001     151396
005     20210129213458.0
024 7 _ |a 2128/5933
|2 Handle
037 _ _ |a FZJ-2014-01362
100 1 _ |a Dapp, Wolfgang
|0 P:(DE-Juel1)145207
|b 0
|e Corresponding author
|u fzj
111 2 _ |a NIC Symposium 2014
|c Jülich
|d 2014-02-12 - 2014-02-13
|w Germany
245 _ _ |a Atomistic Modelling of Redox Reactions in Non-Equilibrium
260 _ _ |a Jülich
|c 2014
|b John von Neumann Institute for Computing
295 1 0 |a NIC Symposium 2014 - Proceedings
300 _ _ |a 25-32
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 151396
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
490 0 _ |a NIC Series
|v 47
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a We developed a new atomistic method to model (non-equilibrium) redox reaction using empirical force fields for use in MD simulations. To this end, we added the (formal) ionisation state as a discrete variable into the “split charge equilibration” method (SQE). This extension allows atoms to swap integer charges across bonds, in addition to exchanging fractional charges. We call this method “redoxSQE”, and, in first steps, used it to study contact electrification and to set up a model rechargeable nano-battery that reproduces the generic features of the discharge of a macroscopic battery qualitatively. Other popular charge-transfer force fields fundamentallycannot describe any history-dependent effect because they calculate the charge distribution as a unique function of atomic positions. For similar reasons, state-of-the-art DFT-based methods fail to describe redox reactions in non-equilibrium.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
700 1 _ |a Müser, Martin
|0 P:(DE-Juel1)144442
|b 1
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/151396/files/FZJ-2014-01362.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151396/files/FZJ-2014-01362.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151396/files/FZJ-2014-01362.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151396/files/FZJ-2014-01362.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:151396
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)145207
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)144442
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-519H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a VDB
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21