resolves
the problem of summing up multiple shell contributions to
transient quantities encountered in a previous related approach
[39]. This time-dependent numerical renormalization group

(TDNRG) method has been used to study the transient dy-
namics of a number of quantum impurity models, including the
Anderson, Kondo, interacting resonant level, and spin-boson
models [14,40–44]. In addition, within the scattering-states
NRG approach [45,46], the TDNRG approach offers the
prospect of investigating another important class of problems,
namely, truly nonequilibrium steady-state transport through
correlated nanostructures, such as through correlated quantum
dots at finite bias voltage far from the linear response regime.
Here, the use of the TDNRG to evolve the density matrix to
long times, a key ingredient in the approach of Ref. [45], is
hampered by difficulties in obtaining the correct long-time
limit of observables, including that of the density matrix, e.g.,
for the Anderson impurity model [14,40,47]. In addition, there
is significant noise at intermediate to long times [14,40,47].
It has been argued that the logarithmically discretized Wilson
chain, whose heat capacity is nonextensive for discretization
parameters � > 1, prohibits thermalization to the correct
long-time limit and possibly affects also the short-time limit
[48]. This would pose a severe limitation on the TDNRG
and its application to steady-state nonequilibrium situations.1

Reflections, associated with the nonconstant hoppings along

1In fact, we show in this paper that the short-time limit is always
recovered exactly by the TDNRG.
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the Wilson chain, have also been argued to affect the long-time
limit [49,50]. This has led to the formulation of hybrid
methods [50,51] which combine the merits of the TDNRG
method at short times, with, for example, methods, such
as the time-dependent density matrix renormalization group
(DMRG) method [52–55] on tight-binding chains, to extract
the evolution on longer time scales.

In this paper, we reexamine the TDNRG method, gener-
alizing it to arbitrary finite temperature, for a general initial
state ensemble, within the full density matrix (FDM) approach
[16]. We prove a number of exact results, including the
exactness of the short-time limit of local observables following
a quantum quench and a trace-conserving property of the
projected full density matrix. These prove useful in testing
the finite-temperature formalism. By applying this approach
to the prototype model of strongly correlated electron systems,
the Anderson impurity model, we analyze in detail, and shed
further light on, the origin of noise in the TDNRG method and
give a detailed description of errors in the local occupation
and double occupancy in the long-time limit, identifying
trends in switching protocols, bath discretization, and quench
size that minimize these errors. The results suggest that the
short-, intermediate-, and particularly the long-time behavior
can be improved by replacing a large quantum quench by a
sequence of smaller quantum quenches, while retaining the
standard Wilson chain for the bath. With this motivation, the
formalism for such multiple quenches is derived and shown
to rest solely on the NRG approximation [Eq. (10)], as in our
finite-temperature generalization of the single-quench case.
This formalism is important since (a) it points a way to
an overall improved time dependence within a generalized
multiple-quench TDNRG approach, (b) it allows a general
pulse (appropriately discretized, if continuous) to be treated,
and (c) it includes periodic switching as a special case.
The last, (c), for square pulses, has also been considered
in Ref. [50], where, however, additional approximations,
beyond the NRG approximation, were made, and without
use of the FDM (for a discussion of this, see the end of
Sec. VI).

Besides the NRG, a large number of other methods are being
used to investigate real-time and nonequilibrium dynamics
of correlated systems. These include analytic approaches,
such as the functional renormalization group [56], real-time
renormalization group [57], perturbative scaling approach
[58], Keldysh perturbation theory [59], real-time [60] and
renormalized perturbation theory [61], and flow-equation [62–
64], dual-fermion [65], slave-boson [66], and 1/N -expansion
techniques [67,68]. Applications of these to a number of
quantum impurity models have been made, including to the
anisotropic Kondo and spin-boson models [69,70], to the
interacting resonant level model [71–74], and to the Anderson
impurity model [60,61,68,75–81]. One advantage of these
analytic approaches over the TDNRG, and other numerical
approaches is their ability to deal with a continuous bath. On
the other hand, most of these approaches are perturbative, and
they may have difficulty accessing the low-temperature strong-
coupling limit. Numerical methods include the aforementioned
DMRG method [54,55], also at finite temperature [82–84], and
several quantum Monte Carlo approaches [85–89]. The former
is limited, as compared to TDNRG, to finite-size systems and is

not applicable to exponentially long times,2 whereas the latter
become computationally expensive for strong interactions or
low temperatures. Indeed, the main motivation for developing
the TDNRG approach is, on the one hand, its inherently
nonperturbative nature, allowing strongly correlated systems
to be treated accurately at moderate computational cost, with,
on the other hand, its ability to describe arbitrarily low energy
scales and temperatures. The latter, in principle, gives the
prospect of addressing accurately the time dependence of such
systems at arbitrarily long times. These advantages, however,
come at the expense of using a logarithmically discretized
bath, which incurs errors that we shall address in this paper.
Finally, we mention that most of the above techniques are,
in principle, also of use in the description of nonequilibrium
DMFT for correlated lattice models [90–92].

The present work is also motivated by the increasing
number of experiments probing time-dependent properties of
correlated systems, including time-dependent spectroscopies
of correlated electron systems, such as pump-probe investiga-
tions of Mott insulators [93,94], quasiparticle lifetime effects
in surface states [95], coherent control and relaxation times in
solid-state qubits [96,97], determination of relaxation rates of
excited spin states of atoms on surfaces via voltage pulses [98],
and nonequilibrium effects in cold atom systems [99–102].

The paper is organized as follows. In Sec. II, we provide
required background information (Secs. II A–II C), discuss
limiting cases and exact results (Sec. II D), and state the
problem that has to be overcome in generalizing the existing
TDNRG approach of Refs. [14,40] to finite temperature within
the FDM formalism (Sec. II E). This generalization requires
calculating all terms appearing in a projected density matrix,
which is accomplished in Sec. III. In Sec. IV we derive
recursion relations for these terms, which allow them to
be calculated in a numerically efficient manner. We then
apply this finite-temperature generalization of the TDNRG
approach to the Anderson impurity model in Sec. V, providing
detailed numerical results for local observables on all time and
temperature scales. In particular we discuss the accuracy of this
approach for the occupation number and double occupancy
at different temperature and time scales. In Sec. VI, we
generalize the TDNRG approach from a single instantaneous
quantum quench to a sequence of multiple quantum quenches
over a finite time interval. The primary motivation for this
generalization was stated above, namely, to obtain an overall
improvement in the accuracy of the TDNRG method at longer
times. However, in the process we generalize the approach
to other cases of great interest in their own right, such as
to periodic switching/driving and to general pulses (suitably
discretized, if continuous). A summary and outlook on future
prospects and applications of our formalism are presented in
Sec. VII. The trace-conserving property of the projected full
density matrix is shown in Appendix A, and Appendix B gives
a detailed proof that the short-time limit of observables is exact
within the TDNRG. Appendix C gives explicit expressions for

2The Kondo model, for example, exhibits interesting physics at
exponentially long times t � �/TK , where TK ∼ √

JNF e−1/JNF is
the exponentially small Kondo scale, with J the exchange constant
and NF the density of states.
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recursion relations for the projected density matrix for the case
of SU(2) spin symmetry. We used this symmetry in obtaining
the numerical results for the Anderson impurity model in
Sec. V. Additional numerical results for the Anderson model
are given in Appendix D, while further details of the TDNRG
derivation for multiple quenches are given in Appendix E.

II. PRELIMINARIES

The NRG and its extension to time-dependent problems
apply generally to any quantum impurity model. For the
purposes of this section, we outline these, together with the
generic quantum quench of interest in Sec. II A, postponing a
detailed description of the specific model that we shall use later
in the numerical calculations (the Anderson impurity model)
and the specific quench protocols to Sec. V. Some general
aspects of the NRG together with the complete basis formalism
[14,40] and the FDM [16] are introduced in Sec. II B. We
recapitulate the use of the complete basis set to derive a formal
expression for the time dependence of a local observable
following a quantum quench in Sec. II C. Limiting cases and
exact results that hold generally within the time-dependent
NRG are given in Sec. II D. Finally, Sec. II E states the problem
to be overcome in generalizing the approach of Refs. [14,40]
to finite temperature, using the FDM [16], the main aim of the
present paper.

A. Quantum impurity models and quantum quenches

The Hamiltonian of a quantum impurity system is given by

H = Himp + Hint + Hbath, (1)

where Himp represents the impurity, a small quantum mechan-
ical system with a few degrees of freedom and local many-
body interactions, Hbath represents a quasicontinuous bath of
noninteracting particles, and Hint is the interaction between the
two. Typical examples include the Anderson impurity model
(Sec. V A), the anisotropic Kondo model, or the spin-boson
model of two-level systems coupled to an environment [103–
105]. We are interested in the dynamics of a local observable
Ô following a quantum quench in which one or more system
parameters of H change suddenly at t = 0. Thus, the time
dependence of H is described by H (t) = θ (−t)Hi + θ (t)Hf ,
with Hi and Hf being time-independent initial- (t < 0)
and final-state (t > 0) Hamiltonians, respectively. The time
evolution of Ô at t > 0 is then given by O(t) = Tr[ρ(t)Ô]
where ρ(t) = e−iHf tρeiHf t is the time-evolved density matrix
and ρ = e−βHi

/Tr[ρ] is the density matrix of the initial state
at inverse temperature β.

B. NRG, complete basis set, and full density matrix

Since the initial- and final-state Hamiltonians Hi and Hf

are time independent they can be iteratively diagonalized in
the usual way within the NRG method. In brief, this approach,
described in detail in Refs. [1–4], yields the eigenstates
and eigenvalues of a sequence of truncated Hamiltonians
H

i/f
m ,m = 1,2, . . . , which approximate the spectra of Hi/f ,

on successively decreasing energy scales ωm ∼ �−m/2. The
discretization parameter � > 1 is required to achieve a

separation of energy scales in Hi/f , such that an iterative
diagonalization scheme can be successfully carried out. This
procedure is performed up to a maximum iteration m = N

(“the longest Wilson chain”). At each m, the states generated,
denoted |qm〉, are partitioned into the lowest-energy retained
states, denoted |km〉, and the high-energy eliminated (or
discarded) states, |lm〉. In order to avoid an exponential
increase in the dimension of the Hilbert space, only the former
are used to set up and diagonalize the Hamiltonian for the next
iteration m + 1. The eliminated states, while not used in the
iterative NRG procedure, are nevertheless crucial as they are
used to set up a complete basis set with which the expressions
for the time-dependent dynamics are evaluated [14]. This
complete basis set is defined by the product states |lem〉 =
|lm〉|e〉, m = m0, . . . ,N , where m0 is the first iteration at
which truncation occurs, and |e〉 = |αm+1〉|αm+2〉 · · · |αN 〉 are
environment states at iteration m such that the product states
|lem〉, for each m = m0,m0 + 1, . . . ,N , reside in the same
Fock space (that of the largest system diagonalized, m = N ).
The αm represent the configurations of site m in a linear
chain representation of the quantum impurity system (e.g.,
the four states 0, ↑, ↓, and ↑↓ at site m for a single-channel
Anderson model) and “e′′ in |lem〉 denotes the collection e =
{αm+1 · · ·αN }. These states satisfy the completeness relation
[14,40]

N∑
m=m0

∑
le

|lem〉〈lem| = 1, (2)

where for m = N all states are counted as discarded (i.e., there
are no kept states at iteration m = N ). We shall also use the
following representations of this relation [14,40]:

1 = 1−
m + 1+

m, (3)

1−
m =

m∑
m′=m0

∑
l′e′

|l′e′m′〉〈l′e′m′|, (4)

1+
m =

N∑
m′=m+1

∑
l′e′

|l′e′m′〉〈l′e′m′| =
∑
ke

|kem〉〈 kem|. (5)

By using the complete basis set, we can construct an initial-
state density matrix which is valid at any temperature, the FDM
[16,106],

ρ =
N∑

m=m0

wmρ̃m, (6)

ρ̃m =
∑
le

|lem〉i e
−βEm

l

Z̃m
i〈lem|, (7)

which takes into account the discarded states of Hi from
all shells. For later use, we note that (a) Tr[ρ̃m] = Tr[ρ] =
1 implies that

∑N
m=m0

wm = 1, and (b) Tr[ρ̃m] = 1 im-

plies that 1 = ∑
le

e
−βEm

l

Z̃m
= ∑

l d
N−m e

−βEm
l

Z̃m
= dN−m Zm

Z̃m
, where

Zm = ∑
l e

−βEm
l , i.e., Z̃m = dN−mZm, and d is the degeneracy

of the Wilson site αm [16,38].
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C. Time dependence

With the above definitions, we can write for the time evolution of a local observable Ô

O(t) = T r[e−iHf tρeiHf t Ô]

=
N∑

m=m0

∑
le

f 〈lem|e−iHf tρeiHf t Ô|lem〉f =
N∑

mm′=m0

∑
lel′e′

f 〈lem|e−iHf tρeiHf t |l′e′m′〉f f 〈l′e′m′|Ô|lem〉f . (8)

Here, and in the remainder of the paper, Ai/f denotes an expression in the basis of initial/final states. Using
∑

ke |kem〉〈kem| =∑N
m′=m+1

∑
l′e′ |l′e′m′〉〈l′e′m′| [i.e., the second equality in Eq. (5)], we can express Eq. (8) as [14,40]

O(t) =
N∑

m=m0

∑
rs /∈KK ′

∑
e

f 〈sem|e−iHf tρeiHf t |rem〉f f 〈rem|Ô|sem〉f

≈
N∑

m=m0

∑
rs /∈KK ′

∑
e

f 〈sem|e−iH
f
m tρeiH

f
m t |rem〉f f 〈rem|Ô|sem〉f

=
N∑

m=m0

∑
rs /∈KK ′

(∑
e

f 〈sem|ρ|rem〉f
)

e−i(Em
s −Em

r )tOm
rs

=
N∑

m=m0

∑
rs /∈KK ′

ρi→f
sr (m)e−i(Em

s −Em
r )tOm

rs, (9)

in which r and s may not both be kept states, Om
rs =

f 〈lem|Ô|rem〉f are the final-state matrix elements of Ô,
which are independent of e, the NRG approximation

Hf |rem〉 ≈ Hf
m |rem〉 = Em

r |rem〉 (10)

is adopted [in the second line of Eq. (9)], and ρ
i→f
sr (m) =∑

e f 〈sem|ρ|rem〉f represents the reduced density matrix
of the initial state projected onto the basis of final states
(henceforth simply called the projected density matrix).

D. Limiting cases and exact results

A number of limiting cases and exact results follow
generally from the above formalism. First, it is clear from
Eq. (9) that in the absence of a quench, Hi = Hf , one recovers
for O(t) the time-independent equilibrium thermodynamic
average

O(t) = Oi = Of . (11)

Second, in the special case that Ô is the identity operator, we
have from Eq. (9) upon using Om

rs = δrs that

1 =
N∑

m=m0

∑
l

ρ
i→f

ll (m), (12)

i.e., the trace of the projected density matrix over the
eliminated states is conserved (see Appendix A). The above
two results will serve as useful checks on the correctness of our
finite-temperature generalization of the time-dependent NRG
as well as on the precision of the numerical calculations in
Sec. V.

Third, it has been noted previously that the TDNRG yields
very accurate results for the short-time limit of observables,
i.e., to a very good approximation O(t → 0+) ≈ Oi where

Oi = Tr[ρÔ] is the thermodynamic value in the initial state
[40]. In fact, we can show that the short-time limit is exact, i.e.,
O(t → 0+) = Oi . An explicit proof of this, starting from the
expression for O(t → 0+), is given in Appendix B. One can
also see this from the following argument: The time evolution
in Eq. (9) involves approximate NRG eigenvalues via the factor
ei(Em

r −Em
s )t . The NRG approximation for the eigenvalues is

therefore not operative for t → 0+ and Eq. (9) is as exact as
Eq. (8) in this limit (the latter yielding Oi = Tr[ρÔ]); hence
we have the exact result3

O(t → 0+) ≡
N∑

m=m0

∑
rs /∈KK ′

ρi→f
sr (m)Om

rs = Oi. (13)

This will also be verified numerically in Sec. V.
In contrast, as soon as t is finite, we expect that the time

evolution in Eq. (9) will differ from that in Eq. (8), and this
will, in part, be due to the appearance of approximate NRG
eigenvalues in the former, resulting in errors and noise in
the time evolution, which we shall analyze numerically in
Sec. V C. We thus also expect, and find, that the long-time
limit of O(t), given by

O(t → ∞) =
N∑

m=m0

∑
rs∈DD′

ρi→f
sr (m)δEm

s ,Em
r
Om

rs (14)

=
N∑

m=m0

∑
l

ρ
i→f

ll (m)Om
ll , (15)

3By exact we mean the equality stated in Eq. (13). The actual
value evaluated with the NRG may deviate by a small amount from
exact analytic results, e.g., from Bethe ansatz results; however, this
difference has been shown to be negligible [8,107].
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is not exact. The deviation of this from its expected thermody-
namic value in the final state, Of , will be extensively analyzed
in Sec. V E.

E. Generalizing the time-dependent NRG to finite temperature

We now return to the formal expression for O(t) in Eq. (9)
and consider its explicit evaluation. The matrix elements Om

rs in
Eq. (9) may be calculated recursively at each shell in the usual
way within the NRG [2,4]. Calculating the projected density
matrix ρ

i→f
sr (m) requires more effort and is the main problem

in generalizing the TDNRG to finite temperatures. In order to
see this more clearly, we use a modification of Eqs. (3)–(5) for
the decomposition of unity as in Ref. [40],

1 = I+
m + I−

m

=
∑
qe

|qem〉i i〈qem| +
m−1∑

m′=m0

∑
l′e′

|l′e′m′〉i i〈l′e′m′|, (16)

in which the label q includes both retained and eliminated
states at iteration m, and break ρ

i→f
sr (m) into four terms:

ρi→f
sr (m) =

∑
e

f 〈sem|(I+
m + I−

m )ρ(I+
m + I−

m )|rem〉f

= ρ++
sr (m) + ρ+−

sr (m) + ρ−+
sr (m) + ρ−−

sr (m), (17)

with ρ
pp′
sr (m) = ∑

e f 〈sem|Ip
mρIp′

m |rem〉f and p,p′ = ±.
Calculating ρ++

sr (m) is straightforward, since it includes only
overlap matrix elements between initial and final states at
the same shell, i〈qem|rem〉f . But for ρ+−

sr (m), ρ−+
sr (m), and

ρ−−
sr (m) this is manifestly not the case, requiring overlap matrix

elements between initial and final states at different shells,
i〈l′e′m′|rem〉f with m′ < m.

In previous work [40], the problem of evaluating ρ+−
sr (m),

ρ−+
sr (m), and ρ−−

sr (m) for general situations, was avoided by
choosing a special form for the initial-state density matrix,

namely,

ρ =
∑

l

|lN〉i e
−βEN

l

ZN
i〈lN |, (18)

with ZN = ∑
l e

−βEN
l , in which only the discarded states of

the last NRG iteration enter, while discarded states at m < N

are neglected. This simplifies the projected density matrix
to ρ

i→f
sr (m) = ρ++

sr (m) as ρ+−
sr (m) = ρ−+

sr (m) = ρ−−
sr (m) = 0

for all m � N for this special choice of ρ. However, this
limits the calculations to T ∼ TN where TN ∼ ωN is the
characteristic scale of Hi

N . Calculations at higher temperature,
T > TN , within this approach would require choosing a shorter
chain of length M < N such that T ≈ TM , which introduces
additional errors due to the shorter chain. Hence, a formulation
that uses the FDM of the initial state [Eq. (6)], which
encodes all discarded states from all shells m � N , would
be advantageous, since it would be valid at all temperatures
T � TN automatically, while a fixed chain of length N is used
for all T . In the next section, we show that this is possible,
hence allowing the calculation of the time dependence at an
arbitrary finite temperature starting from a general initial state.
We shall thus use the FDM in Eq. (6), which takes into account
the discarded states from all shells, and present the calculation

of each of the four terms appearing in ρ
i→f
sr (m), especially

ρ+−
sr (m), ρ−+

sr (m), and ρ−−
sr (m).

III. FINITE-TEMPERATURE PROJECTED
DENSITY MATRIX

In this section we evaluate the four terms contributing to
ρ

i→f
sr (m) in Eq. (17) starting from the FDM of the initial state

ρ = ∑N
m=m0

wmρ̃m. Substituting the latter into the first term of

ρ
i→f
sr (m) in Eq. (17), we have

ρ++
sr (m) =

N∑
m′=m0

wm′
∑

e

f 〈sem|I+
mρ̃m′I+

m |rem〉f =
N∑

m′=m0

∑
eqe′
q ′e′′

f 〈sem|qe′m〉i i〈qe′m|wm′ ρ̃m′ |q ′e′′m〉i i〈q ′e′′m|rem〉f ,

in which the overlap matrix elements i〈qe′m|rem〉f = Sm
qirf

δee′ between initial and final states are diagonal in, and independent
of, the environment degrees of freedom. Then

ρ++
sr (m) =

N∑
m′=m0

∑
qq ′

Sm
sf qi

∑
e

i〈qem|wm′ ρ̃m′ |q ′em〉iSm
qirf

=
N∑

m′=m0

∑
qq ′

Sm
sf qi

∑
e,le′

i〈qem|le′m′〉iwm′
e−βEm′

l

Z̃m′
i〈le′m′|q ′em〉iSm

q ′
i rf

.

Since
∑

q |qem〉 = ∑
l |lem〉 + ∑

k |kem〉, i〈l′e′m′|lem〉i = δll′δee′δmm′ , and i〈le′m′|kem〉i = 0 as m′ � m, the above equation is
equivalent to

ρ++
sr (m) =

∑
le

Sm
sf li

wm

e−βEm
l

Z̃m

Sm
li rf

+
N∑

m′=m+1

∑
kk′

Sm
sf ki

∑
ele′

i〈kem|le′m′〉iwm′
e−βEm′

l

Z̃m′
i〈le′m′|k′em〉iSm

k′
i rf

.

Using the definition of the full reduced density matrix [38]

Rm
red(k,k′)

=
N∑

m′=m+1

∑
ele′

i〈kem|le′m′〉iwm′
e−βEm′

l

Z̃m′
i〈le′m′|k′em〉i (19)

and Z̃m = dN−mZm from Sec. II, we have

ρ++
sr (m)

=
∑

l

Sm
sf li

wm

e−βEm
l

Zm

Sm
li rf

+
∑
kk′

Sm
sf ki

Rm
red(k,k′)Sm

k′
i rf

. (20)
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In the other terms with I−
m , we notice that [38]

I−
mρ̃m′ = ρ̃m′I−

m =
{
ρ̃m′ if m′ < m,

0 otherwise;

then

ρ+−
sr (m) =

N∑
m′=m0

wm′
∑

e

f 〈sem|I+
m ρ̃m′I−

m |rem〉f

=
m−1∑

m′=m0

wm′
∑
eqe′

f 〈sem|qe′m〉i i〈qe′m|ρ̃m′ |rem〉f

=
m−1∑

m′=m0

∑
eqe′
le′′

f 〈sem|qe′m〉i i〈qe′m|le′′m′〉iwm′

× e−βEm′
l

Z̃m′
i〈le′′m′|rem〉f .

This term equals zero since i〈qe′m|le′′m′〉i = 0 with m′ < m

(i.e., discarded states |le′′m′〉 at iteration m′ < m have no
overlap with states |qe′m〉 of later iterations). Similarly,
ρ−+

sr (m) = 0.
Finally, the last term contributing to ρ

i→f
sr (m) is given by

ρ−−
sr (m) =

N∑
m′=m0

wm′
∑

e

f 〈sem|I−
mρ̃m′I−

m |rem〉f

=
m−1∑

m′=m0

∑
e,le′

f 〈sem|le′m′〉iwm′
e−βEm′

l

Z̃m′
i〈le′m′|rem〉f .

Inserting 1 = 1+
m′ + 1−

m′ from Eq. (3) into the overlap matrix
elements appearing above, we have that

f 〈sem|le′m′〉i = f 〈sem|(1+
m′ + 1−

m′ )|le′m′〉i
=

∑
k

f 〈sem|ke′m′〉f f 〈ke′m′|le′m′〉i

+
m′∑

m′′=m0

∑
l′e′′

f 〈sem|l′e′′m′′〉f f 〈l′e′′m′′|le′m′〉i

=
∑

k

f 〈sem|ke′m′〉f Sm′
kf li

(21)

since f 〈sem|l′e′′m′′〉f = 0 for m′′ < m; then

ρ−−
sr (m) =

m−1∑
m′=m0

∑
ee′kk′

f 〈sem|ke′m′〉f

×
[∑

l

Sm′
kf li

(
wm′

e−βEm′
l

Z̃m′

)
Sm′

li k
′
f

]
f 〈k′e′m′|rem〉f .

(22)

In general, we proved that ρ+−
sr (m) = ρ−+

sr (m) = 0 and

ρi→f
sr (m) = ρ++

sr (m) + ρ−−
sr (m), (23)

without the restriction of using a density matrix defined for the
last iteration; therefore the calculation of O(t) is possible at
arbitrary temperatures for a general initial state. Furthermore,

in Eq. (22), ρ−−
sr (m) is no longer expressed in terms of overlap

matrix elements (S-matrix elements) between initial and final
states belonging to different shells, but instead involves only
shell-diagonal matrix elements. This simplifies the calculation
of ρ−−

sr (m) making it as simple as the calculation of Rm
red(ki,k

′
i)

[16]; notice the structural similarities between Eq. (19) and
Eq. (22). The Rm

red are obtained efficiently by tracing out shell
degrees of freedom backwards starting from N in a recursive
manner. Similarly, the ρ−−(m) can be obtained recursively
by a forward iteration procedure starting from m = m0. This
forward recursive procedure, described in the next section,
makes the calculation of ρ−−(m) as efficient as that for Rm

red.

IV. RECURSION RELATIONS FOR THE PROJECTED
DENSITY MATRIX

As shown in the last section, the projected density matrix
is simplified into two contributions [Eq. (23)]. In this section,
we show how to calculate them recursively. For convenience,
we rewrite Eq. (23) as

ρi→f
sr (m) = ρ̃++

sr (m) + ρ0
sr (m) + ρ−−

sr (m), (24)

where

ρ̃++
sr (m) =

∑
kk′

Sm
sf ki

Rm
red(k,k′)Sm

k′
i rf

, (25)

ρ0
sr (m) =

∑
l

Sm
sf li

(
wm

e−βEm
l

Zm

)
Sm

lirf
. (26)

ρ0
sr (m) can be calculated easily at each shell once we have all

the eigenvalues and overlap matrix elements. ρ̃++
sr (m) can also

be calculated at each shell, once Rm
red(ki,k

′
i) has been calculated

recursively. Here, we present the recursive calculation for
ρ−−

sr (m), with the calculation for Rm
red(ki,k

′
i) being similar

[16,36].
Using the above definition of ρ0

sr (m) and 1
Zm′ = 1

Z̃m′ d
N−m′

,
we have that Eq. (22) is equivalent to

ρ−−
sr (m)

=
m−1∑

m′=m0

1

dN−m′

∑
ee′
kk′

f 〈sem|ke′m′〉f ρ0
kk′(m′)f 〈k′e′m′|rem〉f .

We note that ρ−−
sr (m0) = 0, and

ρ−−
sr (m0 + 1) = 1

dN−m0

∑
ee′
kk′

f 〈se(m0 + 1)|ke′m0〉f ρ0
kk′(m0)f

×〈k′e′m0|re(m0 + 1)〉f
= 1

d

∑
αm0+1kk′

A
αm0+1†
sk ρ0

kk′(m0)A
αm0+1

k′r (27)

since f 〈k′e′m0|re(m0 + 1)〉f =δe′eA
αm0+1

k′r with e′={e,αm0+1},
and

∑
e = dN−(m0+1). In the above we used the no-

tation of Ref. [16] for the transformation matrix
A

αm0+1

k′r relating eigenstates |r(m0 + 1)〉 of Hm0+1 to the

075118-6



GENERALIZATION OF THE TIME-DEPENDENT . . . PHYSICAL REVIEW B 89, 075118 (2014)

product basis |k′m0〉|αm0+1〉, i.e.,

|r(m0 + 1)〉 =
∑

k′αm0+1

A
αm0+1

k′r |k′m0〉|αm0+1〉. (28)

Similarly, we have that

ρ−−
sr (m0 + 2) = 1

d

∑
αm0+2

kk′

A
αm0+2†
sk ρ0

kk′(m0 + 1)A
αm0+2

k′r + 1

d2

∑
αm0+2αm0+1

kk′k1k
′
1

A
αm0+2†
sk A

αm0+1†
kk1

ρ0
k1k

′
1
(m0)A

αm0+1

k′
1k

′ A
αm0+2

k′r .

Using the definition of ρ−−
sr (m0 + 1) in Eq. (27), we obtain

ρ−−
sr (m0 + 2) = 1

d

∑
αm0+2

kk′

A
αm0+2†
sk

[
ρ0

kk′(m0 + 1) + ρ−−
kk′ (m0 + 1)

]
A

αm0+2

k′r .

Consequently, we have the recursion relation

ρ−−
sr (m) =

⎧⎨
⎩

0 if m = m0,
1
d

∑
αm

kk′
A

αm†
sk

[
ρ0

kk′(m − 1) + ρ−−
kk′ (m − 1)

]
A

αm

k′r otherwise . (29)

In this relation, ρ−−
sr (m) is no longer expressed in terms of all the earlier shells as in Eq. (22), but just in terms of one earlier shell

(m − 1). The recursion relation for the reduced full density matrices in Eq. (19) may be derived in a similar way, leading to the
expression

Rm
red(k,k′) =

{
0 if m = N,∑

lαm+1
A

αm+1
kl

(
wm+1

e
−βE

m+1
l

Zm+1

)
A

αm+1†
lk′ + ∑

k1k
′
1αm+1

A
αm+1
kk1

Rm+1
red (k1,k

′
1)Aαm+1†

k′
1k

′ otherwise
, (30)

in which Rm
red(k,k′) depends only on terms of one later shell

(m + 1).
Summarizing, one can use Eq. (29) to determine ρ−−

sr (m)
recursively in a single forward run, while Eq. (30) may
be used to determine Rm

red(k,k′) [and hence ρ++
sr (m) from

Eq. (20)] recursively in a backward run. While the ρ++
sr (m)

is the contribution to the projected density matrix at iteration
m arising from lower-energy states, at subsequent iterations
m′ � m, ρ−−

sr (m) is the contribution to the projected density
matrix at iteration m arising from higher-energy states at
earlier iterations m′ < m [see Eq. (22)]. The former is
finite in the equilibrium limit Hf = Hi , yielding the correct
Boltzmann factors in thermodynamic averages, while the latter
is finite only for nonequilibrium Hf �= Hi [as can be seen
from Eq. (22)]. Finally, the modifications to the recursive
expressions Eq. (29) and Eq. (30) in the case where SU(2)
symmetry is used are given in Appendix C.

V. NUMERICAL RESULTS

In this section, we apply the finite-temperature TDNRG
approach to the Anderson impurity model, a prototype model
of strong electronic correlations. Section V A describes the
model and the switching protocols that we shall consider.
Section V B tests the trace-conservation property [Eq. (12)]
of the projected density matrix ρi→f . This is both a useful test
of the correctness of our expression for ρi→f as calculated
from the recursion relations in Eqs. (24)–(30), and also
indicates the relative importance of the various contributions
to this quantity at different temperatures. The time dependence
of observables is presented in Sec. V C, where we attempt to
identify which contributions result in noise in the long-time

dynamics and how this noise is affected by averaging over
discretizations of the band. Sections V D–V E present results
for the short- (t → 0+) and long-time (t → +∞) limits of
local observables, such as the impurity occupation and double
occupation, discussing in particular how different switching
protocols, the order of switchings, and quench strengths affect
the accuracy of the long-time limit. A comparison between
results within the present TDNRG approach and that of Anders
and Schiller in Refs. [14,40] is also presented (Fig. 3 and
Fig. 8).

A. Anderson impurity model

We illustrate the finite-temperature TDNRG method by
applying it to the Anderson impurity model. This is defined by
Eq. (1) with

Himp =
∑

σ

εd (t)ndσ + U (t)nd↑nd↓, (31)

Hbath =
∑
kσ

εkc
†
kσ ckσ , (32)

Hint =
∑
kσ

V (t)(c†kσ dσ + d†
σ ckσ ), (33)

where ndσ is the number operator for electrons with spin σ in
a local level with energy εd (t), U (t) is the Coulomb repulsion
between electrons in this level, V (t) is the hybridization matrix
element of the local d state with the conduction states, and εk

is the kinetic energy of the conduction electrons with wave
number k. For simplicity, we shall consider only quenches in
which the d-level energy or Coulomb repulsion (or both) are
changed at t = 0 while V (t) = V is kept constant. Specifically,
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we consider (a) switching the d-orbital energy εd = θ (−t)εi +
θ (t)εf while keeping U (t) = Ui = Uf constant, and (b)
switching the Coulomb interaction U (t) = θ (−t)Ui + θ (t)Uf

with simultaneous change of εd (t) = θ (−t)εi + θ (t)εf . In the
former, the interest is in switching between different regimes
of the Anderson model, e.g., from the mixed-valence regime
with εi = 0 to the Kondo regime with εf = −Uf /2, and vice
versa (or between two Kondo regimes with differing level
energies), while in the latter it is of interest to investigate
switching between an uncorrelated (Ui = 0) and a correlated
system (Uf > 0), or vice versa.

The Anderson model has several bare energy scales, such
as εd, U , and the hybridization strength � = πρV 2, where
ρ = 1/W is the density of states per spin for a flatband of
width W = 2D = 2, where D = 1 is the half-bandwidth. In
the case of strong correlations U � π� and −εd � � it also
develops a renormalized low-energy scale, the Kondo scale
TK = √

U�/2eπεd (εd+U )/2�U . Since εd will often be varied
below, whenever TK appears in the numerical calculations
below, it will denote the symmetric Kondo scale with U =
max(Ui,Uf ). We shall mainly focus on the expectation value of
the local level occupation 〈nd (t)〉 and of the double occupancy
〈nd↑(t)nd↓(t)〉. In the results reported below, we shall express
temperature and time dependences in terms of T/TK and
t�, respectively. Short, intermediate, and long times will
correspond to t� � 1, t� ∼ 1, and t� � 1, respectively. The
short-time (t → 0+) and long-time (t → +∞) limits of the
TDNRG will be tested against the exactly known results (ob-
tained, for example, from thermodynamic calculations for the
initial-/final-state Hamiltonians). This allows the accuracy of
the TDNRG approach to be benchmarked at finite temperature.

B. Trace of ρ
i→ f
sr

Since the projected density matrix is the most important
quantity in our formulation of the finite-temperature TDNRG,
we consider Tr[ρi→f ] vs temperature first. Appendix A shows
that Tr[ρi→f ] = 1 is an exact result, obtained for the special
case of time evolution in Eq. (9) when Ô = 1. This result is
useful as a test of the numerical accuracy of the calculations
as well as a way of estimating the relative contributions of
ρ̃++, ρ0, and ρ−− to ρi→f and hence their importance for the
time dependence. Figure 1 shows that the trace is conserved
to within an error less than 10−10 at all temperatures. The
same accuracy holds also for any choice of εd , U , and �.
The trace of each contribution to ρi→f , i.e., ρ̃++, ρ0, and
ρ−−, is also shown in Fig. 1. We see that Tr[ρ̃++] has its
main contribution at low to intermediate temperatures, while
the main contribution of Tr[ρ0] is at intermediate to high
temperatures. The contribution of Tr[ρ−−] can be as large
as 20% at intermediate temperatures, but vanishes only at
T � TK and T � TK . These results exhibit the numerical
precision of the calculation, and also show the correctness
of generalizing the TDNRG at finite temperature, which
essentially depends on ρ−−.

C. Time-dependence

Figure 2(a) shows the time dependence of the occu-
pation number nd (t) after switching the system from the

 0

 0.2

 0.4

 0.6

 0.8

 1

10-4 10-3 10-2 10-1 100 101 102 103 104 105

T
r[

ρ]

T/TK

ρi→f

ρ~++ 
ρ0   
ρ--  

FIG. 1. (Color online) Tr[ρi→f ] and its contributions vs temper-
ature. The system is switched from εi = 0 (mixed-valence regime)
to εf = −6� (symmetric Kondo regime). The other parameters are
Ui = Uf = U = 12� and � = 10−3D. TK ≈ 2.0 × 10−5D is the
Kondo temperature in the final state. The calculations are for � = 2,
no z averaging, and keeping 660 states per NRG iteration.

mixed-valence regime to the symmetric Kondo regime at three
representative temperatures T = 0.1TK , T = 100TK ≈ 2�,
and T = 105TK ≈ W . The results at lower temperatures T �
TK , are qualitatively similar to those in the lowest-temperature
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(b) Nz=32
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FIG. 2. (Color online) Time dependence of occupation number
nd (t) at different temperatures with switching as in Fig. 1 (i.e., from
the mixed-valence to the symmetric Kondo regime with U = Ui =
Uf = 12�). (a) Calculation for � = 2, no z averaging, and keeping
660 states per NRG iteration. The upper and lower insets, respectively,
represent the contributions of the kept states and discarded states to
the occupation number in the range 1 � t� � 102. (b) Calculation
as in (a), but with z averaging, using Nz = 32. Insets as in (a) show
contributions from kept (upper) and discarded (lower) states.
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case (T = 0.1TK ) shown in Fig. 2, namely, starting from
the thermodynamic value of the initial state at t = 0, nd (t)
varies smoothly at short (t� � 1) and intermediate t� ∼ 1
time scales, and develops noise at longer times t� � 1. At
higher temperature T = 100TK ∼ 2�, nd (t) evolves from a
higher initial value at t = 0, as expected from the behavior of
the occupation number with temperature in the mixed-valence
regime [17,38] and exhibits less noise at long times than the
low-temperature curve. Since the final state is particle-hole
symmetric, one expects that nd (t → +∞) = 1 in the final
state. Instead, we see that, for the above temperatures, the
long-time limit of nd (t) deviates from the exact value by
2%–3%. This will be analyzed in more detail in Sec. V E.
Finally, we see that at very high temperature T = 105TK ≈ W ,
the occupation number nd (t) is almost independent of time and
and lies very close to its expected thermodynamic value. The
noise is also seen to be negligible in this limit. The main
panel of Fig. 2(b) shows the effect of z averaging [32,33] with
Nz = 32 on the above results. We see that z averaging reduces
the noise at long times, but does not improve on the expected
long-time limit for nd (i.e., the error for the low-temperature
results remains 2%–3%).

Since
∑

rs /∈KK ′ = ∑
rs∈KD +∑

rs∈DK +∑
rs∈DD , we de-

compose O(t) in Eq. (9) as follows: O(t) = OKD(t) +
ODK (t) + ODD′

(t). OKD(t) + ODK (t) represents the con-
tribution from the kept states, while ODD′

(t) represents
the contribution from just the discarded states. These two
contributions to the total time evolution without and with the z

averaging are respectively shown in the insets to Figs. 2(a) and
2(b) in the time range t� � 1. The upper inset to Fig. 2(a)
shows the contribution of kept states, nKD

d (t) + nDK
d (t) =

2
∑N

m=m0

∑∈KD
kl ρ

i→f

kl (m) cos[(Em
k − Em

l )t]nm
lk . This contri-

bution, evolving in time as cos[(Em
k − Em

l )t], exhibits sig-
nificant noise at long times. The features in the noise from
this contribution are reflected in the total. We do not observe
such large noise in the remaining contribution nDD′

d (t), which
evolves in time as cos[(Em

l − Em
l′ )t] (lower inset). The insets

in Fig. 2(b) also show the contributions of kept and discarded
states to the total time evolution, calculated with Nz = 32. The
z averaging also reduces the noise appearing in the kept-state
contribution, but has a small effect on the discarded-state
contribution. On the other hand, nKD

d (t) + nDK
d (t) equilibrates

to zero in the long-time limit, whereas nDD′
d (t) makes up all

the contribution in this limit (as expected, since the long-time
limit consists of selecting states with Em

r = Em
s , implying that

they are both discarded states). This implies that the noise is
mainly coming from the eigenvalues of the kept states, or more
generally, the NRG approximation, as the low-energy kept
states at each iteration are the ones most affected by the NRG
truncation procedure. On the other hand, the observed error in
the long-time limit is likely not due to the NRG approximation,
since this approximation generally has a smaller effect on the
high-energy (discarded) states, which are also the only ones
contributing to this limit.

It is of interest to compare the present TDNRG calculations
with those from previous work [14,40]. As mentioned in
Sec. II, previous TDNRG calculations at finite temperature T

were carried out by choosing a shorter chain of length M < N ,
such that T ≈ TM = ωM , where ωM is the characteristic

 0.65
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 0.8
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 0.9

 0.95

 1

 0.01  0.1  1  10  100

n d
(t

)

tΓ

Nz=32

present
AS

 0.9

 0.95

 1

Nz=1

FIG. 3. (Color online) Time dependence of the occupation num-
ber nd (t) calculated within the present TDNRG (full line) and the
Anders-Schiller approach (AS). Switching as in Fig. 1 with the
same parameters (mixed-valence to symmetric Kondo state). The
calculation is at T = 102TK with � = 2 and z averaging with
Nz = 32, and keeps 660 states per NRG iteration. The inset represents
the results with no z averaging.

energy scale of the Wilson chain of length M . In this approach,
the initial-state density matrix includes only the contribution
from all the states of shell M [i.e., it uses Eq. (18) with
N = M]. Figure 3 shows nd (t) calculated within the present
TDNRG and in the previous approach of Anders and Schiller
(AS) in Refs. [14,40] at T = 102TK , with z averaging. The
two calculations give very similar results at short times, while
there is a clear difference at long times. The long-time limit
of the occupation number in the present work is closer to the
expected value than in the AS approach. We also see that
the time evolution in the AS approach exhibits more noise
than in the present one, both with and without z averaging
(see the inset to Fig. 3). These differences show that at finite
temperature T ≈ TM , the use of a short chain of length M

in the approach of AS does not capture the time evolution of
local observables as accurately as within our approach based
on using a FDM for the initial state. On the other hand, at low
temperatures (T < TK ), the chain of length M corresponding
to T is sufficiently long that the two approaches give very
similar results.

D. Short-time limit

In the short-time limit t → 0+, the NRG approximation is
not operative in Eq. (9), and, as indicated in Sec. II, O(t = 0)
exactly equals Oi , the thermodynamic value in the initial state,
calculated within the FDM approach [38,107]. In Fig. 4, we
show the short-time limit of the occupation number as well
as the initial-state thermodynamic value in a wide range of
temperatures. The system is switched from the asymmetric
to the symmetric Kondo model. We can see that nd (t = 0)
within the TDNRG agrees perfectly with the thermodynamic
value at all temperatures and for any initial-state preparation,
the absolute error being less than 10−10. We have the same
precision with other sets of parameters, i.e., εd , U , and �, or
other local observables, e.g., double occupancy. This provides
a check on our generalization to arbitrary temperatures, on the
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FIG. 4. (Color online) Local level occupation number nd (t) in
the short-time limit vs temperature for different initial εi keeping the
final εf = −6� and Ui = Uf = U = 12� fixed (i.e., switching from
the asymmetric model to the symmetric Kondo regime). � = 10−3D,
and TK ≈ 2.0 × 10−5D is the symmetric Kondo temperature of the
final state. The symbols represent results with the TDNRG; the lines
are the thermodynamic values in the initial state. The calculations are
for � = 2, no z averaging, and keeping 660 states per NRG iteration.

expression for ρi→f entering the calculation of O(t → 0+),
and on the accuracy of the numerical calculations.

We have also tested the short-time limit within the AS
approach for the same system and switching parameters as in
Fig. 4. In this case, the short-time limit for nd (t) corresponds
exactly to the thermodynamic value in the initial state, cal-
culated within the conventional approach to thermodynamics
via the NRG [6,8]. As shown in Ref. [107], the FDM and
conventional approaches to thermodynamics give essentially
the same results, so we conclude that the short-time limit of
the AS approach is also numerically exact.

E. Long-time limit and thermalization

In the long-time limit t → +∞, we already clarified in the
previous section that the NRG approximation is not the main
source of error. However, there is another source of error, the
logarithmic discretization of the band. In order to estimate
the accuracy of the long-time limit, we define the following
percentage relative error:

δO(t → +∞) = 100 × O(t → +∞) − Of

Of

, (34)

in which Of is the thermodynamic value in the final state
calculated within the FDM approach to thermodynamics [107].
The closeness of the long-time limit to Of indicates either the
extent to which the system thermalizes at long times, or the
extent of the errors arising from the discretization (the two
may also be related [48]).

Figure 5 shows the relative error in nd (t → +∞) upon
switching from the asymmetric to the symmetric model
[Fig. 5(a)], and vice versa [Fig. 5(b)]. We can see two trends.
The first one is that the larger the quench, measured by the
difference �εd between εi and εf in this case, the larger
the error in the long-time limit in both Figs. 5(a) and 5(b). The
error in the former lies below 4% in all cases and in the latter
below 10%. The error vanishes for �εd → 0 and one recovers
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εi= 0Γ
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FIG. 5. (Color online) The (percentage) relative error of the local
level occupation number in the long-time limit vs temperature.
Ui = Uf = U = 12� and � = 10−3D. (a) Switching is from the
asymmetric model to the symmetric Kondo regime, as in Fig. 4.
(b) Reverse switching, from the symmetric Kondo regime to the
asymmetric model [the εf are indicated and are the same as the εi in
(a)]. TK ≈ 2.0 × 10−5D is the Kondo temperature of the symmetric
model and calculations are for � = 1.6, no z averaging, and keeping
660 states per NRG iteration.

the exact equilibrium results. The error exhibits an extremum
at a temperature T ≈ 300TK ≈ 6� = U/2 in both Figs. 5(a)
and 5(b). In addition, a second extremum is visible for large
quenches in Fig. 5(b) at T ≈ 7TK = 0.14�. Signatures of
this, as shoulders, are present also in Fig. 5(a) for the largest
quenches. The second trend is the strong dependence of the
error on the magnitude of the largest incoherent excitation in
the final state, denoted by εmax

inc and defined by

εmax
inc = max(|εf |,|εf + U |,�). (35)

We see that εmax
inc = 6� for all final states of Fig. 5(a), but

increases from 7� to 12� for the corresponding final states
of Fig. 5(b), with the error increasing monotonically with
increasing εmax

inc .
We consider a different switching protocol in order to

check that the above two trends persist. We switch both
the Coulomb interaction U (t) = θ (−t)Ui + θ (t)Uf , and the
level energy εd (t) such that εd (t) + U (t)/2 = 0, thereby
maintaining particle-hole symmetry in both the initial and
final states. By doing so, we are considering switching from
a strongly correlated system to a less correlated one (or
vice versa). Since εd (t) + U (t)/2 = 0, the occupation number
equals 1 in both initial and final states, and we find numerically
that nd (t) = 1 with negligible error. Therefore, we present here
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(a) Uf=12Γ
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 Ui= 4Γ
 Ui= 6Γ
 Ui= 8Γ
 Ui=10Γ

FIG. 6. (Color online) The (percentage) relative error of the
double occupation number in the long-time limit vs temperature.
� = 10−3D, and switching is applied maintaining the particle-
hole symmetry, i.e., εd (t) + U (t)/2 = 0. (a) Switching from a less
correlated system to a more correlated one (Uf > Ui). (b) Reverse
switching, from a more correlated to a less correlated system
(Uf < Ui). The Uf are indicated and are the same as the Ui in (a).
TK ≈ 2.0 × 10−5D is the Kondo temperature of the most correlated
system and calculations are for � = 1.6, no z averaging, and keeping
660 states per NRG iteration.

the results of the double occupancy in the long-time limit.
Figure 6(a) shows the relative error in the long-time limit upon
switching from a less correlated to a more correlated system
and Fig. 6(b) shows the same error but with the switching
reversed. We see that both cases follow the trend that the
larger the quench �U = |Uf − Ui |, the bigger the error, with
a small violation of this trend only for the case of switching
to an uncorrelated system with Uf = 0 in Fig. 6(b) where the
error is almost the same as for the next most correlated system
with Uf = 2�. We also note that the extrema in the error for the
double occupancy are qualitatively similar to those found for
the occupation number in Figs. 5(a) and 5(b) above. Comparing
now the same size of quench, in both Figs. 6(a) and 6(b), we
see that the error is larger in Fig. 6(a) with εmax

inc constant at
6�, than in Fig. 6(b) with εmax

inc smaller and ranging from � to
5�. We note also that the errors in the long-time limit of the
double occupancy are larger than the corresponding ones in the
occupation discussed above, reaching values as large as 25%
for highly correlated final states. This is due to the fact that
the double occupancy can become very small in a correlated
system; hence while the absolute errors in the long-time limit
for different observables are actually found to be comparable,

the relative error for the double occupancy can become large
for highly correlated final states.

Combining the observations from Fig. 6 with those of
Fig. 5, we conclude that the error in the long-time limit of
a local observable depends strongly on (a) the size of the
quantum quench, and (b) the magnitude of the highest-energy
incoherent excitation in the final state. A possible reason for
(b) is that the logarithmic discretization scheme used in the
TDNRG calculations does not capture accurately enough the
high-energy excitations (see the next paragraph for supporting
results). Further discussion of the long-time limit, supporting
the above conclusions, is presented in Appendix D, where we
show results for additional switching protocols.

In order to support the point made above concerning the
logarithmic discretization, we consider observables in the
long-time limit, calculated with different discretization pa-
rameters � and at T = 10−4TK (essentially zero temperature).
The system considered is that in Fig. 2(a), with switching being
from the mixed-valence to the symmetric Kondo regime. The
expected value of the occupation number in the long-time
limit is 1. Figure 7 shows the shell-accumulated value for
nd (t → +∞), i.e., the quantity

∑mshell
m=m0

nd (m) where nd (m)
is the contribution to the long-time limit from shell m. We
observe that the final result for mshell = N , with contributions
from all shells included, nd (t → +∞), is closer to the expected
value of 1 when � is closer to 1, the continuum limit. A
smaller � resolves the spectrum better at high energies and
could account for the observation (b) above. The trend with
decreasing � suggests that the exact result can be obtained in
the limit � → 1+.

It is worth commenting on whether the results for the total
occupation number nd (t → ∞) = ∑N

m=m0
nd (m) shown in

Fig. 7 (symbols) are indeed converged with respect to the chain
length N = N (�) used in the calculations. For each � we
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FIG. 7. (Color online) � dependence of the shell-accumulated
local level occupation number in the long-time limit at T = 10−4TK

(symbols). Switching is from the mixed-valence (εi = 0) to the
symmetric Kondo regime (εf = −6�) with U = Ui = Uf = 12�.
The Kondo scale in the final state is TK ≈ 2.0 × 10−5D. The
calculations are done with no z averaging and keeping 660 states
per NRG iteration. The solid lines indicate the effect of increasing
the Wilson chains above by six additional sites, maintaining the same
T . The total nd (t → ∞) = ∑N ′=N+6

m=m0
nd (m) is unchanged, indicating

converged results (see the text for further discussion).
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choose N such that �−(N−1)/2 ≈ 10−4TK which is sufficiently
long to carry out calculations for all temperatures down to
the smallest scale accessible, i.e., down to T ≈ 10−4TK , the
temperature used in Fig. 7. Nevertheless, in order to show that
the above results are indeed converged, and that the observed
trend that nd (t → ∞) comes closer to the exact value with
decreasing � is correct, we carried out calculations also for
longer Wilson chains and showed that nd (t → ∞) remained
unchanged. This is illustrated by the solid lines in Fig. 7,
which show the shell-accumulated occupation numbers for a
Wilson chain of length N ′ = N + 6 with T = 10−4TK fixed.
The final value of nd (t → ∞) at shell N ′ is unchanged, but the
approach of the shell-accumulated occupation to this value is
modified. The upturn in the contribution to an observable from
shells close to m = NT where �−(NT −1)/2 ≈ T is a feature of
multiple-shell calculations [16], but does not imply that the
cumulative sum over all shells is not converged.

Finally, we compare the long-time limit of the present
TDNRG with previous work in Refs. [14,40]. Figure 8
exhibits the relative error of the occupation number in the
long-time limit with (a) switching from the mixed-valence
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(b) εi=-6Γ, εf= 0Γ

FIG. 8. (Color online) The (percentage) relative error of the local
level occupation number in the long-time limit calculated with
the present TDNRG (full line) and the approach of Refs. [14,40]
(AS) at all temperatures. (a) The system is switched from the
mixed-valence regime with εi = 0 to the symmetric Kondo regime
with εf = −6� keeping Ui = Uf = U = 12� fixed and � = 10−3D.
The calculation is for � = 1.6 and Nz = 32, and keeps 660 states per
NRG iteration. (b) As in (a), but with the reverse switching from
the symmetric Kondo (εi = −6�) to the mixed-valence (εf = 0�)
regime. Other parameters are as in (a) and TK ≈ 2.0 × 10−5D denotes
the symmetric Kondo scale.

to the symmetric Kondo regime, and (b) vice versa. This
figure illustrates further details of the comparison discussed
in Sec. V C that at low temperatures T < TK the two schemes
give essentially the same results, while a significant difference
arises in the temperature range TK � T < 104TK , with the
present TDNRG calculations showing improved accuracy for
both Figs. 8(a) and 8(b).

VI. MULTIPLE QUENCHES AND GENERAL PULSES

From the results in Sec. V we see that the TDNRG
approach becomes increasingly more accurate at long times
with decreasing size of the quantum quench, while in the short-
time limit t → 0+ it is always exact [see Eq. (13) and Fig. 4].
We can also show that the TDNRG calculation remains more
accurate at short to intermediate times with decreasing quench
size. To show this, we require a comparison to exact results at
finite time. These are available for the noninteracting limit of
the Anderson model Ui = Uf = U = 0, i.e., for the resonant
level model [40]. In Fig. 9 we show the (percentage) relative
error δnd (t) in nd (t) from TDNRG calculations, using the
analytic result for the resonant level model as reference. The
error is shown for several quantum quenches, corresponding
to varying εi keeping εf = 2� fixed, i.e., the quench sizes are
�εd = εf − εi = �,2�,3�,4�. From Fig. 9 we see that for
sufficiently small quantum quenches �εd � �, the relative
error in nd (t) remains below 1% for times exceeding t� ∼ 1,
whereas for larger quenches the error exceeds 1% at t� ≈ 0.5.
This is further illustrated in the inset to Fig. 9, which shows
nd (t) for the largest and smallest quenches. The analytic results
in both quenches saturate to the same value, lying on top
of each other at long times (since the final-state energy εf

is fixed for all quenches), whereas we see that the TDNRG
result in the case of the smaller quench fits very well the
analytic one in the whole time interval, while, in the case
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FIG. 9. (Color online) Percentage relative error in the occupation
number calculated with the TDNRG applied to the resonant level
model, using the exact analytic results for reference. Calculations are
with varying εi and fixed εf = 2�. D = 103�, T = 10−4�, � = 2,
and Nz = 32. The inset shows the time evolution of the occupation
number calculated within TDNRG (dots) and the analytic expressions
(solid lines) in the cases that the quenches are the biggest and smallest
in the main figure.
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FIG. 10. A system driven from an initial to a final state via
a sequence of quantum quenches at times τ̃0 = 0,τ̃1, . . . ,τ̃n with
evolution according to HQp in the time interval τ̃p > t � τ̃p−1. Such a
sequence of multiple quantum quenches could also be used to describe
periodic switching or to approximate any general continuous pulse
(smooth solid line).

of the larger quench, the TDNRG result fits the analytic one
only up to t� � 2, and deviates from this at longer times.

In summary, then, the TDNRG is a controlled method
for short times and sufficiently small quantum quenches.
This suggests a way to improve the long-time limit within
a TDNRG approach, by replacing a large quantum quench by
a sequence of smaller quantum quenches over a short time
scale τ̃n. The time evolution from the initial state at t < 0 to
the final state at t > τ̃n is achieved by applying the TDNRG
to the sequence i = 1, . . . ,n of small quantum quenches in
the intervals τ̃i � t < τ̃i+1 with τ̃0 = 0 and τ̃n = ∑n

i=1 τi (see
Fig. 10). For sufficiently small intervals, this should then allow
the TDNRG to access longer times more accurately than would
be possible with a single large quantum quench.

In this section we show how the above idea of using multiple
quenches to improve the long-time limit may be accomplished
within the formalism presented in Secs. III and IV. As
illustrated schematically in Fig. 10, such an approach would
also allow the treatment of general continuous pulses acting
in a finite time interval τ̃n, since a sequence of small quantum
quenches acts as a discrete approximation for a continuous
pulse. Such pulses, acting over a finite time interval, also
correspond more closely to the actual situation in experiments.
As a special case of the general multiple quench that we shall
treat, we mention the case of periodic switching between two
states (i.e., a train of square pulses) [50].

For a system driven through a set of quenches, as in Fig. 10,
the time-evolved density matrix at a general time in the interval
τ̃p+1 > t � τ̃p is given by

ρ(t) = e−iH
Qp+1 (t−τ̃p)e−iHQp τp · · · e−iHQ1 τ1ρeiHQ1 τ1 · · · eiHQp τpeiH

Qp+1 (t−τ̃p), (36)

in which HQp,p = 1, . . . ,n, are intermediate quench Hamiltonians, acting during time intervals of length τp,p = 1, . . . ,n, that
determine the time evolution at intermediate times, and HQ0 = Hi and HQn+1 = Hf are the initial- and final-state Hamiltonians,
respectively (see Fig. 10).

The time evolution of a local observable at τ̃p+1 > t � τ̃p is expressed in terms of the complete basis set of HQp+1 as

O(t) =
∑
mle

Qp+1〈lem|ρ(t)Ô|lem〉Qp+1 =
∑
mle

Qp+1〈lem|e−iH
Qp+1 (t−τ̃p) · · · e−iHQ1 τ1ρeiHQ1 τ1 · · · eiH

Qp+1 (t−τ̃p)Ô|lem〉Qp+1 , (37)

in which we used
∑

m for
∑N

m=m0
. Inserting 1Qp+1 = ∑

mle |lem〉Qp+1 Qp+1〈lem|, the identity belonging to HQp+1 , in front of the

operator Ô in the above equation, and using
∑

ke |kem〉〈kem| = ∑N
m′=m+1

∑
l′e′ |l′e′m′〉〈l′e′m′|, we have

O(t) =
/∈KK ′∑
mrse

Qp+1〈rem|e−iHQp τp · · · e−iHQ1 τ1ρeiHQ1 τ1 · · · eiHQp τp |sem〉Qp+1e
−i(Em

r −Em
s )(t−τ̃p)Om

sr

=
/∈KK ′∑
mrs

ρ
i→Qp+1
rs (m,τ̃p)e−i(Em

r −Em
s )(t−τ̃p)Om

sr , (38)

with

ρ
i→Qp+1
rs (m,τ̃p) =

∑
e

Qp+1〈rem|e−iHQp τp · · · e−iHQ1 τ1ρeiHQ1 τ1 · · · eiHQp τp |sem〉Qp+1 .

Evidently, this projected density matrix can recover its counterpart for a single quench since ρi→Q1
rs (m,τ̃0) =∑

e Q1〈rem|ρ|sem〉Q1 = ρi→Q1
rs (m). Substituting the FDM of the initial state into the above projected density matrix, we have

ρ
i→Qp+1
rs (m,τ̃p) =

∑
m1l1e1e

Qp+1〈rem|e−iHQp τp · · · e−iHQ1 τ1 |l1e1m1〉iwm1

e
−βE

m1
l1

Z̃m1

i〈l1e1m1|eiHQ1 τ1 · · · eiHQp τp |sem〉Qp+1 . (39)

We decompose ρ
i→Qp+1
rs (m,τ̃p) into three terms,

ρ
i→Qp+1
rs (m,τ̃p) = ρ̃++

rs (m,τ̃p) + ρ0
rs(m,τ̃p) + ρ−−

rs (m,τ̃p), (40)
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corresponding to the m1 > m, m1 = m, and m1 < m contributions in Eq. (39) [compare with Eq. (24) for the single-quench
case]. Explicitly written out, these are given by

ρ̃++
rs (m,τ̃p)

=
N∑

m1=m+1

∑
l1e1e

Qp+1〈rem|e−iHQp τp · · · e−iHQ1 τ1 |l1e1m1〉iwm1

e
−βE

m1
l1

Z̃m1

i〈l1e1m1|eiHQ1 τ1 · · · eiHQp τp |sem〉Qp+1

=
N∑

m1=m+1

∑
l1e1e

Qp+1〈rem|e−iHQp τp · · · e−iHQ1 τ1
(
1i+

m +1i−
m

)|l1e1m1〉iwm1

e
−βE

m1
l1

Z̃m1

i〈l1e1m1|
(
1i+

m + 1i−
m

)
eiHQ1 τ1 · · · eiHQp τp |sem〉Qp+1

=
∑

kk′ee′e′′
Qp+1〈rem|e−iHQp τp · · · e−iHQ1 τ1 |ke′m〉i

N∑
m1=m+1

∑
l1e1

i〈ke′m|l1e1m1〉iwm1

e
−βE

m1
l1

Z̃m1

i〈l1e1m1|k′e′′m〉i

× i〈k′e′′m|eiHQ1 τ1 · · · eiHQp τp |sem〉Qp+1 , (41)

ρ0
rs(m,τ̃p) =

∑
lee1

Qp+1〈rem|e−iHQp τp · · · e−iHQ1 τ1 |le1m〉iwm

e−βEm
l

Z̃m
i〈le1m|eiHQ1 τ1 · · · eiHQp τp |sem〉Qp+1 , (42)

and

ρ−−
rs (m,τ̃p) =

m−1∑
m1=m0

∑
l1e1e

Qp+1〈rem|e−iHQp τp · · · e−iHQ1 τ1 |l1e1m1〉iwm1

e
−βE

m1
l1

Z̃m1

i〈l1e1m1|eiHQ1 τ1 · · · eiHQp τp |sem〉Qp+1

=
m−1∑

m1=m0

∑
l1e1e

Qp+1〈rem|(1
Qp+1+
m1 + 1

Qp+1−
m1

)
e−iHQp τp · · · e−iHQ1 τ1 |l1e1m1〉i

×wm1

e
−βE

m1
l1

Z̃m1

i〈l1e1m1|eiHQ1 τ1 · · · eiHQp τp
(
1

Qp+1+
m1 + 1

Qp+1−
m1

)|sem〉Qp+1

=
∑

kk′ee′e′′

m−1∑
m1=m0

∑
l1e1

Qp+1〈rem|ke′m1〉Qp+1 Qp+1〈ke′m1|e−iHQp τp · · · e−iHQ1 τ1 |l1e1m1〉iwm1

e
−βE

m1
l1

Z̃m1

× i〈l1e1m1|eiHQ1 τ1 · · · eiHQp τp |k′e′′m1〉Qp+1 Qp+1〈k′e′′m1|sem〉Qp+1 , (43)

in which we used 1i−
m |l1e1m1〉i = 0 for m1 > m,

1
Qp+1−
m1 |sem〉Qp+1 = 0 for m1 < m, and 1+

m =∑
ke |kem〉〈kem|. Noting that the matrix element

Qp+1〈rem|e−iHQp τp · · · e−iHQ1 τ1 |se′m〉i appears in all three
terms above, we denote this matrix element by

Sm
rQp+1 si

(ee′, − τ̃p) = Qp+1〈rem|e−iHQp τp · · · e−iHQ1 τ1 |se′m〉i ,
(44)

and call it the generalized overlap matrix element.4 We can
prove (see Appendix E) that these generalized overlap matrix
elements are diagonal in the environment variables,

Sm
rQp+1 si

(ee′, − τ̃p) = Sm
rQp+1 si

(−τ̃p)δee′ , (45)

4The factor e−iHQp τp · · · e−iHQ1 τ1 is the time evolution
operator at time τ̃p = ∑p

i=1 τi following p intermediate
quantum quenches described by HQ1 , . . . ,HQp . Hence,

Qp+1 〈rem|e−iHQp τp · · · e−iHQ1 τ1 |se′m〉i is the matrix element
of this operator between the initial states of Hi and the states of the
quench Hamiltonian HQp+1 .

with Sm
rQp+1 si

(−τ̃p) being decomposed into three terms

Sm
rQp+1 si

(−τ̃p) = Sm++
rQp+1 si

(−τ̃p) + Sm0
rQp+1 si

(−τ̃p)

+Sm−−
rQp+1 si

(−τ̃p). (46)

These terms are determined by the following equations:

Sm++
rQp+1 si

(−τ̃p) =
∑

k

Sm
rQp+1 kQp

e−iEm
k τpSm

kQp si
(−τ̃p−1), (47)

Sm0
rQp+1 si

(−τ̃p) =
∑

l

Sm
rQp+1 lQp

e−iEm
l τpSm

lQp si
(−τ̃p−1), (48)

Sm−−
rQp+1 si

(−τ̃p)

=
∑
αm

∑
kk′

A
αm†
rk

[
S (m−1)0

kQp+1 k′
i
(−τ̃p) + S (m−1)−−

kQp+1 k′
i

(−τ̃p)
]
A

αm

k′s

with Sm0−−
rQp+1 si

(−τ̃p) = 0. (49)

In the above, and in subsequent equations, indices such as
kQp+1k

′
i appearing in full within summands are abbreviated to

kk′ in summation subscripts (as in
∑

kk′ above). The recursion
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relations given by Eqs. (45)–(49) allow the generalized overlap
matrix elements in Eq. (45) to be calculated at an arbitrary time
step τ̃p > τ̃1. While Sm++ and Sm0 depend on the generalized
overlap matrix element at one earlier time step, Sm−− depends
on the 0 and −− components of these matrix elements at
the same time step, but at one earlier shell. For a detailed
proof of the above equations as well as the closed form of the
generalized overlap matrix elements at τ̃1 we refer the reader
to Appendix E.

Returning to the terms in the projected density matrix in
Eqs. (41)–(43), we substitute the generalized overlap matrix
element, which is diagonal in the environment variable, into
each term as follows:

ρ̃++
rs (m,τ̃p) =

∑
kk′

Sm
rQp+1 ki

(−τ̃p)Rm
red(k,k′)Sm

k′
i sQp+1

(τ̃p), (50)

ρ0
rs(m,τ̃p) =

∑
l

Sm
rQp+1 li

(−τ̃p)wm

e−βEm
l

Zm

Sm
li sQp+1

(τ̃p), (51)

ρ−−
rs (m,τ̃p)

=
∑
kk′e

m−1∑
m1=m0

∑
l1e1

Qp+1〈rem|ke1m1〉Qp+1Sm1
kQp+1 l1i

(−τ̃p)

×wm1

e
−βE

m1
l1

Z̃m1

Sm1

l1i k
′
Qp+1

(τ̃p)Qp+1〈k′e1m1|sem〉Qp+1

=
∑
kk′e

m−1∑
m1=m0

∑
e1

Qp+1〈rem|ke1m1〉Qp+1

1

dN−m1
ρ0

kk′(m1,τ̃p)

× Qp+1〈k′e1m1|sem〉Qp+1

= 1

d

∑
kk′αm

A
αm†
rk

{
ρ0

kk′(m − 1,τ̃p) + ρ−−
kk′ (m − 1,τ̃p)

}
A

αm

k′s

with ρ−−
rs (m0,τ̃p) = 0, (52)

in which Sm
risQp+1

(τ̃p) = [Sm
sQp+1 ri

(−τ̃p)]†, Rm
red(k,k′) is defined

as in Eq. (19), and the recursion relation for ρ−−
rs (m,τ̃p) in

Eq. (52) is derived as for ρ−−
rs (m) in Sec. IV. The above

equations determine the projected density matrix of Eq. (40)
at an arbitrary time step τ̃i � τ̃1.

One can use the scheme in previous works [14,40] to calcu-
late the projected density matrix for multiple quenches, which
yields a simplified ρ

i→Qp+1
rs (m,τ̃p) = ρ̃++

rs (m,τ̃p) + ρ0
rs(m,τ̃p)

since ρ−−
rs (m,τ̃p) = 0 can be neglected at any time step. If

one also neglects the term Sm−−
ri sQp+1

(τ̃p) of the generalized

overlap matrix element, presented above, then Sm
risQp+1

(τ̃p) ≈
Sm++

ri sQp+1
(τ̃p) + Sm0

ri sQp+1
(τ̃p). Using the definitions in Eqs. (47)

and (48), we have

ρ
i→Qp+1
rs (m,τ̃p)

≈
∑
qq ′

Sm
rQp+1 qQp

e
−i(Em

q −Em
q′ )τpρ

i→Qp

qq ′ (m,τ̃p−1)Sm
q ′

Qp
sQp+1

.

This equation is similar to Eqs. (56) and (57) in the recent
work of Ref. [50], which investigates time evolution due to
periodic switching. However, Sm−−

ri sQp+1
(τ̃p) equals zero only at

m = m0. Omitting this term leads to an accumulated error
after each time step due to the causality in Eqs. (45)–(49),
where generalized overlap matrix elements at a given time
step are shown to depend on those at one earlier time step.
This omission may be equivalent to the approximation in the
mentioned work, where an accumulated error is observed in
the time evolution.

In general, by following the procedure for calculating the
projected density matrix for the single-quench case in Sec. III,
and especially the term ρ−−

rs (m) in Sec. IV, we explicitly
formulated all the terms of the projected density matrix in
Eqs. (50)–(52) for the multiple-quench case. Substituting this
projected density matrix into Eq. (38), one can estimate the
time evolution of a local observable at an arbitrary time t � τ̃1.
For 0 = τ̃0 � t < τ̃1, one recovers the TDNRG with a single
quench as in Secs. II–IV. The entire procedure of generalizing
the TDNRG to an arbitrary number of quenches, presented
here, adopts no further approximation than does the TDNRG
with a single quench. Therefore, by ensuring sufficiently small
quantum quenches, one can expect, by the arguments presented
in the introduction to this section, to obtain high accuracy
for the time evolution even in the limit of long times. The
numerical implementation of this lies outside the scope of
the present paper and will be reported elsewhere; however, a
few remarks about the computational cost of such an approach
are in order. In comparison to the single-quench case, the main
increase in computational cost comes from (a) the requirement
to calculate the projected density matrix ρ

i→Qp+1
sr (m,τ̃p) for

p = 1, . . . ,n, i.e., for n quenches instead of one quench,5 and
(b) the requirement to calculate the generalized overlap matrix
elements Sm

rQp+1 si
(−τ̃p) also for n quenches, using an algorithm

which resembles that used for the calculation of reduced
density matrices. Since the latter are implemented highly
efficiently, we estimate the computational cost to be approxi-
mately linear in the number of quenches and therefore feasible.

VII. CONCLUSIONS AND OUTLOOK

In this paper, we generalized the TDNRG method for
describing the time evolution of a local observable following a
single quantum quench to arbitrary finite temperature, starting
from the full density matrix of the initial state. In this gener-
alization, we made no further approximation than the original
NRG approximation [Eq. (10)]. The generalization relies on
determining the projected density matrix, which is made up of
three parts ρ̃++, ρ−−, and ρ0, for which explicit expressions,
and recursion relations for their evaluation, were obtained. The
trace-conserving property of the projected density matrix was
proven and was used to check the numerical precision of the
calculations. We find that the contribution from ρ−−, absent in
previous approaches [14,45], is significant at finite temperature
and cannot be neglected. The short-time limit of local observ-
ables was shown to be exactly equal to the thermodynamic
value in the initial state, both analytically and numerically

5For times t > τ̃n. At shorter times, τ̃p+1 > t � τ̃p , with p < n, one
needs to calculate only the first p projected density matrices, so the
computational cost becomes less for shorter times.
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(Sec. V D). Furthermore, we clarified that the NRG approxi-
mation is the main source of noise in local observables at long
times (Sec. V C), whereas it appears not responsible for the
error in the long-time limit. The latter is found to be reduced
either by reducing � (i.e., approaching the continuum limit
� → 1+), as noted previously [40], or by reducing the size of
the quantum quench (Sec. V E). Also, the short-time behavior
is improved with decreasing quench size; see Fig. 9.

The above results suggested, since the limit � → 1+ is
impractical in NRG calculations, a formulation in which a
large quench is replaced by multiple quenches over a finite
time interval as a means to improve the TDNRG at all
time scales, and particularly for longer times. We provided
this multiple-quench formulation (Sec. VI) and showed that,
as for the single-quench case, it rests solely on a single
approximation (the NRG approximation). The structure of
this theory, while formally similar to the single-quench case,
brings out more clearly the importance of including the
“−−” terms, i.e., ρ−− and Sm−−. Namely, neglecting Sm−−
in the multiple-quench case leads to an accumulated error
after each time step τ̃p, p = 1, . . . ,n, due to the causality of
Eqs. (45)–(49); hence, it will be particularly important not to
approximate this in a future numerical implementation of the
multiple-quench TDNRG. The latter, as discussed at the end
of the previous section, is feasible, scaling at most linearly
with the number of quenches, but lies beyond the scope of the
present paper and will be presented elsewhere. Our formalism
for the multiple-quench case also generalizes the TDNRG to
general pulses and periodic switching/driving. The latter has
been considered also in Ref. [50], within a hybrid TDNRG
DMRG approach, although several approximations in addition
to the NRG approximation were made (see the discussion in
Sec. VI).

We also compared our single-quench TDNRG approach to
the previous scheme [14,40], finding that the present one gives
results with less noise at long times, with the results being
closer to the expected long-time limit, particularly at finite
temperatures. This is due to the contribution of the full Wilson
chain in our TDNRG using the full density matrix of the initial
state, which at finite temperature always results in a finite
contribution from ρ−−, absent in the scheme of Refs. [14,40],
which uses a truncated Wilson chain for finite temperatures.

In future, it would be of interest, especially in the light of
time-resolved experiments, e.g., time-resolved photoemission
and scanning tunneling microscope spectroscopies [93,98],

to extend the formalism in this paper to the time evolution
of dynamical quantities following a quench/pulse, e.g., to
single-particle spectral functions A(ω,t) [108,109], dynamical
spin susceptibilities [110],or optical conductivities [111]. This
would allow basic questions about the time dependence of
the Kondo effect in quantum dots to be addressed, e.g., the
time evolution of the Kondo resonance upon instantaneously
switching from the mixed-valence to the Kondo regime [112],
or the transient response of the current following a bias
voltage pulse of finite duration [113]. Given the common
matrix-product-state structure of the NRG and DMRG eigen-
states [114], some of the formalism developed in this paper
for general multiple quenches might find application also
within the time-dependent DMRG. Finally, improved TDNRG
approaches would be of interest in the development of methods
for studying steady-state nonequilibrium transport through
correlated systems, such as quantum dots [45].
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APPENDIX: TRACE OF THE PROJECTED DENSITY
MATRIX

Starting from the exact Eq. (8) and setting Ô = 1 results
in 1 = Tr[ρ], a tautology, since ρ is normalized. However, the
result we are interested in starts from Eq. (9), which in general
will be approximate due to the use of the NRG approximation.
Inserting Ô = 1 in the right-hand side (RHS) of this expression
and using Om

rs = δrs results in Eq. (12) which states that the
trace of the projected density matrix is preserved. The result is
exact, for the same reason that the short-time limit is exact (as
discussed in Sec. II D), namely, any error that would arise from
approximate NRG eigenvalues in Eq. (9) does not arise for
Ô = 1 because these eigenvalues drop out from the expression
(9) for this choice of operator. More explicitly, using the
definition of the FDM, ρ = ∑N

m=m0
wmρ̃m, from Sec. II B

and the completeness relation
∑N

m=m0

∑
le |lem〉〈lem| = 1, we

have for the RHS of Eq. (12),

N∑
m=m0

∑
l

ρ
i→f

ll (m) ≡
N∑

m=m0

∑
l,e

f 〈lem|ρ|lem〉f

=
N∑

m=m0

N∑
m′=m0

wm′
∑
l,e

∑
l′,e′

f 〈lem|l′e′m′〉i e
−βEm′

l′

Z̃m′
i〈l′e′m′|lem〉f

=
N∑

m=m0

N∑
m′=m0

wm′
∑
l,e

∑
l′,e′

i〈l′e′m′|lem〉f f 〈lem|l′e′m′〉i e
−βEm′

l′

Z̃m′

=
N∑

m′=m0

wm′
∑
l′,e′

i〈l′e′m′|l′e′m′〉i e
−βEm′

l′

Z̃m′
=

N∑
m′=m0

wm′
∑

l′

e−βEm′
l′

Zm′
= 1, (A1)
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where, in the last line,
∑N

m′=m0
wm′ ≡ Tr[ρ] = 1 was used.

This verifies Eq. (12), which serves as a useful identity to
check that (a) the three terms contributing to ρi→f (m) in
Eq. (24) have been evaluated correctly, and (b) the numerical

calculation of ρi→f (m) is sufficient. This was the case, since
we found an error of less than 10−10 for all � and all
system parameters used in the Anderson model (εd , U ); see
Fig. 1.

APPENDIX B: SHORT-TIME LIMIT

In this Appendix we show explicitly that the TDNRG expression for the expectation value of a local observable in the
short-time limit (t → 0+) recovers the correct thermodynamic value in the initial state, i.e., that

O(t → 0+) ≡
N∑

m=m0

∑
rs /∈KK ′

ρi→f
sr (m)Om

rs = Oi, (B1)

where Oi = Tr[ρÔ].
Similarly to the calculation of the trace of the projected density matrix in Eq. (A1), we substitute ρ = ∑N

m=m0
wmρ̃m into

Eq. (B1), obtaining

O(t → 0+) =
N∑

m=m0

�=KK ′∑
rse

f 〈rem|ρ|sem〉f f 〈sem|Ô|rem〉f

=
N∑

m=m0

�=KK ′∑
rse

N∑
m′=m0

∑
l′e′

f 〈rem|l′e′m′〉iwm′
e−βEm′

l′

Z̃m′
i〈l′e′m′|sem〉f f 〈sem|Ô|rem〉f

=
N∑

m′=m0

∑
l′e′

wm′
e−βEm′

l′

Z̃m′

⎧⎨
⎩

N∑
m=m0

�=KK ′∑
rse

i〈l′e′m′|sem〉f f 〈sem|Ô|rem〉f f 〈rem|l′e′m′〉i

⎫⎬
⎭ . (B2)

Decomposing |rem〉f into kept, |kem〉f , and discarded, |lem〉f , states, we obtain for the part inside the curly brackets

N∑
m=m0

∑
lse

i〈l′e′m′|sem〉f f 〈sem|Ô|lem〉f f 〈lem|l′e′m′〉i +
N∑

m=m0

∑
kle

i〈l′e′m′|lem〉f f 〈lem|Ô|kem〉f f 〈kem|l′e′m′〉i

=
N∑

m=m0

N∑
m1=m

∑
le

∑
l1e1

i〈l′e′m′|l1e1m1〉f f 〈l1e1m1|Ô|lem〉f f 〈lem|l′e′m′〉i

+
N∑

m=m0

N∑
m1=m+1

∑
l1e1

∑
le

i〈l′e′m′|lem〉f f 〈lem|Ô|l1e1m1〉f f 〈l1e1m1|l′e′m′〉i . (B3)

Replacing
∑N

m=m0

∑N
m1=m → ∑N

m1=m0

∑m1
m=m0

in the first term and interchanging |lem〉 ↔ |l1e1m1〉 in the second one, we have
Eq. (B3) equal to

N∑
m1=m0

m1∑
m=m0

∑
le

∑
l1e1

i〈l′e′m′|l1e1m1〉f f 〈l1e1m1|Ô|lem〉f f 〈lem|l′e′m′〉i

+
N∑

m1=m0

N∑
m=m+1

∑
le

∑
l1e1

i〈l′e′m′|l1e1m1〉f f 〈l1e1m1|Ô|lem〉f f 〈lem|l′e′m′〉i

=
N∑

m1=m0

N∑
m=m0

∑
le

∑
l1e1

i〈l′e′m′|l1e1m1〉f f 〈l1e1m1|Ô|lem〉f f 〈lem|l′e′m′〉i

= i〈l′e′m′|Ô|l′e′m′〉i . (B4)

Substituting Eq. (B4) into Eq. (B2), we have

O(t → 0+) =
N∑

m′=m0

∑
l′e′

wm′
e−βEm′

l′

Z̃m′
i〈l′e′m′|Ô|l′e′m′〉i =

N∑
m′=m0

∑
l′

wm′
e−βEm′

l′

Zm′
Ol′l′ , (B5)
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which is the thermodynamic average of the observable in
the initial state, as calculated within the FDM approach.
This proves that O(t → 0+) = Oi is always true. We also
verified the latter numerically, for the Anderson impurity
model, finding that the calculated value of O(t → 0+) lies
within 10−10 of Oi regardless of the parameter sets used and
regardless of the discretization parameter �.

APPENDIX C: RECURSION RELATIONS FOR SU(2)
SYMMETRY

In the actual calculations for the Anderson impurity model,
presented in this paper, SU(2) spin symmetry was used in
the numerical diagonalizations. Accordingly, the states were
classified according to their values of total charge Q, total
spin S, and z component of total spin Sz[1]. Moreover, as the
eigenvalues are independent of Sz, we need only write the
recursion relations in the (Q,S) subspace. The transformation
matrix A

αm

kr in Eq. (29) is now denoted by Um(ki,r) as in the
original work in Ref. [2], with the correspondence i ↔ αm.
In detail, ρ−−

sr (m) is expressed in terms of the following four
terms, corresponding to i taking one of four values (d = 4):

ρ−−
sr (Q,S,m)

= 1

4

∑
k,k′

U
m†
Q,S(k1,s)ρ̃k,k′(Q + 1,S,m − 1)Um

Q,S(k′1,r)

+ 1

4

∑
k,k′

U
m†
Q,S(k2,s)ρ̃k,k′

(
Q,S − 1

2 ,m − 1
)
Um

Q,S(k′2,r)

+ 1

4

∑
k,k′

U
m†
Q,S(k3,s)ρ̃k,k′

(
Q,S + 1

2 ,m − 1
)
Um

Q,S(k′3,r)

+ 1

4

∑
k,k′

U
m†
Q,S(k4,s)ρ̃k,k′(Q − 1,S,m − 1)Um

Q,S(k′4,r),

(C1)

with ρ̃k,k′(Q,S,m) = ρ0
k,k′(Q,S,m) + ρ−−

k,k′ (Q,S,m).
Similarly, the recursion relation for the reduced full density

matrices takes the form

[
Rm

red(Q,S)
]
k,k′

=
∑
q,q ′

Um+1
Q−1,S(k1,q)

[
R̃m+1

red (Q − 1,S)
]
q,q ′U

m+1†
Q−1,S(k′1,q ′)

+ 2S + 2

2S + 1

∑
q,q ′

Um+1
Q,S+1/2(k2,q)

[
R̃m+1

red

(
Q,S + 1

2

)]
q,q ′

×U
m+1†
Q,S+1/2(k′2,q ′)

+ 2S

2S +1

∑
q,q ′

Um+1
Q,S−1/2(k3,q)

[
R̃m+1

red

(
Q,S − 1

2

)]
q,q ′

×U
m+1†
Q,S−1/2(k′3,q ′)

+
∑
q,q ′

Um+1
Q+1,S(k4,q)

[
R̃m+1

red (Q+1,S)
]
q,q ′U

m+1†
Q+1,S(k′4,q ′).

(C2)

with

[
R̃m

red (Q,S)
]

=

⎡
⎢⎢⎢⎢⎢⎢⎣

[
Rm

red (Q,S)
]
k,k′ 0 · · · 0

0 wm
e
−βEm

Q,S,l

Zm
· · · 0

...
...

. . .
...

0 0 · · · wm
e
−βEm

Q,S,l

Zm

⎤
⎥⎥⎥⎥⎥⎥⎦

and noting that
∑

q = ∑
k +∑

l and |qm〉 = |km〉 + |lm〉.

APPENDIX D: LONG-TIME LIMIT: ADDITIONAL
SWITCHING PROTOCOLS

In this Appendix, we present additional results for the long-
time limit of observables with different switching protocols to
support the conclusions in Sec. V E. In general, the results
show us the trend of quench size dependence as observed in
Fig. 5. Depending on the local observable, i.e., local level
occupation number or double occupancy, the results depend
on different parameters of the final state.
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FIG. 11. (Color online) The (percentage) relative error of the
double occupation number in the long-time limit vs temperature. Ui =
Uf = U = 12� and � = 10−3D. (a) Switching from the asymmetric
to the symmetric Kondo system. (b) Reverse switching, from the
symmetric to the asymmetric Kondo system [the εf are indicated
and are the same as the εi in (a)]. TK ≈ 2.0 × 10−5D is the Kondo
temperature of the symmetric model and calculations are for � = 1.6
and no z averaging.
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1. Double occupancy: Switching εd with U constant

In Fig. 11, we present the error in the double occupancy
upon switching the system between the asymmetric case and
the symmetric Kondo regime while keeping the Coulomb
interaction constant, i.e., εd (t) = εiθ (−t) + εf θ (t) with U =
Ui = Uf . The analogous results for the occupation number
were presented in Fig. 5. As for the error in the occupation
number in Fig. 5, we observe for that the error in the double
occupancy exhibits extrema at approximately the same temper-
atures, namely, at T ≈ 300TK ≈ U/2 and T ≈ 7TK = 0.14�.
The error increases with increasing quench size for both the
switching from the asymmetric model to the symmetric Kondo
regime [Fig. 11(a)] and vice versa [Fig. 11(b)], supporting
the first trend discussed in Sec. V E. The highest incoherent
excitation in Fig. 11(a), defined by Eq. (36), is 6�, while in
Fig. 11(b), it varies from 7� up to 12�. For the same sized
quench in Figs. 11(a) and 11(b), we see that the error is always
larger for Fig. 11(b), thus supporting the conclusion that this
error depends on the magnitude of the highest incoherent
excitation in the final state.

2. Occupation number and double occupancy: Switching U
with εd constant

In Sec. V E we discussed the error in the long-time limit of
the double occupancy for the case where both U and εd were
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FIG. 12. (Color online) The (percentage) relative error of the
local level occupation number in the long-time limit vs temperature.
εi = εf = −6� and � = 10−3D. (a) Switching from the asymmetric
model to the symmetric Kondo regime. (b) Reverse switching, from
the symmetric Kondo regime to the asymmetric model [the εf are
indicated and are the same as the εi in (a)]. TK ≈ 2.0 × 10−5D is the
Kondo temperature of the symmetric model and calculations are for
� = 1.6 and no z averaging.
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FIG. 13. (Color online) The (percentage) relative error of the
double occupancy in the long-time limit vs temperatures. Parameters
and switching in (a) and (b) are respectively the same as those in
Figs. 12(a) and 12(b).

switched at t = 0, while maintaining particle-hole symmetry,
i.e., for εd (t) + U (t)/2 = 0. Here, we consider relaxing the
last condition and consider changing the Coulomb interac-
tion U (t) = Uiθ (−t) + Uf θ (t) while keeping εd = εi = εf =
−6� constant in both initial and final states. We either choose
Ui = 12� and switch Uf , or vice versa. Figure 12 shows the
error in the long-time limit of the occupation number and
Fig. 13 the corresponding error for the double occupancy. For
both quantities, the error increases with increasing size of the
quantum quench and the positions of the extrema in the error
are consistent with those seen in previous quenches. The trend
that the error increases with increasing value of the highest
incoherent excitation in the final state [Eq. (36)] cannot be
applied in this case as the value of this excitation is the same
(6�) for both switchings and all cases. However, Fig. 12 agrees
with the trend in Fig. 5 that switching from the symmetric to
the asymmetric model results in a larger error than vice versa,
and Fig. 13 agrees with the trend in Fig. 6 that a larger error
is expected upon switching from a less correlated to a more
correlated system than vice versa.

APPENDIX E: GENERALIZED OVERLAP
MATRIX ELEMENTS

In this Appendix, we prove that the generalized overlap
matrix elements at an arbitrary time step are diagonal in
the environment variables, and that they can be calculated
recursively. We start with the simplest case for the first time
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step τ̃1,

Sm
rQ2 si

(ee′, − τ̃1) = Q2〈rem|e−iHQ1 τ1 |se′m〉i =
∑

m1l1e1

Q2〈rem|l1e1m1〉Q1 Q1〈l1e1m1|e−iHQ1 τ1 |se′m〉i

Decomposing the matrix element into three terms, corresponding to m1 > m, m1 = m, and m1 < m, contributions, respectively,
we have

Sm
rQ2 si

(ee′, − τ̃1)Sm++
rQ2 si

(ee′, − τ̃1) + Sm0
rQ2 si

(ee′, − τ̃1) + Sm−−
rQ2 si

(ee′, − τ̃1),

with each term shown to be diagonal in the environment variables as follows:

Sm++
rQ2 si

(ee′, − τ̃1) =
N∑

m1=m+1

∑
l1e1

Q2〈rem|l1e1m1〉Q1 Q1〈l1e1m1|e−iHQ1 τ1 |se′m〉i

=
∑

k

Q2〈rem|kem〉Q1 Q1〈kem|e−iHQ1 τ1 |se′m〉i =
∑

k

Sm
rQ2 kQ1

e−iEm
k τ1Sm

kQ1 si
δee′ = Sm++

rQ2 si
(−τ̃1)δee′ , (E1)

Sm0
rQ2 si

(ee′, − τ̃1) =
∑

l

Q2〈rem|lem〉Q1 Q1〈lem|e−iHQ1 τ1 |se′m〉i

=
∑

l

Sm
rQ2 lQ1

e−iEm
l τ1Sm

lQ1 si
δee′ = Sm0

rQ2 si
(−τ̃1)δee′ , (E2)

Sm−−
rQ2 si

(ee′, − τ̃1) =
m−1∑

m1=m0

∑
l1e1

Q2〈rem|l1e1m1〉Q1 Q1〈l1e1m1|e−iHQ1 τ1 |se′m〉i

=
m−1∑

m1=m0

∑
l1e1

Q2〈rem|(1Q2+
m1

+ 1Q2−
m1

)|l1e1m1〉Q1 Q1〈l1e1m1|e−iHQ1 τ1
(
1i+

m1
+ 1i−

m1

)|se′m〉i

=
m−1∑

m1=m0

∑
kk′e1e

′
1

Q2〈rem|ke1m1〉Q2

∑
l1

Q2〈ke1m1|l1e1m1〉Q1 Q1〈l1e1m1|e−iHQ1 τ1 |k′e′
1m1〉i i〈k′e′

1m1|se′m〉i

=
m−1∑

m1=m0

∑
kk′e1

Q2〈rem|ke1m1〉Q2

[∑
l1

S
m1
kQ2 l1Q1

e
−iE

m1
l1

τ1S
m1

l1Q1 k′
i

]
i〈k′e1m1|se′m〉i .

Using the definition of Sm0
rQ2 si

(−τ̃1) in Eq. (E2), we have

Sm−−
rQ2 si

(ee′, − τ̃1) =
m−1∑

m1=m0

∑
kk′e1

Q2〈rem|ke1m1〉Q2

[
Sm10

kQ2 k′
i
(−τ̃1)

]
i〈k′e1m1|se′m〉i .

Noticing that the structure of the above equation is similar to that of Eq. (22), we derive the recursion relation of Sm−−
rQ2 si

(ee′, − τ̃1)

following the procedure for ρ−− in Sec. IV; thus we have

Sm−−
rQ2 si

(ee′, − τ̃1) =
∑
αm

∑
kk′

A
αm†
rk

[
S (m−1)0

kQ2 k′
i

(−τ̃1) + S (m−1)−−
kQ2 k′

i
(−τ̃1)

]
A

αm

k′sδee′

= Sm−−
rQ2 si

(−τ̃1)δee′ with Sm0−−
rQ2 si

(−τ̃1) = 0. (E3)

Since each term of the generalized overlap matrix element is diagonal in the environment variables, we define

Sm
rQ2 si

(ee′, − τ̃1) = Sm
rQ2 si

(−τ̃1)δee′with Sm
rQ2 si

(−τ̃1) = Sm++
rQ2 si

(−τ̃1) + Sm0
rQ2 si

(−τ̃1) + Sm−−
rQ2 si

(−τ̃1). (E4)

In a similar way, we consider the generalized overlap matrix element at the next time step τ̃2,

Sm
rQ3 si

(ee′, − τ̃2) = Q3〈rem|e−iHQ2 τ2e−iHQ1 τ1 |se′m〉i
=

∑
m2l2e2

Q3〈rem|l2e2m2〉Q2 Q2〈l2e2m2|e−iHQ2 τ2e−iHQ1 τ1 |se′m〉i

= Sm++
rQ3 si

(ee′, − τ̃2) + Sm0
rQ3 si

(ee′, − τ̃2) + Sm−−
rQ3 si

(ee′, − τ̃2). (E5)
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The three terms above correspond to m2 > m, m2 = m, and m2 < m, respectively, and are shown to be diagonal in the environment
variables as follows:

Sm++
rQ3 si

(ee′, − τ̃2) =
N∑

m2=m+1

∑
l2e2

Q3〈rem|l2e2m2〉Q2 Q2〈l2e2m2|e−iHQ2 τ2e−iHQ1 τ1 |se′m〉i

=
∑

k

Q3〈rem|kem〉Q2 Q2〈kem|e−iHQ2 τ2e−iHQ1 τ1 |sem〉i

=
∑

k

Q3〈rem|kem〉Q2e
−iEm

k τ2
Q2〈kem|e−iHQ1 τ1 |se′m〉i

=
∑

k

Sm
rQ3 kQ2

e−iEm
k τ2Sm

kQ2 si
(−τ̃1)δee′ = Sm++

rQ3 si
(−τ̃2)δee′ , (E6)

Sm0
rQ3 si

(ee′, − τ̃2) =
∑

l

Q3〈rem|lem〉Q2 Q2〈lem|e−iHQ2 τ2e−iHQ1 τ1 |se′m〉i

=
∑

l

Q3〈rem|lem〉Q2e
−iEm

l τ2
Q2〈lem|e−iHQ1 τ1 |se′m〉i =

∑
l

Sm
rQ3 lQ2

e−iEm
l τ2Sm

lQ2 si
(−τ̃1)δee′

= Sm0
rQ3 si

(−τ̃2)δee′ , (E7)

Sm−−
rQ3 si

(ee′, − τ̃2) =
m−1∑

m2=m0

∑
l2e2

Q3〈rem|l2e2m2〉Q2 Q2〈l2e2m2|e−iHQ2 τ2e−iHQ1 τ1 |se′m〉i

=
m−1∑

m2=m0

∑
kk′e2e

′
2

Q3〈rem|ke2m2〉Q3

∑
l2

Q3〈ke2m2|l2e2m2〉Q2 Q2〈l2e2m2|e−iHQ2 τ2e−iHQ1 τ1 |k′e′
2m2〉i i〈k′e′

2m2|se′m〉i

=
m−1∑

m2=m0

∑
kk′e2

Q3〈rem|ke2m2〉Q3

[∑
l2

S
m2
kQ3 l2Q2

e
−iE

m2
l2

τ2Sl2Q2 k′
i
(m2, − τ̃1)

]
i〈k′e2m2|se′m〉i

=
m−1∑

m2=m0

∑
kk′e2

Q3〈rem|ke2m2〉Q3

[
Sm20

kQ3 k′
i
(−τ̃2)

]
i〈k′e2m2|se′m〉i .

Again, noticing that the structure of the last expression above is similar to that in Eq. (23), we derive the following recursion
relation:

Sm−−
rQ3 si

(ee′, − τ̃2) =
∑
αm

∑
kk′

A
αm†
rk

[
S (m−1)0

kQ3 k′
i

(−τ̃2) + S (m−1)−−
kQ3 k′

i
(−τ̃2)

]
A

αm

k′sδee′

= Sm−−
rQ3 si

(−τ̃2)δee′ with Sm0−−
rQ3 si

(−τ̃2) = 0. (E8)

Since each term of the overlap matrix element at τ̃2 is also diagonal in the environment variables, we have

Sm
rQ3 si

(ee′, − τ̃2) = Sm
rQ3 si

(−τ̃2)δee′

with Sm
rQ3 si

(−τ̃2) = Sm++
rQ3 si

(−τ̃2) + Sm0
rQ3 si

(−τ̃2) + Sm−−
rQ3 si

(−τ̃2). (E9)

Consequently, the generalized overlap matrix elements at an arbitrary time step τ̃p+1 > τ̃1 can be decomposed as follows:

Sm
rQp+1 si

(ee′, − τ̃p) = Qp+1〈rem|e−iHQp τp · · · e−iHQ1 τ1 |se′m〉i
=

∑
mplpep

Qp+1〈rem|lpepmp〉Qp Qp
〈lpepmp|e−iHQp τ2 · · · e−iHQ1 τ1 |se′m〉i

= Sm++
rQp+1 si

(ee′, − τ̃p) + Sm0
rQp+1 si

(ee′, − τ̃p) + Sm−−
rQp+1 si

(ee′, − τ̃p).

Again, the three terms above correspond to the m > mp, m = mp, and m < mp contributions, and satisfy the general rule

Sm++
rQp+1 si

(ee′, − τ̃p) =
∑

k

Sm
rQp+1 kQp

e−iEm
k τpSm

kQp si
(−τ̃p−1)δee′ = Sm++

rQp+1 si
(−τ̃p)δee′ , (E10)
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Sm0
rQp+1 si

(ee′, − τ̃p) =
∑

l

Sm
rQp+1 lQp

e−iEm
l τpSm

lQp si
(−τ̃p−1)δee′ = Sm0

rQp+1 si
(−τ̃p)δee′ , (E11)

Sm−−
rQp+1 si

(ee′, − τ̃p) =
∑
αm

∑
kk′

A
αm†
rk

[
S (m−1)0

kQp+1 k′
i
(−τ̃p) + S (m−1)−−

kQp+1 k′
i

(−τ̃p)
]
A

αm

k′sδee′

= Sm−−
rQp+1 si

(−τ̃p)δee′ with Sm0−−
rQp+1 si

(−τ̃p) = 0. (E12)

Since each term of Sm
rf si

(ee′, − τ̃p) is diagonal in the environment variables, we have

Sm
rQp+1 si

(ee′, − τ̃p) = Sm
rQp+1 si

(−τ̃p)δee′

with Sm
rQp+1 si

(−τ̃p) = Sm++
rQp+1 si

(−τ̃p) + Sm0
rQp+1 si

(−τ̃p) + Sm−−
rQp+1 si

(−τ̃p). (E13)

In general, we showed that the generalized overlap matrix elements at an arbitrary time step are diagonal in the environment
variables. Moreover, one can use Eqs. (E1)–(E3) to calculate each term of the generalized overlap matrix element at τ̃1, and
Eqs. (E10)–(E12) to calculate those at τ̃p > τ̃1.
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