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Abstract:  

A novel high temperature battery based on the concept of the solid oxide fuel cell (SOFC) is 

presented. Due to the use of cheap iron- and calcium-based storage materials providing a 

high theoretical capacity of roughly 1300 Wh/kg the battery could be used to optimize the 

part load properties and the long term durability of conventional power plants. The elevated 

working temperature of 800 °C makes it applicable where high quality heat is available and 

needed. In this paper an economical consideration leads to general design recommendations 

for this battery which operates in test mode with current densities of 150 mA/cm2 and 

approximately one hour charging/discharging time at cell voltages between 0.7-1.2 V. 
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1 Introduction 

Any technology for storing electrical energy provides the opportunity of decoupling 

generation and usage of electricity. This can be beneficial whenever there is a temporal 

change of electricity generation cost due to load variation or fluctuating availability. Latter 

becomes especially true, when augmenting the grid with power sources (renewables) with a 

possibly large discrepancy between actual and rated power input. In this case, energy 

storage can substitute the increase of rated power or even render additional flexible power 

plants unnecessary.  

Since conventional storage technologies (e.g. pumped hydro) lack the possibility of 

expansion, electrochemical storage can be an alternative. However, due to high investment 

cost this option has not been implemented on significant scale so far. Therefore 

technological alternatives with low investment cost are needed. A very innovative concept 

that fulfills these requirements is the Rechargeable Oxide Battery (ROB) which will be 

presented in this paper. 
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1.1 Technology 

The Rechargeable Oxide Battery (ROB; Fig. 1) is based on a reversible solid oxide cell 

(SOC, Jülich F10-design, [1, 2]) that operates in turns as fuel cell and as electrolyzer. The 

SOC is coupled with a storage material which provides and absorbs reactants at the fuel 

side. Whereas a classical fuel cell or electrolyzer system needs continuous delivery and 

removal of fuel gases the integrated storage material enables the system to be operated as a 

battery in a semi-closed system. At the fuel side no pumping is needed. At the air side a 

simple passive air vent or a small fan suffices. This saves all cost related to gas delivery and 

conditioning. 

 

Fig. 1: Schematic of working principle of ROB in charge and discharge operation according to [3] 

As depicted in Fig. 1 in discharge operation a metal is oxidized by steam yielding hydrogen. 

In the same manner as in a fuel cell hydrogen is the oxidized by oxygen-ions that diffuse 

from the air side through the electrolyte forming again steam. The electrons that are set free 

in this reaction can be used to supply a load with electricity. The battery is discharged when 

all of the metal base storage material is oxidized. Vice versa, in charging operation the metal 

oxide is reduced, leading to steam which is electrolyzed into hydrogen which acts as 

reducing agent for the metal oxide. 

Below, the governing chemical equations of the ROB system are shown, where Eq. 1 

describes the reversible reaction of the atmosphere with the storage material and Eq. 2 and 

Eq. 3 represent the well-known reactions at the respective electrodes of the SOC. 

 Eq. 1 

 Eq. 2 

 Eq. 3 

1.1.1 Operating Conditions 

Due to the use of yttria stabilized zirconia (YSZ) as electrolyte elevated temperatures of 

600 °C-800 °C are necessary to provide a sufficiently high ionic conductivity of the 

electrolyte. Also, the redox reaction of the storage material favors this temperature range. 

Usually, in solid oxide fuel cells (SOFCs) hydrogen is humidified up to 20 % steam content to 

not reduce the YSZ-based electrolyte. In solid oxide electrolysis cells (SOECs), during 

electrolysis of steam, about 20 % hydrogen is added in order to safely avoid oxidation of the 
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nickel containing fuel electrode. Hence the operating conditions for the ROB are at 800° C 

and steam-to-hydrogen rations between 1:4 and 4:1 respectively.  

1.1.2 Application 

Using iron-based storage material, the battery provides a cheap way of storing energy at a 

capacity of roughly 1,300 Wh/kg. First experiments show that the battery in the current 

design displays charging/discharging durations of about one hour and current densities of 

150 mA/cm2 at a cell voltage of approximately 0.7-1.2 V.  

Possibly, the main advantage over other electrochemical storage devices such as lithium-ion 

batteries is the lower investment cost of used materials. Compared to conventional 

SOEC/SOFC systems, especially the operating cost will be lower mainly due to avoided gas 

conditioning (purity, storage, pumping, metering and thermal losses). 

From the specific technical operation conditions of the battery – especially the temperature –  

two applications are most promising: Firstly the operation of the battery in high frequency for 

stabilization purpose of the electricity network. Provided a good insulation is applied the 

frequent charging and discharging of the battery keeps it at operating temperature. Secondly, 

the operation in combination with conventional power plants such as gas turbines could 

increase the overall efficiency and durability of the system because there would be no part 

load operating mode.  

2 Economic Considerations 

The transformation of the German energy system has been characterized in recent years by 

the extension of fluctuating renewable electricity generation capacity such as wind (1.5 GW, 

1996 – 28 GW, 2011, [4]) and photovoltaics (3 GW, 2007 - 34 GW, 2013, [5]). This 

development, which is currently referred to as “Energiewende”, is expected to continue in the 

coming decades (planned for 2032: 90 GW wind, 65 GW PV, [5]). It implies the transition 

from a demand-oriented to a supply-oriented power generation and a spatial separation of 

production and consumption.  

These structural changes require greater efforts to stabilize the operation of transmission and 

distribution networks. This includes the assurance of power quality, a stable grid frequency 

by power balancing and the ability to restart a collapsed subsystem without an external 

power supply network (blackstart). Thus, the demand for balancing power is expected to 

increase from 11.1 GW (2020) to 17.3 GW (2050) [6]. At the same time the changes create 

opportunities to boost system efficiency by peak shaving, demand-side management, 

renewable-induced long-term storing and associated arbitrage trading. 

As technical option for the provision of network services and for the increase of system 

efficiency in addition to the promotion of system flexibility - by demand side management and 

an increase of power plant flexibility - electrical storage comes into consideration. The latter 

has been operated for decades in Germany as pumped storage, with an installed capacity of 

45 GWh in 2013 and a power of 6.4 GW.  

With the expected increase in renewable generation capacity, also the demand for storage 

capacity is expected to rise. Since additional construction potential of pumped storage is 

limited, other technologies such as compressed air, hydrogen or electrochemical storage 
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(batteries) could profitably enter the market and cover additional demand. However, 

competition to demand-side management and more flexible power plants has to be 

considered. 

The economic potential of currently available battery systems to increase system efficiency 

during the transformation of the energy system is low. Scenarios with limited fossil energy 

production due to climate protection goals show that the storage of electrical energy is 

inevitable as the renewable energy share exceeds 80% of total electricity production [7].  

However, almost exclusively hydrogen and methane (Power-to-gas) storage technologies 

are used for the long term storage requirements. Nevertheless, novel battery concepts with a 

more favorable cost structure than lithium-ion technology could enter the market. Their 

potential has to be large enough to offset the development advantage and to compete with 

established technologies under short-term consideration. Also, the regulatory framework 

would have to be adjusted. 

In addition to the efficiency-enhancing applications described above the regulatory frame-

work and recent reductions of the feed-in rewards for electricity from PV systems provide an 

increased feasibility for decentral battery storage. Also, using battery systems in combination 

with a carbon fuel based engine (diesel generator, gas turbine, etc.) allow the operation of 

the engine in the optimum efficiency range which increases lifetime and reduces fuel 

consumption and emissions.  

One focus of current research projects is the development of batteries for the mobile as well 

as stationary use. This also reflects in a number of recent demonstration projects, where 

stationary battery storage is tested for the provision of network services, in smart grid 

systems and in combination with photovoltaic systems. 

Against the background of an emerging and open market for storage systems, commercial 

lithium ion batteries are not always a profitably applicable technology due to high investment 

costs that are related with the use of expensive materials. For example, in a lithium ion 

battery (NCM-type), the share of material costs in the overall investment cost reaches more 

than 50% and is mainly caused by the cathode elements nickel, cobalt and manganese [8]. 

Regardless of whether the unexpectedly sharp fall in the price of these systems continues 

the ROB approach provides a significant potential to reduce cost through the use of ferrous 

material and it is also advantageous from the viewpoint of environmental protection and 

sustainability. The latter is due to the use of non-toxic iron for which a comprehensive 

recycling infrastructure exists. 

Lower material cost of the ROB are, however, accompanied by higher operating costs to 

maintain the operating temperature of 800°C and a lower efficiency than lithium ion. Whether 

this results in a net cost advantage for the ROB, is dependent on the specific application, the 

number of charge cycles and the design parameters (voltage, current desities, use of heat). 

Conclusions can only be drawn after completion of the measurement series and further 

extensive research. 

3 Experimental 

Experimental work is conducted with the aim to optimize material properties of the storage 

material, specifically to increase capacity and kinetics while at the same time to reduce 
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degradation effects and establish a lower operating temperature. In order to reduce cost, 

different manufacturing routes of the storage material such as tape-casting and extrusion are 

being investigated. 

3.1 Material development 

As was mentioned before, battery performance and cost depend on the degradation 

properties of the actual storage material. When pure iron as storage is used two general 

challenges emerge: particle agglomeration and layer formation. This can be seen in Fig. 2. 

The iron oxide (Fe2O3) in as-sintered state (900 °C in air for 3h, 5K/min heating rate) is 

initially fine-grained. During first reduction (charging, 800°C, 10h in Ar-4%H2) the metallic iron 

sinters further forming iron agglomerates  

 

 

  

a) As sintered b) First reduction (1 halfcycle) 

  

c) Oxidized after 10 halfcycles d) Reduced after 11 halfcycles 

Fig. 2: Cross-sections of pure iron storage material after sintering (a), first charging (b) and after 10 (c) and 11 (d) 
halfcycles respectively [3]  

During oxidation under above mentioned conditions (discharging, 800 °C, 10h, steam-to-H2-

ratio 4:1) iron forms layers of oxide products at the surface (here FeO and Fe3O4). The 

growth of these layers is quick at first until the process is controlled by the outward diffusion 

of iron species [9, 10, 11]. This means that the diffusion rate of iron through the product layer 

is faster than the inward diffusion of gaseous species. As a consequence, an area of 

apparent iron depletion occurs slightly below the surface. 
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Conversely, during reduction (steam-to-H2-ratio 1:4) a layer of metallic iron forms at the 

surfaces. Due to sintering these layers quickly inhibit further gas transport to the Fe/FeO 

interface and reduction of iron oxide slows down significantly.  

To cope with both effects, further oxides were added to the iron oxide based active material. 

As an inert oxide support 30 vol.% YSZ was added in order to separate single iron oxide 

particles from each other and thus keep them from sintering. The effect on the microstructure 

can be seen in Fig. 3. 

  

  

a) As sintered b) First reduction (1 halfcycle) 

  

c) Oxidized after 10 halfcycles d) Reduced after 11 halfcycles 

Fig. 3: Cross-sections of iron storage material with 30 vol.% YSZ as inert oxide matrix after sintering (a), first 
charging (b) and after 10 (c) and 11 (d) halfcycles respectively 

The addition of YSZ leads to a significant reduction of particle agglomeration as well as layer 

formation. Moreover, the built layers show a higher porosity leading to a better gas transport 

into the inner regions of the storage material. However, layer formation still takes place after 

an increased number of charging-discharging cycles (20 full cycles) and layers of greater 

thickness and density occurred.  

In search of a suitable second oxide several oxides were benchmarked as described 

elsewhere [3]. As a result CaO was identified to be most promising. After 10 full cycles no 

permanent layer formation occurred and also particle agglomeration was reduced (Fig. 4). 

The good degradation properties are possibly due to the reversible formation of mixed oxides 

of CaO and Fe2O3 namely CaFe2O5, CaFe5O7, CaFe3O5 and the thereby changed properties 

of iron diffusion and sintering. These phases, earlier investigated by several authors [12, 13, 

14, 15] were detected in XRD measurements of the system described in [16]  
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a) Discharged state (10 halfcycle) b) Charged state (11 halfcycle) 

Fig. 4: Calcium iron oxide after sintering at 900 °C and subsequent redox treatment a) discharged (oxidized) state 
and b) charged(reduced) state 

Having experimentally determined a well working material combination another issue 

becomes the manufacturing process and its influence on material properties. 

3.2 Manufacturing route 

For material screening purposes most of the time a laboratory hand press was used to 

produce samples. However, for a larger amount of sample material and for repeatable and 

reproducible results storage components have to be manufactured with an easier and more 

convenient route. This can be done by means of tape casting or extrusion. Fig. 5 depicts the 

general working principle of both techniques and exemplary sample geometries are shown. 

  

  

Fig. 5: General schematic of the considered possible manufacturing routes tape casting and extrusion and 
exemplary samples made by a) tape casting and b) extrusion. Extruded samples can have a large variety of cross 
sections whereas tape cast-samples are limited to approximately 1 mm thickness. 

3.2.1  Tape casting 

Tape casting is a process, during which a slurry is evenly distributed on carrier tape. Via a 

doctor blade the height of the resulting (dried) tape can be adjusted within a range of 1 mm 

down to a few µm. 

Tape casting could be readily used due to the availability of a well-working slurry recipe 

reported in [17]. Slurries were produced without cracks when CaCO3 instead of the above 

mentioned CaO was used. This has the advantage of generating additional porosity upon 
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sintering and also problems related to the strong hygroscopy of CaO can be overcome. After 

casting, samples and actual storage parts were die-cut out of the generated tape, sintered 

and then used in the battery prototype (see section 4).  

3.2.2 Extrusion 

During extrusion a Fe2O3 and CaCO3 based paste is near-net shaped by pressing the paste 

trough a round or rectangular die. Like this storage components with a thickness greater than 

1 mm can be directly manufactured. Also, the applied paste uses water as solvent, which 

makes it economically and environmentally more feasible than the organic slurry in the tape 

casting process. However, the development of the extrusion paste is non-trivial which is why 

there is still research to be done to manufacture larger amounts of storage material without 

cracks and without the tendency to bend during drying and sintering. 

4 Battery tests 

Battery tests were conducted in Jülich. An F-10 design two-cell stack was equipped with 

approximately 20 g of storage components per cell. The cells consist of a warm-pressed 

YSZ-NiO substrate, a vacuum slip-cast YSZ-NiO anode and an YSZ electrolyte. The 

additional diffusion barrier (ceria doped gadolinia, CGO) and the cathode 

(La0.58Sr0.4Co0.2Fe0.8O3-δ, LSCF) were screen-printed on top. The tape-cast storage 

components were put into the gas channels of the flow field of the ferritic steel interconnect 

at the fuel side. Then the stack was assembled and operated at 800 °C with closed in- and 

outlets for the fuel. During repeated charging and discharging tests at 150 mA/cm2 the 

duration of one half-cycle was found to be approximately 47 min (Fig. 6).  

 

Fig. 6: Time dependent cell voltage of a two-cell stack test employing calcia-containing iron oxide based storage 
components during  repeated galvanostatic discharging and charging with current densities of j=150 mA/cm

2
 at 

800 °C.  

To further increase the capacity and the current density the total mass of the employed 

storage material per cell area needs to be increased while at the same time maintaining a 

high open porosity and thus an active surface area. 

5 Conclusion 

The experimental results of the development of a Rechargeable Oxide Battery (ROB) on the 

basis of a reversible Solid Oxide Cell (SOC) identify calcium oxide as most promising 
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candidate to be used to avoid degradation of the iron oxide based material. Tape-cast 

storage components on the basis of Fe2O3 and CaCO3 were included in an two-cell stack test 

and galvanostatically operated for more than 200 full cycles at 800°C with current densities 

of 150 mA/cm2 and a duration of 47 min per halfcycle. 

Further research will focus on establishing the extrusion process for manufacturing high yield 

near net shape low cost storage components with a large variety of possible geometries. To 

establish a battery for the use in grid energy storage the general applicability of the concept 

needs to be further investigated. Here especially the issues of scale-up and redesign need to 

be dealt with. 
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