000151396 001__ 151396
000151396 005__ 20210129213458.0
000151396 0247_ $$2Handle$$a2128/5933
000151396 037__ $$aFZJ-2014-01362
000151396 1001_ $$0P:(DE-Juel1)145207$$aDapp, Wolfgang$$b0$$eCorresponding author$$ufzj
000151396 1112_ $$aNIC Symposium 2014$$cJülich$$d2014-02-12 - 2014-02-13$$wGermany
000151396 245__ $$aAtomistic Modelling of Redox Reactions in Non-Equilibrium
000151396 260__ $$aJülich$$bJohn von Neumann Institute for Computing$$c2014
000151396 29510 $$aNIC Symposium 2014 - Proceedings
000151396 300__ $$a25-32
000151396 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s151396
000151396 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000151396 3367_ $$033$$2EndNote$$aConference Paper
000151396 3367_ $$2ORCID$$aCONFERENCE_PAPER
000151396 3367_ $$2DataCite$$aOutput Types/Conference Paper
000151396 3367_ $$2DRIVER$$aconferenceObject
000151396 3367_ $$2BibTeX$$aINPROCEEDINGS
000151396 4900_ $$aNIC Series$$v47
000151396 500__ $$3POF3_Assignment on 2016-02-29
000151396 520__ $$aWe developed a new atomistic method to model (non-equilibrium) redox reaction using empirical force fields for use in MD simulations. To this end, we added the (formal) ionisation state as a discrete variable into the “split charge equilibration” method (SQE). This extension allows atoms to swap integer charges across bonds, in addition to exchanging fractional charges. We call this method “redoxSQE”, and, in first steps, used it to study contact electrification and to set up a model rechargeable nano-battery that reproduces the generic features of the discharge of a macroscopic battery qualitatively. Other popular charge-transfer force fields fundamentallycannot describe any history-dependent effect because they calculate the charge distribution as a unique function of atomic positions. For similar reasons, state-of-the-art DFT-based methods fail to describe redox reactions in non-equilibrium.
000151396 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000151396 7001_ $$0P:(DE-Juel1)144442$$aMüser, Martin$$b1$$ufzj
000151396 8564_ $$uhttps://juser.fz-juelich.de/record/151396/files/FZJ-2014-01362.pdf$$yOpenAccess
000151396 8564_ $$uhttps://juser.fz-juelich.de/record/151396/files/FZJ-2014-01362.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000151396 8564_ $$uhttps://juser.fz-juelich.de/record/151396/files/FZJ-2014-01362.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000151396 8564_ $$uhttps://juser.fz-juelich.de/record/151396/files/FZJ-2014-01362.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000151396 909CO $$ooai:juser.fz-juelich.de:151396$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000151396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145207$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000151396 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144442$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000151396 9132_ $$0G:(DE-HGF)POF3-519H$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vAddenda$$x0
000151396 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000151396 9141_ $$y2014
000151396 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000151396 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000151396 980__ $$acontrib
000151396 980__ $$aUNRESTRICTED
000151396 980__ $$aFullTexts
000151396 980__ $$acontb
000151396 980__ $$aI:(DE-Juel1)JSC-20090406
000151396 980__ $$aVDB
000151396 9801_ $$aFullTexts