001     151397
005     20210129213458.0
024 7 _ |a 2128/5934
|2 Handle
037 _ _ |a FZJ-2014-01363
100 1 _ |a Fodor, Zoltan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
111 2 _ |a NIC Symposium 2014
|c Jülich
|d 2014-02-12 - 2014-02-13
|w Germany
245 _ _ |a Isospin Splittings in the Light Baryon Octet from Lattice QCD+QED at thePhysical Mass Point
260 _ _ |a Jülich
|c 2014
|b John von Neumann Institute for Computing
295 1 0 |a NIC Symposium 2014 - Proceedings
300 _ _ |a 159-168
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 151397
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a INPROCEEDINGS
|2 BibTeX
490 0 _ |a NIC Series
|v 47
500 _ _ |3 POF3_Assignment on 2016-02-29
520 _ _ |a Electromagnetic effects and the up-down quark mass difference have small but highly important effects on octet baryon masses. A prominent example is the stability of the hydrogen atom against beta decay. Here we report on a calculation1 that includes these effects by adding them to valence quarks in an Nf=2+1 lattice Quantum Chromodynamics calculation based on ensembles with 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. This large parameter space allows us to gain control over all systematic errors, with the exception of the one associated with neglecting electromagnetism in the sea. We compute the octet baryon isomultiplet mass splittings, as well as the individual contributions from electromagnetism and the up-down quark mass difference. Our results for the total splittings are in good agreement with experiment.
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|f POF II
|x 0
700 1 _ |a Krieg, Stefan
|0 P:(DE-Juel1)132171
|b 1
|u fzj
700 1 _ |a Lippert, Thomas
|0 P:(DE-Juel1)132179
|b 2
|u fzj
856 4 _ |u https://juser.fz-juelich.de/record/151286/files/FZJ-2014-01274.pdf
856 4 _ |u https://juser.fz-juelich.de/record/151397/files/FZJ-2014-01363.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151397/files/FZJ-2014-01363.jpg?subformat=icon-144
|x icon-144
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151397/files/FZJ-2014-01363.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/151397/files/FZJ-2014-01363.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:151397
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)132171
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132179
913 2 _ |a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-519H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
913 1 _ |a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|1 G:(DE-HGF)POF2-410
|0 G:(DE-HGF)POF2-411
|2 G:(DE-HGF)POF2-400
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2014
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a VDB
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21