000151397 001__ 151397
000151397 005__ 20210129213458.0
000151397 0247_ $$2Handle$$a2128/5934
000151397 037__ $$aFZJ-2014-01363
000151397 1001_ $$0P:(DE-HGF)0$$aFodor, Zoltan$$b0$$eCorresponding author
000151397 1112_ $$aNIC Symposium 2014$$cJülich$$d2014-02-12 - 2014-02-13$$wGermany
000151397 245__ $$aIsospin Splittings in the Light Baryon Octet from Lattice QCD+QED at thePhysical Mass Point
000151397 260__ $$aJülich$$bJohn von Neumann Institute for Computing$$c2014
000151397 29510 $$aNIC Symposium 2014 - Proceedings
000151397 300__ $$a159-168
000151397 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s151397
000151397 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000151397 3367_ $$033$$2EndNote$$aConference Paper
000151397 3367_ $$2ORCID$$aCONFERENCE_PAPER
000151397 3367_ $$2DataCite$$aOutput Types/Conference Paper
000151397 3367_ $$2DRIVER$$aconferenceObject
000151397 3367_ $$2BibTeX$$aINPROCEEDINGS
000151397 4900_ $$aNIC Series$$v47
000151397 500__ $$3POF3_Assignment on 2016-02-29
000151397 520__ $$aElectromagnetic effects and the up-down quark mass difference have small but highly important effects on octet baryon masses. A prominent example is the stability of the hydrogen atom against beta decay. Here we report on a calculation1 that includes these effects by adding them to valence quarks in an Nf=2+1 lattice Quantum Chromodynamics calculation based on ensembles with 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. This large parameter space allows us to gain control over all systematic errors, with the exception of the one associated with neglecting electromagnetism in the sea. We compute the octet baryon isomultiplet mass splittings, as well as the individual contributions from electromagnetism and the up-down quark mass difference. Our results for the total splittings are in good agreement with experiment.
000151397 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x0
000151397 7001_ $$0P:(DE-Juel1)132171$$aKrieg, Stefan$$b1$$ufzj
000151397 7001_ $$0P:(DE-Juel1)132179$$aLippert, Thomas$$b2$$ufzj
000151397 8564_ $$uhttps://juser.fz-juelich.de/record/151286/files/FZJ-2014-01274.pdf
000151397 8564_ $$uhttps://juser.fz-juelich.de/record/151397/files/FZJ-2014-01363.pdf$$yOpenAccess
000151397 8564_ $$uhttps://juser.fz-juelich.de/record/151397/files/FZJ-2014-01363.jpg?subformat=icon-144$$xicon-144$$yOpenAccess
000151397 8564_ $$uhttps://juser.fz-juelich.de/record/151397/files/FZJ-2014-01363.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000151397 8564_ $$uhttps://juser.fz-juelich.de/record/151397/files/FZJ-2014-01363.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000151397 909CO $$ooai:juser.fz-juelich.de:151397$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000151397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132171$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000151397 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132179$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000151397 9132_ $$0G:(DE-HGF)POF3-519H$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data $$vAddenda$$x0
000151397 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x0
000151397 9141_ $$y2014
000151397 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000151397 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000151397 980__ $$acontrib
000151397 980__ $$aUNRESTRICTED
000151397 980__ $$aFullTexts
000151397 980__ $$acontb
000151397 980__ $$aI:(DE-Juel1)JSC-20090406
000151397 980__ $$aVDB
000151397 9801_ $$aFullTexts